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It is shown that weakly damped electromagnetic waves with polarization perpendicular to the direc-

tion of highest conductivity can propagate in highly anisotropic organic conductors of the quasi-

one dimensional type in a magnetic field. The dispersion relations are analyzed numerically and

simple analytic expressions are obtained for the spectrum of the collective modes in a number of

limiting cases. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4977209]

1. Introduction

A variety of electromagnetic collective modes, some of

which are analogous to those in gaseous plasmas, can exist

in metals at low temperatures.1,2 Most of these excitations

are strongly damped, and weakly damped waves can only

exist within a few frequency regions and for certain parame-

ters of the solid state plasma. Without a magnetic field, elec-

tromagnetic waves with frequency x lower than the plasma

frequency xp cannot propagate in plasma media; they are

damped or fully reflected. Wave absorption is caused by

electron collisions and collisionless Landau damping, which

is a resonant absorption of an electromagnetic field by

charge carriers with velocities along the wave vector equal

to the phase velocity of the wave. The latter mechanism for

absorption is the basic mechanism for low frequency modes

with xs � 1 (where s is the mean free time for the elec-

trons). When x>xp the displacement current exceeds the

conduction current, the dielectric constant is positive in the

collisionless limit s ! 1, and the plasma is transparent for

electromagnetic waves.

A magnetic field affects the electron dynamics and

changes the electromagnetic properties of a plasma medium.

At low temperatures, it is possible for waves to propagate in

conductors in a magnetic field at frequencies substantially

below xp with a damping mean free path equal to the mean

free path of the charge carriers under conditions such that an

electron completes at least a few cyclotron orbits during its

mean free time. There is yet another mechanism for collision

absorption when a constant magnetic field is present: cyclotron

damping, which occurs when the frequency of the electromag-

netic field is equal to the cyclotron frequency of the conduction

electrons. Electrons moving along spirals in phase with the

wave are accelerated in the electric field in a plane perpendicu-

lar to H0 and absorb energy from the electromagnetic field.

As a rule, weakly damped waves are associated with

high-frequency resonances. The electromagnetic energy

absorbed under resonance conditions can propagate in the

form of collective modes. The high-frequency resonances

appear because of the periodic motion of conduction elec-

trons in a magnetic field along the Fermi surface (FS) when

their mean free time is long enough. In highly anisotropic

organic conductors, resonances can arise from the dynamics

of quasi-two dimensional (Q2D), as well as quasi-one

dimensional (Q1D), groups of charge carriers.3–16 We have

previously examined weakly damped intrinsic modes in

Q2D and Q1D low-dimensional conducting systems under

conditions of strong spatial dispersion, when the conductiv-

ity can be calculated analytically by the stationary phase

method.17–19 Weakly damped electromagnetic waves polar-

ized in the direction of highest conductivity have been stud-

ied20 in highly anisotropic organic conductors with Fermi

surfaces in the form of two weakly corrugated planes. This

paper discusses electromagnetic waves polarized perpendic-

ular to the conducting chain in Q1D-type organic conduc-

tors, which can appear when there is a nonlocal coupling

between the electric current and the variable electromagnetic

field. A numerical analysis of the dispersion relations yields

a fairly complete idea of the dispersion of weakly damped

electromagnetic waves. Analytic expressions are obtained

for the spectrum of the weakly damped modes in a number

of limiting cases.

2. Resonances in the high-frequency conductivity

The main structural components of Q1D conductors are

organic molecules or molecular complexes, such as tetrame-

thyltetraselenafulvalene (TMTSF), tetracyanoquinodimethene

(TCNQ), di-methylsethylenedithioddiselenadithiafulvalene

(DMET), etc., with donor or acceptor properties. The non-

1063-777X/2017/43(2)/5/$32.00 Published by AIP Publishing.186

LOW TEMPERATURE PHYSICS VOLUME 43, NUMBER 2 FEBRUARY 2017

http://crossmark.crossref.org/dialog/?doi=10.1063/1.4977209&domain=pdf&date_stamp=2017-02-01


radicals of these molecules form regular stacks along a

defined direction. The electrical conductivity along the stacks

is several orders of magnitude higher than that in the trans-

verse direction. The best known examples of conductors of

the Q1D type with a highly anisotropic Fermi surface are the

so-called Bechgard salts (TMTSF)2X (X denotes a set of dif-

ferent anions). Although all these substances have a complex

chemical structure, they have a fairly simple Fermi surface

that can be sketched as a pair of weakly corrugated surfaces,

as in Fig. 1.

Usually the electron energy spectrum corresponding to

this kind of FS can be written in the form

e pð Þ ¼ tF jpxj � pFð Þ þ B cos
py

p2

þ C cos
pz

p3

; (1)

where tF ¼ A=p1ð Þ sin pF=p1ð Þ and pF are the velocity and

momentum on the FS in the direction of the maximum con-

ductivity; A, B, and C are overlap integrals that obey

A� B� C; the constants p1 ¼ �h=a1, p2 ¼ �h=a2, and p3 ¼
�h=a3 are determined by the principal lattice periods

a1; a2; a3; and �h is the Planck constant. The characteristic

values of the overlap integrals are usually of order

A� 0.5 eV, B� 0.05 eV, and C� 2 meV. The dispersion

relations (1) correspond to the energy spectrum in the strong

coupling approximation, linearized in the direction of maxi-

mum conductivity along the Fermi level eF.

Without quantization of the electron energy levels in a

magnetic field, for frequencies x of the electromagnetic field

below C=�h the kinetic properties of the conductor can be

described in a quasiclassical approximation. In the case

when the magnetic field H0 ¼ 0;H0 sin#;H0 cos#ð Þ is per-

pendicular to the direction of the conducting chain, the com-

ponents of the electron velocity are given by

tx ¼ sign pxð ÞtF; ty ¼ sign pxð Þt2 sin Xt

tz ¼ t3 sin
pH

p3 cos#
� sign pxð ÞaXt

� �
; (2)

where X ¼ jejtFH0=cp2ð Þ cos# � X0 cos# is the analog of

the cyclotron frequency for electrons with the dispersion law

(1); t2 ¼ B=p2 and t3 ¼ C=p3 are the characteristic veloci-

ties of the electrons in a plane perpendicular to the conduct-

ing chain; a ¼ p2=p3ð Þtg# and pH ¼ pH0ð Þ=H0 are the

projection of the momentum on the direction of the magnetic

field; and e is the electronic charge. The value of pxð Þ ¼ 61

corresponds to the different sheets of the FS.

The electrical conductivity tensor can be written as

follows:

rij x; kð Þ ¼ 2jej3H0

2p�hð Þ3c

X
sign pxð Þ¼61

ð
dpH

ð2p=X

0

dtti tð Þ

�
ðt

�1
dttj t0ð Þexp i~x t� t0ð Þ � i

ðt

t

dt00kv t00ð Þ
� �

;

(3)

where ~x ¼ xþ is�1. As the variables in momentum space

we have chosen the integrals of motion e, pH , and t—the

time the electron moves in the magnetic field. The sign of

the sums with respect to sign pxð Þ ¼ 61 in Eq. (3) signifies

summing over the sheets of the FS.

Let us consider the case when the wave vector k ¼
0; k sin /; k cos /ð Þ is orthogonal to the direction of the maxi-

mum conductivity. For the energy spectrum (1) and this

geometry for the problem, the components of the tensor rij

take the form

rxx ¼
x2

0

2pX

ð1
0

duei~x
XuJ0 2Ysin

au
2

� �
J0 2Xsin

u
2

� �
; (4)

ryy ¼
x2

0

4pX
t2

tF

� �2 ð1
0

duei ~x
XuJ0 2Ysin

au
2

� �

� J0 2Xsin
u
2

� �
cos u� J2 2Xsin

u
2

� �� �
; (5)

rzz ¼
x2

0

4pX
t3

tF

� �2 ð1
0

duei ~x
XuJ0 2Xsin

u
2

� �

� J0 2Ysin
au
2

� �
cos au� J2 2Ysin

au
2

� �� �
; (6)

ryz ¼ rzy ¼ �
x2

0

2pX
t2t3

tF
�
ð1

0

duei ~x
XuJ1 2Ysin

au
2

� �

� J1 2Xsin
u
2

� �
cos

u
2

cos
au
2
;

rxy ¼ ryz ¼ rxz ¼ rzx ¼ 0; (7)

where X ¼ kyt2=X, Y ¼ kzt3= aXð Þ, and Jn xð Þ is the Bessel

function of n-th order. For values of the overlap integral

A� 0.5 eV, the frequency x0 ¼ 4e2p2p3tF=�h3
� �

is on the

order of 1015 s�1.

It is easy to see that the oscillations in the electron veloc-

ity components ty and tz lead yield the resonances in the

high-frequency conductivity. Expanding the Bessel functions

in Eqs. (4)–(6) in Fourier series in u and au, i.e., taking

J0 2Zsinðw=2Þð Þ ¼
X1

n¼�1
J2

n Zð Þ exp inwð Þ;

J0 2Zsinðw=2Þð Þ ¼
X1

n¼�1
J1�n Zð ÞJ1þn Zð Þ exp inwð Þ;

Z ¼ X; Yf g; w ¼ fu; aug;

and integrating with respect to u, for the diagonal compo-

nents of the conductivity we obtain the following:
FIG. 1. A Q1D Fermi surface in the form of a pair of weakly corrugated

planes: the x axis is the direction of highest conductivity.
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rxx ¼
ix2

0

2p

X1
n;m¼�1

J2
n Xð ÞJ2

m Yð Þ
~x � nX–amX

; (8)

ryy ¼
ix2

0

4p
t2

tF

� �2

�
X1

n;m¼�1

J2
m Yð Þ J2

n�1 Xð Þ þ J2
nþ1 Xð Þ þ 2Jn�1 Xð ÞJnþ1 Xð Þ

� �
~x � nX� amX

; (9)

rzz ¼
ix2

0

4p
t3

tF

� �2

�
X1

n;m;¼�1

J2
n Xð Þ J2

m�1 Yð Þ þ J2
mþ1 Yð Þ þ 2Jm�1 Yð ÞJmþ1 Yð Þ

� �
~x � nX� amX

: (10)

When the mean free time s is long enough, i.e., X0s� 1,

local maxima in the high-frequency conductivity and the

microwave absorption appear under the condition

x� nX� amX ¼ 0: (11)

Because of the motion of the electrons in the z direction,

however, the resonances at frequencies x ¼ maX � mX can

appear only for a short wavelength of the electromagnetic

field, such that Y2aXs is comparable to unity.

In the collisionless limit s!1, the high-frequency

conductivity may be nondissipative. As a result, weakly

damped collective modes may appear in Q1D-type conduc-

tors with a strong anisotropy in the FS.

3. Collective mode spectra

Assuming that the time dependence for all the variables

is in the form ikr� ixtð Þ, the Maxwell equations easily

yield a dispersion relation that gives the frequency x kð Þ of

the eigenmodes of the electromagnetic field

D � det k2dij � kikj �
x2

c2
eij x; kð Þ

� �
¼ 0: (12)

The real parts of the roots of Eq. (12) determine the spectrum

of the collective modes and the imaginary parts, the damping

decrement. Here eij x; kð Þ ¼ dij þ 4p=xð Þrij x; kð Þ is the

dielectric conductivity tensor and dij is the Kronecker sym-

bol. For frequencies x much lower than rij, the first term in

the expression for eij can be neglected.

We now consider the case where the wave vector k ¼
0; k; 0ð Þ is directed along the y axis. The dispersion relation

(12) factorizes into

D ¼ k2 � x
c2

exx x; kð Þ
� �

�x2

c2
eyy x; kð Þ

� �

� k2 � x2

c2
ezz x; kð Þ

� �
¼ 0; (13)

and breaks up into three equations. The first, which describes

the transverse mode with the electric field polarized in the

direction of the maximum conductivity, has been studied in

detail elsewhere20 for arbitrary orientations of the magnetic

field and the wave vector. The second has a weakly damped

solution in the frequency range x > B=eFð Þ2x0 and deter-

mines the longitudinal plasma oscillations in the y direction.

The third equation

k2 � x2

c2
ezz x; kð Þ ¼ 0; (14)

describes the collective mode with an electric field polarized

in the direction of minimal conductivity. When kz ¼ 0, the

integral expression (6) for the components of the conductiv-

ity can be simplified to

rzz ¼
ix2

0

4aX
t3

tF

� �2 J ~x�aXð Þ=X Xð ÞJ� ~x�aXð Þ=X Xð Þ

sin p
~x � aX

X

� �
2
64

þ
J ~xþaXð Þ=X Xð ÞJ� ~xþaXð Þ=X Xð Þ

sin p
~x þ aX

X

� �
3
775: (15)

The spectrum of the collective modes can be written in ana-

lytic form in the short- and long-wavelength limits. In the

case of a weak spatial dispersion X � 1, Eq. (15) can be

expanded in a rapidly decreasing series and Eq. (14)

becomes algebraic. In the main approximation with respect

to X2, the dispersion relation for the low-frequency mode is

given by

x ¼ aXffiffiffi
2
p kctF

x0t3

: (16)

For relatively large values X � 1, Eq. (14) can be simpli-

fied using an asymptotic representation of the Bessel func-

tion in Eq. (15) as a trigonometric function. For small

values of the parameter 1=pX3
� �

x0t2t3ð Þ2= tFXcð Þ2�1,

the eigenfrequencies are close to the resonance frequencies

x¼ n6að ÞX, i.e.

x¼ n6að ÞX 1� 1

pX3

x0t2

Xc

� �2 t3

tF

� �2

1� �1ð Þn sin2X
� � !

:

(17)

The deviation of x from the resonance frequency n6að ÞX
oscillates as sin 2X and falls off with k as k�3.

For arbitrary values of the dimensionless component of

the wave vector X, solutions of the transcendental Eq. (14)

cannot be obtained in analytic form. Numerical calculations

of the spectra of the collective modes in the limit of large

relaxation times are shown in Fig. 2. This figure shows that

the weakly damped waves vanish when the wave frequency

is close to the resonance frequency x ¼ n6að ÞX because of

strong cyclotron absorption.
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When the wave vector k ¼ 0; 0; kð Þ is parallel to the z
axis, the dispersion relation transforms to

D ¼ k2 � x2

c2
exx x; kð Þ

� �
k2 � x2

c2
eyy x; kð Þ

� �

� x2

c2
ezz x; kð Þ

� �
¼ 0: (18)

The equation

k2 � x2

c2
eyy x; kð Þ ¼ 0; (19)

describes a collective mode with an electric field polarized

in the y direction. After calculating the integral in Eq. (5),

for the components ryy of the conductivity we obtain

ryy ¼
ix2

0

4aX
t2

tF

� �2 J ~x�Xð Þ=aX Yð ÞJ� ~x�Xð Þ=aX Yð Þ

sin p
~x–X
aX

� �
2
64

þ
J ~xþXð Þ=aX Yð ÞJ� ~xþXð Þ=aX Yð Þ

sin p
~x þ X
aX

� �
3
775: (20)

For Y � 1, Eq. (19) can be simplified using an asymptotic

expansion of Eq. (20) as a power series in Y. As a result, we

find the dispersion relation for the low-frequency mode

x ¼ Xffiffiffi
2
p kctF

x0t2

: (21)

Spectra of waves propagating in the direction of minimal

conductivity are shown in Fig. 3.

The necessary condition for the appearance of weakly

damped resonance modes, as for other high-frequency reso-

nance effects in a magnetic field, is X0s� 1. The numerical

calculations shown above actually correspond to the colli-

sionless limit s�1 ! 0. The effect of electron collisions on

the wave process leads to strong damping of the wave neigh-

borhoods of order s�1 near the resonance frequencies Xr.

For x such that jx� nXrj < s�1, the diagonal components

of the conductivity have a larger real part that is responsible

for strong absorption of the wave. In this region, there are no

weakly damped waves.

Collective waves with frequencies near harmonics of the

resonance frequency can occur when there is a nonlocal cou-

pling between the current and the variable electric field. The

dispersion effects are more substantial at high frequencies.

4. Conclusion

The weakly damped eigenmodes are collective excita-

tions of Bose type in the electron plasma of solids.

Electromagnetic modes in highly anisotropic conductors

with a Q1D electron energy spectrum are related to resonant

high-frequency conductivity in a strong magnetic field with

.

(b)

.

.

.

.

.

.

.

.

.

.

.

FIG. 2. Collective mode spectra for k ¼ 0; k; 0ð Þ, ðx0t2t3

aXtFcÞ
2 ¼ 10, Xsð Þ�1

;

a ¼ 1=2 (a), a ¼
ffiffiffi
3
p

(b). The dotted lines correspond to the resonance fre-

quencies x ¼ n6að ÞX.

.

(b)

.

.

.

.

.

.

.

.

.

.

.

FIG. 3. Collective mode spectra for k ¼ 0; 0; kð Þ, ðx0t2t3

aXtFcÞ
2 ¼ 10, Xsð Þ�1

¼ 0; 01; a ¼ 1=2 (a), a ¼
ffiffiffi
3
p

(b). The dotted lines correspond to the reso-

nance frequencies x ¼ an61ð ÞX.

Low Temp. Phys. 43 (2), February 2017 Kolesnichenko, Peschansky, and Stepanenko 189



almost no collisions through the corrugated sheets of the

Fermi surface. The components ty and tz of the electron

velocity oscillate at frequencies X and X1 ¼ p2=p3ð Þtg#X,

respectively, and generate resonances in the kinetic coeffi-

cients of conductors. Thus, resonances in the high-frequency

conductivity can occur at two resonance frequencies and

their harmonics. Resonances owing to motion of the elec-

trons in the direction of the minimal conductivity can show

up only for electromagnetic fields with wavelengths short

enough that kt3=X1ð Þ2 is comparable to unity. Spatial disper-

sion is a necessary condition for the existence of electromag-

netic waves with frequencies near the resonances, and

dispersion effects become more significant with increasing

x. The effect of electron collisions on the wave process

leads to vanishing of the weakly damped collective modes in

neighborhoods of order s�1 near the resonance frequencies

because of strong cyclotron absorption.
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