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Abstract. A new type of angular oscillations of the high-frequency conductivity for conductors with a band-
contact line has been predicted. The effect is caused by groups of charge carriers near the self-intersection
points of the Fermi surface, where the electron energy spectrum is near-linear and can be described by
anisotropic Dirac cone model. The amplitude of the resonance peaks satisfies the simple sum rule. The
ease in changing the degree of anisotropy of the Dirac cone due to the angle of inclination of the magnetic
field makes the considered type of oscillations attractive for experimental observation of relativistic effects.

1 Introduction1

Recently, there has been growing interest in the study of2

nodal semimetals having band-contact lines. First prin-3

ciples calculations indicates the existence of ring-shaped4

nodal lines in Ca, Sr, Yt [1]. Also, the topological tran-5

sition 3 1
2 kind is known for the conductors with band-6

contact line and thus possible in graphite conductors fam-7

ily, Be, Mg, Zn, Cd, Al and other materials [2]. Usual8

graphite have nodal lines [3].9

In this paper we call attention to the effects of10

anisotropic Dirac cones without an inversion center (tilted11

Dirac cones) in nodal semimetals. The Hamiltonian, cor-12

responding to the linear energy spectrum of Dirac-type13

charge carriers has the form [4–6]:14

ε(px, py) = v0(ασxpx + σypy + ηpy) (1)

where the absence of an inversion center η �= 0 is either a15

consequence of the internal symmetry of the conductor or16

may be achieved artificially, e.g. in strained graphene or17

in a problem of Dirac electron drift in crossed electric and18

magnetic fields [4]. The so-called “tilt” η can describe the19

relativistic effects [7]. Furthermore, the “collapse” (|η| >20

1) of the Hamiltonian (1) is naturally explained in terms21

of relativistic rotations (“Lorentz boosts”) [8].22

The implementation of the Hamiltonian (1) for23

graphene requires a relatively strong electric fields24

∼106 V/m and relatively large strain values in the sam-25

ple ∼10% [7]. In case of natural anisotropy, particularly in26

the compound α−(BEDT−TTF )2I3 [4,5,9–11], changing27

of parameters of the electron energy spectrum is difficult,28

a e-mail: kozlov@ilt.kharkov.ua

since the latter is due to the intrinsic properties of the 29

conductor. Thus the experimental observation of effects 30

that require a parameter η to be changed is associated 31

with certain difficulties in these conductors. All the above 32

mentioned conductors have a pronounced two-dimensional 33

nature. 34

At the same time physical phenomena characteristic 35

of the Hamiltonian (1), will take place in nodal semimet- 36

als near the self-intersection points of Fermi surfaces. It 37

can be noticed that in a tilted magnetic field, the electron 38

energy spectrum in a Larmor orbit’s plane will be given 39

by the model (1), where the value of η which determines 40

the degree of anisotropy of the electron energy spectrum, 41

can be easily changed by simply changing the tilt angle 42

of a quantizing magnetic field. The attractiveness of the 43

graphite and its derivatives is determined by the fact that 44

for simple chemical compounds the high purity of the con- 45

ductor required for the observation of high harmonics of 46

the quantum cyclotron resonance [12] can be more easily 47

achieved. 48

The goal of the present work is new oscillation phe- 49

nomena caused by tilted Dirac cone effects in conductors 50

having band-contact (nodal) lines. In Section 2 we choose 51

the model of the electron energy spectrum. The model 52

has the qualitative accordance with the Fermi surface of a 53

number of nodal semimetals. The conditions limiting the 54

applicability of the model are given. In Section 3 a new 55

type of angular oscillations of the high-frequency conduc- 56

tivity for conductors with nodal lines has been predicted. 57

The physical mechanism of these oscillations is explained. 58

Section 4 shows that the amplitude of the resonance peaks 59

satisfies the simple sum rule or the “magic square rule”, 60

which follows directly from properties of Pauli matrices. 61
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In Section 5 the paper is summarized and concluded. The1

possibility to observe the predicted oscillation effects is2

discussed. We provide a brief overview of articles related3

to the results of the present work.4

2 Model5

The model of graphene multilayers with a crystal lattice6

of AA type stacking is convenient for the observation of7

the resonant effects near the Dirac cone, since the charac-8

ter of the energy spectrum of the charge carriers can be9

considered to be linear in a broad range of energies [13,14].10

AA stacked graphite is unstable and cannot exist under11

natural conditions. Although the nanoparticles with the12

number of layers of about ten grown on the border of13

the diamond may be available for direct observation [15].14

Nevertheless, the energy spectrum of AA type graphite is15

widely used in theoretical works as the simplest and the16

most convenient theoretical model due to its characteris-17

tics, such as layering and Dirac energy spectrum of charge18

carriers near the Fermi surface (see the work) [13] (see also19

Ref. [16]). The Hamiltonian of low-energy charge carriers20

carriers corresponding to the model has the form:21

H(p) = v‖(σxpx + σypy) − 2t cos(
azpz

�
), (2)

where az is the interlayer distance and t is the overlap22

integral of the wave functions in adjacent layers, that we23

consider to be positive. This model was proposed for the24

conductors with a graphitelike energy spectrum (2) in ref-25

erence [13], where a linear magnetoresistance of a layered26

conductor with a small overlap integral t was investigated.27

One can also easily see the qualitative accordance of28

the model (2) with a fragment of the Fermi surface of29

a number of nodal semimetals near the point of self-30

intersection of Fermi surfaces (see Fig. 1 of Ref. [2]). In31

particular the topological transition of 3 1
2 kind [2] occurs32

when εF = ±2t for the model (2).33

This model of the electron energy spectrum can be34

also suitable for a number of graphite intercalates with35

AA type stacking of graphene layers [17]. For example,36

recent ARPES studies have reported about the direct ob-37

servation of a linear energy spectrum of charge carriers in38

KC8 compounds. Along with the observed data concern-39

ing the traditional quantum oscillation effects, the ARPES40

results reveal the applicability of the Dirac cone model41

for the energy spectrum of the charge carriers in conduc-42

tors of this type [18]. The dependence of the energy of43

the charge carriers on the momentum components in the44

plane of the layers with a good degree of accuracy can45

be considered to be linear in the energy area of the or-46

der of fractions of ev, which is significantly higher than in47

graphite (several mevs) [18,19]. The Fermi velocity in the48

layers plane vF ≈ (0.82–0.97) × 106 m/s (see for exam-49

ple [12]), i.e. is close to the value of the Fermi velocity of50

conduction electrons in graphene. Unfortunately, a strong51

shift of the Fermi level is often observed in intercalated52

graphite. Therefore the Dirac singularity can be deep be-53

low the Fermi level, that takes place for intercalation by54

alkali metals in particular. Nevertheless, the wide variety 55

of intercalated graphite compounds gives the possibility 56

to observe the effects of an anisotropic Dirac cone for the 57

other members of this family of compounds. The model (2) 58

was later used in reference [16] to study the quantum cy- 59

clotron resonance in the case of not so high frequencies 60

�ω < ε1, where ε1 is the energy difference between the 61

zeroth and first Landau levels, when the influence of the 62

electron-hole transitions can be neglected. 63

In a tilted magnetic field B = (0, B0 sin θ, B0 cos θ), 64

near the self-intersection point of the Fermi surface p = 65

(0, 0, pz0), the dependence of the charge carriers energy on 66

the components of the momentum in Larmor orbit’s plane 67

can be described by the expression (1) with the parameter 68

values 69

η = −v⊥
v‖

tan θ, v0 = v‖ cos θ,

α =
1

cos θ
, v⊥ =

2taz

�
sin

azpz0

�
, (3)

(v⊥ is the Fermi velocity of conduction electrons along 70

the normal to the layers). We assume that the inequal- 71

ity |εF | < 2t holds, in which the Fermi surface has self- 72

intersection points. We concentrate on the frequency re- 73

gion �ω > ε1, so that the representation of the cyclotron 74

resonance is determined by electron-hole transitions. The 75

quantum cyclotron resonance and the classical contribu- 76

tion to the high frequency conductivity in the frequency 77

region �ω � ε1, where the influence of electron-hole tran- 78

sition is negligible, have already been considered in refer- 79

ence [16] for the case of the magnetic field normal to the 80

layers. The deviation from the linear dependence (1) can 81

be neglected for Landau levels with εn ∼ �ω, (A.1) for 82

angles θ of the magnetic field B satisfying the following 83

inequality, which is considered to hold from now onwards: 84

85

ε1 < �ω � min{ε1/η, (2t ± εF )}. (4)

We only consider the case of a sufficiently large relaxation 86

time τ and relatively low temperatures T : 87

2t ± εF

�ω
� ωτ � �v0

azT tan θ
. (5)

The right side of the inequality allows us to neglect the 88

deviation from the linear dependence (1) in the region 89

of temperature smearing of the Fermi surface (2), near 90

the latter’s points of self-intersection. Also later we will 91

consider only the diagonal matrix elements of the con- 92

ductivity tensor σii in the plane (x̃, ỹ) orthogonal to the 93

vector B, 94

x̃ = x, ỹ = y cos θ − z sin θ, z̃ = z cos θ + y sin θ. (6)

Here in after the sign “tilde” will be used to denote 95

the components in the rotated coordinate system (6). 96

While calculating the conductivity tensor components, we 97

will use quantum kinetic equation in the relaxation time 98

approximation. 99
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3 Conductivity tensor1

Within the relaxation time approximation, the conductiv-2

ity tensor σij(ω) can be written in the form:3

σij(ω) =
2e3B

(2π�)2c

∞∑

n,m=−∞

∫
dp̃z

(
− f0

n(p̃z) − f0
m(p̃z)

En(p̃z) − Em(p̃z)

)

× vj
mn(p̃z)vi

nm(p̃z)
−iω + i

�
(En(p̃z) − Em(p̃z)) + 1

τ

, (7)

where f0
n(p̃z) = f0(En(p̃z)) is the Fermi-Dirac function, τ4

is the relaxation time, vi,j
nm are the matrix elements of the5

velocity operator and p̃z is the projection of the momen-6

tum vector onto the magnetic field vector B. The factor of7

2 in the numerator is obtained from summation over the8

conventional spin. If the inequalities (4), (5) are satisfied,9

the energy levels for model (2) can be represented as10

En(p̃z) = ε1(p̃z)sign(n)
√
|n|−2t cos

(
az p̃z

� cos θ

)
+δEn(p̃z).

(8)
Caused by the deviation from the model (1) the amend-11

ment |δEn(p̃z)| � 1
τ , does not significantly affect the po-12

sition of the resonance peaks and can be omitted. The13

energy of the first Landau level14

ε1(p̃z) = v‖

√
2 cos θ

eB�

c
λ3(p̃z), (9)

where15

λ(p̃z) =

√

1 −
(

2taz

�v‖
sin

(
az p̃z

� cos θ

)
tan θ

)2

, (10)

can be easily obtained from the expression (A.1) with the16

energy spectrum parameters in (3) evaluated at the point17

px = py = 0, pz = p̃z/ cos θ, and is given here for succes-18

sion.19

In the frequency region delimited by the inequali-20

ties (4) and (5), the conductivity oscillations will be de-21

termined by the charge carriers near the self-intersection22

points of the Fermi surface, for which the dependence of23

the cyclotron frequency �Ωn(p̃z) = En+1(p̃z)−En(p̃z) on24

p̃z can be neglected. Consequently, a real part of the con-25

ductivity tensor for this group of electrons can be written26

in the form:27

Re σii(ω) ≈ N
∑

n,m

σii
nm

τ2

�2 (En(p̃z0) − Em(p̃z0) − �ω)2 + 1
,

(11)
where N is the number of self-intersection points of the28

Fermi surface, N = 2 for the model (2). The magnitudes29

En,m are evaluated by the expression (8) given at the self-30

intersection point of the Fermi surface p̃z0 = pz0 cos θ,31

pz0 = �

az
arccos

(− εF

2t

)
. The approximate value of the32

conductivity tensor differs from the exact value, which33

takes into account all groups of electrons, by a correction34

amendment Δσ � t
�2ω2τ

e2

az
, which is negligible in com- 35

parison with the characteristic values of the conductivity 36

tensor (11) due to the left side of the inequality (5). 37

Each contribution σii
nm is determined only by the tran- 38

sitions between the Landau levels with numbers n,m and 39

correspond to the maximum of the conductivity Re σii(ω) 40

at the resonance frequency �ω = εn − εm if the mutual 41

overlap of the resonance peaks is omitted. In the region 42

delimited by (4) only resonance frequencies corresponding 43

to electron-hole transitions of the charge carriers are found 44

where their energy spectrum are approximately linear. For 45

the harmonics of the quantum cyclotron resonance with 46

not too high order numbers 47

|n|, |m| � 1/(k2η2), k = |n| − |m|, (12)

that means the linear approximation for the electron en- 48

ergy spectrum in the calculation of the matrix elements of 49

the velocity operator, the contributions σii
nm can be writ- 50

ten in the form: 51

σii
nm =

2e3Bτ cos θ

(2π�)2c|v⊥| |v
i
nm|2, (13)

here v⊥, (3) and vi
nm (A.6) are determined by the linear 52

energy spectrum (1) with the parameters (3) and (A.1) 53

evaluated at p = (0, 0, pz0). The phase independence of 54

the quantum oscillations of the conductivity tensor (11) 55

and (13) on the Fermi energy under the conditions of 56

quantum cyclotron resonance and the absence of temper- 57

ature damping of the oscillations at not so high temper- 58

atures, when the electron-phonon scattering can be ne- 59

glected, are associated with the fact that in case of the 60

linear energy spectrum (1), the cyclotron frequency of 61

the charge carriers of Dirac type depends strongly on the 62

number of Landau levels, but is practically the same for 63

charge carriers which have different momentum compo- 64

nent along the magnetic field direction (see the part 4.C 65

of the Ref. [20]). In case of a tilted magnetic field we 66

can can neglect the difference between the linear rela- 67

tion (1) and the exact energy spectrum within the lim- 68

its of the temperature smearing of the Fermi level when 69

inequality (5) is satisfied. In a quantized magnetic field 70

orthogonal to the layers, the possibility of observing a 71

high-temperature effect for the conductors of the graphite 72

family was predicted in reference [16], where preliminary 73

evaluations were provided. 74

Figure 1 shows the behavior of the diagonal compo- 75

nents of the conductivity tensor as a function of the mag- 76

netic field magnitude for the fixed magnetic field tilt θ 77

and frequency ω. The relation is numerically built taking 78

into account all the groups of electrons, −π�

az
< pz ≤ π�

az
79

using the expressions (2), (3), (7), (A.1) and (A.6). The 80

similar dependence built using the approximate expres- 81

sion (11) with the same values of the parameters is not 82

visually different from that one shown in the figure. The 83

pair of numbers (n, m) at each peak in Figure 1 and its 84

reflection (−m,−n) correspond to the Landau level num- 85

bers and the most important contributions to σii
nm (13) 86

forming the shown resonant peak. In a tilted magnetic 87
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Fig. 1. The dependence of the conductivity tensor Reσxx (con-
tinuous line) and Reσỹỹ (dashed line) on the magnetic field B
for a constant electromagnetic field frequency, when tan θ = 0
(thin line) and tan θ = 2/3 (thick line). The constants used on

the axes labels are σ0 = 2e2/(�az), B0 = c�ω2

2ev2
‖
. The param-

eter values used are t/(�ω) = 8, εF /(�ω) = 1, v⊥/v‖ = 0.3,
ωτ = 100. The pairs of numbers (n, m) determine the numbers
of a pair of Landau levels forming the given resonance peak.

field besides the main peaks |n| − |m| = ±1, which de-1

termine the representation of the cyclotron resonance for2

θ = 0, higher harmonics are added. In these harmonics,3

the amplitude of the sufficiently high peaks of the pair4

(n, m) shows oscillations as a function of the angle θ. Fig-5

ure 2 shows the angular dependence of a resonance peak6

amplitude for a fixed frequency ω.7

The physical mechanism of these oscillations can be8

explained as follows. The energy of the conduction elec-9

tron ε(p̃x, p̃y) in Larmor orbit’s plane p̃z = const. can be10

described using the anisotropic Dirac cone model (1). It11

is well known, that the corresponding wavefunctions in a12

quantized magnetic field, which differ only by their Lan-13

dau level number n, can be expressed through the Hermi-14

tian functions (A.2) with shifted center Xn (A.4) which15

magnitude depends only on the Landau level number.16

Hence, when |n|, |m| � 1 the expressions for the com-17

ponent of the velocity operator vx̃,ỹ
n,m contain the prod-18

uct of oscillating functions having a phase shift caused19

by the difference Xn − Xm �= 0, which depends on the20

magnitude and direction of the magnetic field B. Their21

interference leads to the oscillatory dependence vx̃,ỹ
n,m (15),22

and, therefore, to the oscillations of the conductivity ten-23

sor component.24

The representation of the oscillations of the conduc-25

tivity tensor (13) would be clearer if we use asymptotic26

expressions for the velocity operator. One can admit that27

for the velocity operator components vx̃,ỹ
n,m [6], which are28

related to the electron-hole transitions sign(n) �= sign(m)29

and limited by the condition30

|n| − |m| � 1/η,
√
|n|, (14)

the known asymptotic expression Lα
j (x) ≈ Jα(2

√
jx) can31

be applied yielding the components’ simple asymptotic32

�3 �2 �1 0 1 2 3
0.00

0.01

0.02

0.03

0.04

tan Θ

R
e

Σ
ii

Σ
0

Fig. 2. The angular dependence of the maximum value of
Reσỹỹ (thick line) and Reσxx (thin line) near the resonance
(3,−4) (dashed line) and (2,−4) (continuous line), normalized
by the constant σ0 = 2e2/(�az), for a fixed value of the elec-
tromagnetic wave frequency ω. The parameter values used are
t/(�ω) = 7, εF /(�ω) = 1.8, v⊥/v‖ = 0.3, ωτ = 300.

expression: 33

vỹ
nm ≈ v0λ

2J
′
|k|(4ηl), vx̃

nm ≈ iv0λα
k

4ηl
J|k|(4ηl), (15)

where k = |m|−|n|, l = min(|m|, |n|) and J
′
k (x) is the 34

derivative of the Bessel function. The asymptotic form of 35

the velocity operator components is insignificantly differ- 36

ent from (A.6) for the physical picture of the oscillations 37

phase shift and does not account for the overwhelming 38

multiplier exp(−2η2l) ≈ 1 when η � 1√
|n| , as the con- 39

dition (4) holds true. A more accurate, though awkward, 40

the asymptotic expansion for associated Laguerre poly- 41

nomials La
n(z), in particular, for the oscillatory behavior 42

of the region 0 < z < 4n + 2(a + 1), can be found in 43

reference [21]. The expressions (15) maintain the physical 44

structure of the velocity operator oscillations. This is the 45

way the asymptotic value of vx̃,ỹ
nm (15), as well as its exact 46

expression (A.6), will be significantly different from zero 47

only in the region of |η| < |k|
|n|+|m| , and exponentially lit- 48

tle beyond it (this condition is easier to obtain using the 49

WKB approximation in conjunction with the method of a 50

stationary phase). Figure 3 shows the dependence of the 51

resonance peaks amplitude (13) on m and n numbers. The 52

oscillations of values σnm
ii are the result of the anisotropy 53

of the energy spectrum of Dirac type that is indirectly 54

confirmed by qualitative similarity of the given figure and 55

Figures 2a and 2c of reference [4]. While constructing Fig- 56

ure 3 the exact expressions for the matrix elements of the 57

velocity operator vi
nm for the energy spectrum (1) were 58

used, however replacing them with the approximate val- 59

ues (15) describes correctly the oscillation dependence of 60

the peak amplitude in terms of inequality (14). 61
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Fig. 3. The dependence of the contributions σỹỹ
nm (a) and σxx

nm (b), normalized by σΣ(17), that determine the conductivity
tensor components (11) under the resonance conditions �ω = εn − εm at the fixed magnitude and direction of the magnetic
field, tan θ = 0.3, v⊥/v‖ = 0.3, on the numbers (n, m), which determine the resonances caused by electron-hole transitions.

4 Sum rule1

The tilt angle of the magnetic field θ, corresponding to2

the condition η(θ) ∼ 1/l, separates the two cases of the3

quantum cyclotron resonance. At the smaller angles θ, the4

quantum cyclotron resonance will be determined only by5

the fundamental harmonics of k = |n|− |m| = ±1. For the6

larger angles θ, in the frequency range (4) a lot of higher7

resonance harmonics will appear, while the amplitude of8

the fundamental harmonics caused by electron-hole tran-9

sitions n + m = ±1 falls sharply.10

It may be noticed, that there is a kind of rule of con-11

servation of the resonance peaks of total amplitude, ex-12

plaining the decrease of the amplitude of the fundamen-13

tal resonances during the appearance of higher harmonics.14

Namely, for an arbitrary η and n = const the relation:15

∞∑

m=−∞
|vx̃

nm|2 = v2
0α2,

∞∑

m=−∞
|vỹ

nm|2 = v2
0(1 + η2),

(16)
is valid, which follows directly from the properties of the16

Pauli matrices σ2
x,y = 1. The expressions (16) remain valid17

when using the asymptotics (15) and pass to the known18

sum rule J2
0 (x) + 2

∑∞
n=1 J2

n(x) = 1. From the expres-19

sions (13) and (16) it follows that the maximums of the20

cyclotron resonance peaks due to the charge carriers near21

the Dirac singularity (4), (12) obtained for the same values22

of magnitude and direction of the magnetic field B (with23

different resonance frequencies ω) satisfy the relationship24

∞∑

m=−∞
σx̃x̃

nm = α2σΣ ,

∞∑

m=−∞
σỹỹ

nm = (1 + η2)σΣ ,

σΣ =
2e3Bτv2

0 cos θ

(2π�)2c|v⊥| , (17)

in which summed contributions visually correspond to one 25

of the horizontal in Figure 3. So we have the following 26

“magic square rule” for a table built from the resonance 27

peak amplitude values of the conductivity σnm (17): the 28

sums of all the elements in the rows (n = const.) and 29

columns (m = const.) do not depend on their numbers 30

and they are equal. 31

5 Conclusions 32

The found oscillatory dependence of the conductivity ten- 33

sor (11), (13), (15) has a quantum interference nature 34

and is a consequence of the anisotropy of the electron en- 35

ergy spectrum in Larmor orbit’s plane, which arises in 36

a tilted magnetic field. The amplitude of the resonance 37

peaks satisfies the simple sum rule or the “magic square 38

rule”, which follows directly from properties of Pauli ma- 39

trices. The character of the oscillatory dependence is sim- 40

ilar to those observed in reference [4] oscillations of the 41

absorption coefficient of the electromagnetic field for a 42

two-dimensional conductor of Dirac type with a natural 43

anisotropy of the electron energy spectrum, or in crossed 44

electric and magnetic fields, as a function of an electric 45

field or the degree of deformation of the conductor. Unlike 46

the two-dimensional case, in graphite family conductors 47

the degree of the Dirac cone anisotropy η can be modified 48

by simply changing the inclination angle of a quantized 49

magnetic field, which substantially facilitates the condi- 50

tions for the experimental observation of oscillatory phe- 51

nomena that are related to the Dirac cone anisotropy. 52

Providing that the charge carrier velocity in the plane 53

of the layers v0 (2) is close to its value in graphene (see, for 54

example, Tab. 2 in Ref. [22]), the resonance frequency cor- 55

responding to the transition between zeroth and the first 56

Landau levels ω ∼ 5× 1013 ×√
B[T] [Hz], when the mag- 57

netic field is directed by the normal to the layers, and de- 58

creases if magnetic field tilt angle θ is increasing according 59
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to the expression (A.1). Thus, the region of the resonance1

frequencies in Figure 1 will be limited to the submillimeter2

and infrared diapason. Although the model (2) is suitable3

for multilayers of graphene with a AA type of stacking4

of the crystal lattice, but it can also be used for the de-5

scription of the physical properties of other anisotropic6

conductors with a Dirac singularity in the electron energy7

spectrum, the characteristics of which may differ much8

from the similar values in graphene, including the region9

of resonance frequencies. However, the observed oscilla-10

tory effect is not restricted by the given model and can11

take place in different conductors with nodal line in the12

energy spectrum. In particular, the energy spectrum of13

graphite with AB type of stacking is also characterized by14

a non-zero Berry phase [3] and has a local structure (1)15

in the proximity of self-intersection points of the Fermi16

surface [23,24]. The purity of highly oriented pyrolytic17

graphite (HOPG) gives the possibility of experimental ob-18

servation of higher harmonics of the quantum cyclotron19

resonance [12] and the angular oscillations of the kinetic20

coefficients in the frequency domain of the electromagnetic21

wave of millimeter and infrared range (see, for example22

Ref. [25] and references therein). The investigation of the23

angular oscillations of high-frequency kinetic coefficients24

which are caused by the charge carriers of Dirac type in25

graphite of AB type stacking is beyond the scope of this26

article and will be presented in a separate paper.27

The absence of an inversion center (η �= 0) of the28

model (1) in Larmor orbit’s plane, being the cause of29

the oscillatory dependence on the matrix elements of the30

velocity operator (15), though does not lead to quanti-31

tative changes of the quantized energy spectrum (A.1).32

Therefore, the interference mechanism observed here may33

take place in the kinetic coefficients, which are related34

to electron transport phenomena (electrical conductiv-35

ity, impedance) and at the same time can not cause the36

magneto-angular oscillations of the density of states and37

the related thermodynamic characteristics of a conductor.38

Naturally the effects specific to a Dirac anisotropic spec-39

trum are not limited to high-frequency transport phenom-40

ena. Thus the phase transition of 3 1
2 kind in conductors41

with nodal lines in the energy spectrum of charge carriers,42

which is sensitive to the anisotropy of the Dirac electron43

energy spectrum, is described in reference [2].44

The magneto-angular oscillations in bilayer graphene45

predicted in reference [26] have a similar physical nature46

as they are explained by interference of wave functions47

with the displacement of the centers of Larmor orbits in48

the graphene neighboring layers. However, the effect leads49

to the occurrence of the magneto-angular oscillations in50

the density of states of the electronic subsystem, which51

differs it from the mechanism of oscillations appearance52

Figure 2. Also in contrast to oscillations of the conductiv-53

ity tensor (11), (13), (15), which period of oscillations is54

determined by the ratio of the Fermi velocities in direc-55

tions perpendicular and parallel to the layers, the overlap56

integral between the layers does not affect the phase of57

the oscillations [26], although determines their amplitude.58

While working over the present article, we came across59

reference [27], where type-II Weyl semimetals in a tilted 60

magnetic field were investigated and Landau quantization 61

was proved to be possible even in the given conductors 62

for magnetic field directions with the effective tilt η < 1. 63

The existence of a new type of angular oscillations of ki- 64

netic coefficients for the conductors of the graphite family 65

considered in the presented work was announced in the 66

abstract [28]. 67

The authors express the gratitude to FINCYT and CON- 68

CYTEC of Peru for financial support of this work. 69
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Appendix A: Matrix elements of the velocity 72

operator 73

The eigenvalues εn and wave functions ϕν(r) of the 74

Hamiltonian (1) in a quantized magnetic field with the 75

gauge A = (0, By, 0) have the form: 76

εn = v0 sign(n)

√
2
eB�

c
λ3 α |n|, (A.1)

ϕν(x, y) =
(αλ)1/4

2(2π�)
√

aH

√
1 + δ0,n

1 + λ

× exp
(

i

�
Pyy

) {[
iη

1+λ

]
h|n|

(√
αλ

aH
(x+Xn)

)

−
[

i(1+λ)

η

]
sign (n)h|n|−1

(√
αλ

aH
(x+Xn)

)}
,

(A.2)

where ν = (n, Py) is the complete quantum index set, P 77

is the canonical momentum, the magnetic length 78

aH =

√
c�

eB
, λ =

√
1 − η2, (A.3)

the negative values of the Landau level numbers corre- 79

spond to holes in the energy spectrum of charge carriers, 80

81

Xn = aH η sign (n)

√
2|n|
αλ

− cPy

eB
(A.4)

is the centre of Larmor orbit of the conduction electrons, 82

hn(ξ) =
1√

2n
√

πn!
exp(−ξ2/2)Hn(ξ) (A.5)

is the solution of the dimensionless harmonic oscillator 83

problem, Hn(ξ) is the nth Hermite polynomial and δ0,n 84

is the Kronecker symbol. It is considered that the con- 85

tribution containing sign(n), (A.2) is equal to zero when 86

n = 0. 87
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The matrix elements of the velocity operator compo-1

nents have the form2

vy
nm = λ(Φnm + Φmn), vx

nm = iα(Φnm −Φmn) (A.6)

where3

Φnm = v0λ

√
|n|

2|m|−|n|+1

√
|m|!
|n|! Δ|n|−|m|−1

nm e−Δ2
nm

× L
|n|−|m|−1
|m| (2Δ2

nm)sign(n) (A.7)

Δnm =
η√
2

(
sign(n)

√
|n| − sign(m)

√
|m|

)
, (A.8)

when n �= 0 and Φ0m = 0.4

The expressions similar to (A.1), (A.2), (A.6) are given5

in a series of works (for example, see [4,5]). In particular,6

the expression (A.6) corresponds to the formulae (A1)–7

(A2) of references [6] where the value of the parameter8

α = 1, if the dependence on the latter is considered by9

simple coordinate transformation y′ = y, x′ = x/α.10
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