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A study of electron tunneling from quasi-two-dimensional (surface) states with spin-orbit interaction

into bulk-mode states, within the framework of a model of an infinitely thin inhomogeneous tunnel

magnetic barrier between two conductors. We analyze how the scattering of quasi-two-dimensional

electrons on a single magnetic defect affects the tunneling current in this system. We also obtain an

analytical expression for the conductance of the tunnel point-contact, as a function of its distance

from the defect. It is shown that analyzing local magnetization oscillations around the defect using

spin-polarized scanning tunneling microscopy allows us to determine the spin-orbit interaction

constant. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4948444]

Introduction

Interest in the study of spin-orbit interaction (SOI) in a

two-dimensional electron gas (2DEG) is fueled by the fact that

SOI manifests itself as a diverse range of physical phenom-

ena,1,2 and that it has many promising practical applications in

an emerging field of quantum electronics—spintronics.3 Two-

dimensional (2D) electron (and hole) systems can be created

artificially (semiconducting heterostructures with quantum

wells, delta-doped semiconductors, electrons on the surface of

liquid helium), or they are the properties of certain physical

systems (graphene, thin films).

One example of 2DEG with SOI is surface electron

states in metals.4 In contrast to isolated two-dimensional

conducting systems in heterostructures, surface states cannot

be studied using galvanomagnetic measurements due to their

high bulk conductivity. However they can be detected and

studied using methods that are sensitive to the electron struc-

ture of the surface layer of a conductor. Therefore, in Refs.

5–7, spin-orbit splitting of the spectrum of surface states

near the surface (111) of precious metals was detected using

angle-resolved photoemission spectroscopy.

Scanning tunneling microscopy (STM)8 is an effective

method of studying conductor surfaces. In a study authored

by Tersoff and Hamann,9 it was shown that the STM-

measured conductance between the atomically sharp contact

and the test sample is proportional to the local density of

states (LDS) at the point located directly beneath the contact.

This result determined how one branch of STM development

is applied.10 Spin-polarized scanning tunneling microscopy

(SP-STM) allows us to study the surface magnetic structures

with an atomic resolution.11,12 In Ref. 13 it was shown that

the SP-STM current contains an additional term that is pro-

portional to the scalar product of the magnetization vector of

the STM contact and the vector of the local magnetization

density (LMD) of the sample. Therefore, the spin-polarized

scanning tunneling microscopy is a method for determining

local magnetic characteristics of the surface.

Additional possibilities for obtaining information about

the electron energy spectrum come to us from studying the

oscillations of the density of states (Friedel oscillations14) in

the vicinity of the point defects on the surface.15 In particu-

lar, the STM analysis of the image around the defect allows

us to recreate the Fermi-contour of two-dimensional surface

states.16–18 If the defect has a magnetic moment, in addition

to Friedel oscillations, magnetization oscillations are gener-

ated by the electron spin polarization (RKKY spin polariza-

tion)19 around the defect. In Ref. 20, SP-STM was used to

reveal how the magnetic state of nano Co islands on the sur-

face of Cu (111), affects the oscillations observed in the

STM conductance, which were occurring on the islands

themselves and around them.

A significant number of experimental and theoretic stud-

ies (see Refs. 21–30 and references therein) are dedicated to

studying quantum interference effects in 2D electron scatter-

ing by a point defect with SOI. However, there is still

undoubted interest in obtaining analytical formulas for SP-

STM conductance, which would allow us to analyze its de-

pendence on STM distance between the contact and the

defect, the magnitude and direction of the magnetic moment

of the defect, the SOI constants and the energy spectrum pa-

rameters of the charge carriers, in explicit form. Although

similar results can be obtained only within the framework of
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considerably simplified models, they often turn out to be cru-

cial in the physical interpretation of the data obtained in the

experiment.

In this study we examined the problem of conductance

G of the tunnel point-contact in the case of electron tunnel-

ing between the bulk states and those states localized around

the interface (surface) with Rashba SOI.31 The manifestation

of quantum interference effects in the contact conductance,

caused by the scattering of electrons by the magnetic point

defect, is examined.

The model of an inhomogeneous d-barrier32 is general-

ized by us for a case of a magnetic dielectric layer between

conductors. An analytical expression for the contact conduct-

ance is obtained in an approximation with low tunneling bar-

rier transparency and in the Born approximation for electron

scattering by a defect. The connection between the conduct-

ance and the local density of states and local magnetization

around the defect, is established. The value of G is analyzed

as a function of the parameters that characterize 2DEG and

the defect. The possibilities of obtaining information about

SOI in 2DEG in experiments using SP-STM, is discussed.

1. Model of an inhomogeneous magnetic tunneling junction

One of the models used to describe STM experiments is

the model of an inhomogeneous d-barrier that describes the

tunneling current through a small area of the interface that

divides two conductors. This model was first considered in

Ref. 32, in which it was shown that in the limit approaching

infinity of the amplitude U0!1 of the barrier with an arbi-

trary shape between two conducting half-spaces, the tunnel-

ing resistance can be found as asymptotically exact.

In a number of studies (see overview in Ref. 33) the

model of the d-barrier is used to describe the influence of

single point defects under the conductor surface, on the con-

ductance of the tunnel point-contact, measured using STM.

In particular, the problem of tunneling between ferromag-

netic and nonmagnetic metals in the presence of a magnetic

cluster close to the contact, was considered.34 As a result,

the applicability of this model to the description of electron

tunneling from (three-dimensional) bulk states to quasi-

two-dimensional surface states, for sufficiently small areas

of a transparent barrier, has been proved.35,36

The model used when solving this problem is shown in

Fig. 1. Two conductive half-spaces are divided by a mag-

netic dielectric barrier that is impenetrable to electrons. The

barrier has a small area (with a typical radius a) with ulti-

mate transparency (contact). In the half-space z < 0 there

exist electron states with spin-orbit interaction, which are

localized close to the boundary. At a distance of r0 from the

center of the tunneling region r ¼ 0, which is z0 from the

interface, there is a short-range magnetic defect that has a

spin of S � 1, and is less than the attenuation depth of the

“surface” states lsurf � a. The former condition ensures

the absence of a full screening of the magnetic moment of

the defect by electrons (Kondo effect), even at T ¼ 0.37 We

think that the only reason the electron scatter occurs is due

to their elastic interaction with the defect. We assume the

temperature is about equal to zero. A sufficiently small volt-

age V is applied to the system. We will calculate the current

using an approximation that is linear with respect to V, to be

specific when the tunneling occurs from the “surface” states

to the bulk states.

The magnetic d-barrier between metals will be described

using the potential

ÛðrÞ ¼ ðr̂
0
�M0r̂ÞU0f ðqÞdðzÞ; (1)

wherein M0 is the dimensionless (normalized to the ampli-

tude of the barrier U0) vector of tunnel barrier magnetiza-

tion, M0 � 1; r̂ ¼ ðr̂x; r̂y; r̂zÞ is the Pauli vector, r̂
0

is the

unit 2 � 2 matrix. The function f(q) of the two-dimensional

vector q ¼ (x,y) in the plane of the barrier boundary z ¼ 0

fulfills the condition

f ðqÞ ¼ �1; q� a;
!1; q� a;

�
(2)

in which a is the typical size of the tunneling region (of the

contact). Hereinafter we will assume that the radius a is suf-

ficiently small, and that the following inequality is fulfilled35

�h2kFa2

m�U0l2
surf

� 1; (3)

wherein kF ¼ 1
�h

ffiffiffiffiffiffiffiffiffiffiffiffi
2m�eF

p
is the Fermi wave vector, eF is the

Fermi energy, m* is the effective electron mass. Inequality

(3) ensures that the perturbation theory is applicable in solv-

ing this problem.

For z � 0 the wave functions Ŵ
ðþÞðq; zÞ satisfy the

Schr€odinger equation for free electrons with an effective

mass m* and energy e

p̂
2

2m�
Ŵ
þð Þ

q; zð Þ ¼ eŴ
þð Þ

q; zð Þ; (4)

wherein p̂ ¼ i�hr is the momentum operator.

In the half-space z < 0, the Schr€odinger equation looks

like

p̂
2

2m�
r̂

0
þ Ĥ

SO
þ D̂ q; zð Þ þ r̂

0
Vsurf zð Þ

� �
Ŵ
�ð Þ

q; zð Þ

¼ eŴ
�ð Þ

q; zð Þ: (5)

In Equation (5), Ĥ
SO

is the SOI Hamiltonian. The D̂ðq; zÞ
term describes the interaction of the electrons with the mag-

netic defect, that is simulated by the point potential

FIG. 1. A model depicting an inhomogeneous magnetic tunneling barrier.

The arrows represent the direction of the barrier magnetization vector M0,

and the magnetic moment of the defect, J.
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D̂ðq; zÞ ¼ ðgr̂
0
þ Jr̂Þdðq� q0Þdðz� z0Þ; (6)

wherein g is the constant of the potential electron interaction

with the defect, J is the effective magnetic moment of the

alloy, with a spin S � 1, J ¼ Jex hSi, wherein Jex is the con-

stant of exchange interaction of the electron and the defect,

hSi is the intrinsic magnetic moment of the defect, based on a

partial screening of the conduction electrons. We assume that

the direction of the J vector is fixed, and do not consider the

processes of revolution and precession of the defect spin. The

potential Vsurf(z) leads to the appearance of a related (surface)

state in the z<0 region, near the interface. Hereinafter the spe-

cific form of the potential Vsurf(z) in Equation (5) is not

significant.

The wave functions Ŵ
ð6Þðq; zÞ are related to the

d-barrier via the standard terms of continuity and discontinu-

ity of the normal derivative

Ŵ
ðþÞðq;þ0Þ ¼ Ŵ

ð�Þðq;�0Þ; (7)

@

@z
Ŵ
þð Þ

q; z ¼ þ0ð Þ � @

@z
Ŵ
�ð Þ

q; z ¼ �0ð Þ

¼ 2m�
�h2

U0 r̂0 �M0r̂ð Þf qð ÞŴ
6ð Þ

q; 0ð Þ: (8)

2. The calculation of tunneling current

Further analytical calculations demand additional

assumptions. Following the procedure proposed in Ref. 32,

the wave functions Ŵ
ð6Þðq; zÞ in the half spaces z > 0 and

z < 0 will be sought in the form of an expansion in powers

of 1/U0. Since it is enough to know the wave function of the

electrons passing through the barrier Ŵ
ð6Þ

tr ðq; zÞ to calculate

the tunneling current, we will write the expansion of the

function Ŵ
ð6Þðq; zÞ as follows:

Ŵ
ð6Þðq; zÞ ¼ Ŵ

ð6Þ
1 ðq; zÞ 	 Ŵ

ð6Þ
tr ðq; zÞ; (9)

Ŵ
ð�Þðq; zÞ ¼ Ŵ

ð�Þ
0 ðq; zÞ þ Ŵ

ð�Þ
1 ðq; zÞ; (10)

wherein Ŵ
ð6Þ
1 � 1=U0. For U ! 1 from the boundary con-

dition of (7) we have

Ŵ
ð�Þ
0 ðq; 0Þ ¼ 0; Ŵ

ðþÞ
0 ðq; zÞ þ Ŵ

ð�Þ
1 ðq; zÞ: (11)

In the zeroth-order approximation with respect to 1/U0 the

boundary condition for Ŵ
ðþÞ
tr ðq; zÞ obtains the shape

� @

@z
Ŵ
�ð Þ

0 q; z ¼ �0ð Þ ¼ 2m�

�h2
U0 r̂0 �M0r̂ð Þf qð ÞŴ

þð Þ
1 q; 0ð Þ;

s ¼ 1; 2: (12)

Therefore the problem of finding Ŵ
ðþÞ
tr ðq; zÞ reduces to

solving two simpler equations: solving the Schr€odinger

equation (5) with a zero boundary condition Ŵ
ð�Þ
0 ðq; 0Þ ¼ 0,

and solving the Schr€odinger equation for free electrons (4)

for the function Ŵ
ðþÞ
1 ðq; zÞ with the given condition (12) at

the interface Ŵ
ðþÞ
1 ðq; 0Þ. As a result of calculations that are

similar to those conducted in Refs. 35 and 38, and account-

ing for M0� 1, we get

Ŵ
þð Þ

tr q; zð Þ ¼ �
�h2 r0 þM0r̂ð Þ
2 2pð Þ2m � U0

�
ð1
�1

dj0
ð1
�1

dq0

f q0ð Þ
@

@z

� W
�ð Þ

0 q0; zð Þ
h i

z¼�0
eij0 q�q0ð Þþiz

ffiffiffiffiffiffiffiffiffiffi
k2�j02
p

: (13)

Equation (5) with the boundary condition (11) is solved

according to the scattering potential perturbation theory

D̂ðq; zÞ, which we believe to be sufficiently small, and will

therefore limit ourselves to the linear (Born) approximation

with respect to D̂ðq; zÞ

Ŵ
ð�Þ
0 ðq; zÞ ¼ Ŵ

ð�Þ
00 ðq; zÞ þ Ŵ

ð�Þ
01 ðq; zÞ: (14)

For D̂ðq; zÞ ¼ 0, the variables in Equation (5) can be

separated and its solution can be represented as a product

Ŵ
ð�Þ
00 ðq; zÞ ¼ ŵ

ð00ÞðqÞv0ðzÞ; z 
 0; (15)

in which Ŵ
ð00ÞðqÞ is the wave function of the two-

dimensional electron gas with SOI. The wave function that

describes the motion of the electron along the normal to the

interface v (z, e?), is the solution to equation

�h2

2m�
@2v zð Þ
@z2

þ e? � Vsurf zð Þð Þv zð Þ ¼ 0; z 
 0; (16)

normalized, and satisfies the boundary conditions

vð0Þ ¼ 0; vðz!1Þ ! 0; (17)

and the spectrum of eigenvalues of Equation (16) is discrete.

We assume that in the energy region that is of interest to us,

which is less than the Fermi energy eF, there is only one dis-

crete level e? ¼ e0. If Vsurf(z) is a monotonically increasing

analytic function, then we can always select the solution v0

(z) ¼ v (z, e0) as being real.39

The eigenvalues of the energy E1,2, that correspond to

the wave functions (15) are equal to

E1;2ðjÞ ¼ e1;2ðjÞ þ e0; (18)

wherein e1,2 (j) are two branches of the energy spectrum for

a two-dimensional electron gas with SOI.1

The addition of D̂ðq; zÞ to the wave function Ŵ
ð�Þ
01 ðq; zÞ

(15), that is proportional to the potential of the interaction

with the defect Ŵ
ð�Þ
00 ðq; zÞ, can be written as

Ŵ
�ð Þ

01 q; zð Þ ¼
2m�

�h2
Ĝ

R

0 r; r0; eð Þ gr̂0 þ Jr̂ð ÞŴ �ð Þ
00 q0; z0ð Þ; (19)

wherein Ĝ
R

0 ðr; r0; eÞ is the half-retarded Green’s function z
 0

Ĝ
R

0 ðr; r0; eÞ ¼ v0ðzÞv0ðz0ÞĜ
R

0 ðq; q0; eÞ; (20)

and Ĝ
R

0 ðq; q0; eÞ is the Green’s function of a two-dimensional

electron gas with SOI.
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After the obvious transformations, the wave function

Ŵ
ð�Þ
0 ðq; zÞ (14) can be written in a form that is similar to

Equation (15)

Ŵ
ð�Þ
0 ðq; zÞ ¼ ŵsðqÞv0ðzÞ; (21)

where

ŵs q; j; q0ð Þ ¼ ŵ
00ð Þ

s q; jð Þ þ
2m�

�h2
v0 z0ð Þ½ �2 gþ Jr̂ð Þ

�Ĝ
R

0 q; q0; eð Þŵ
00ð Þ

s qo; jð Þ s ¼ 1; 2 ; (22)

and q 6¼ q0.

Knowing the wave function of the electrons that passed

through the barrier Ŵ
ðþÞ
tr ðq; zÞ (13), we can calculate the cur-

rent through the barrier. At zero temperature and jeVj � eF,

the expression for the tunneling current looks like

I ¼ e2V�h

2pð Þ2m�

� Im
X
s¼1;2

ð1
�1

dq
ð1
�1

dj W þð Þ
s;tr q; 0ð Þ

h i� @
@z

W þð Þ
s;tr ðq; zÞ

h i
z¼þ0

� �

� d eF � Esð Þ; (23)

in which j is the tangential component of the wave vector,

and E1,2 is the energy of the two branches of the energy

spectrum (18).

Substituting the expression for the wave function

Ŵ
ðþÞ
tr ðq; zÞ (13) and its derivative into the formula for the

tunneling current (23), taking into account the form of the

wave function of the “surface” states (21), after integrating

with respect to j0 we get

I ¼ � e2V�hk2
F

2pð Þ3m�

�h2v0 0ð Þ
2m�U0

 !

�
X
s¼1;2

ð1
�1

dq
f qð Þ

ð1
�1

dq0

f q0ð Þ
j1kFjq� q0j
jq� q0j

�
ð1
�1

djdðeF � e0 � esÞ ŵs q; jð Þ
h i�

r̂0 þM0r̂ð Þŵs q0; jð Þ;

(24)

where j1(x) is the spherical Bessel function. Accordingly, the

tunneling conductance in the linear voltage approximation is

equal to G ¼ I/V.

For small contacts, kFa� 1, Equation (24) is simplified

significantly

G ¼ pe2

�h
Teff eFð Þq3D eFð Þ q2D q0ð Þ þ M0Ms q0ð Þ

� 	
 �
; (25)

wherein Teff(eF) � 1 is the effective coefficient of electron

tunneling through the barrier

Teff eFð Þ ¼
peF�h6 pa2ð Þ2

24m�3U2
0

v00 0ð Þ
� 	2

; (26)

q 0ð Þ
3D is the bulk density of states in the halfspace z > 0

q 0ð Þ
3D ¼

m�kF

p3�h2
; (27)

q2D(q0) and M(q0) is the local density of states and the local

density of magnetization at q0

q2D q0ð Þ ¼
1

2pð Þ2
X
s¼1;2

ð1
�1

djd eF � e0 � esð Þjŵs 0; j; q0ð Þj2;

M q0ð Þ ¼
1

2 pð Þ2
X
s¼1;2

ð1
�1

djd eF � e0 � esð Þ (28)

�ŵ
�
s ð0; j; q0Þr̂ŵsð0; j; q0Þ: (29)

A similar result was earlier obtained in the Tersoff13 and

Hamann9 model for a contact between magnetic conduc-

tors. For contacts with a diameter jFa � 1, where jF

¼ 1
�h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m� eF � e0ð Þ

p
, a more general expression (24) should

be used, that accounts for blurred STM images due to the

quantum interference of electron waves in the spatially in-

homogeneous barrier in the contact region.40

Thus, if the area through which the tunneling occurs is

small, jFa � 1, then the analysis of spatial oscillations of

STM conductance is reduced to analyzing the local density

of states and local magnetization as a function of the dis-

tance from the defect q0. In the following sections we will

limit ourselves to discussing only LDS and LMD.

3. Wave function and Green’s function of surface states
with SOI

The Bychkov-Rashba SOI Hamiltonian ĤSO in Equation

(5) looks like

ĤSO ¼
a
�h

r̂xp̂y � r̂yp̂x

� 	
; (30)

in which a is the SOI constant.

The wave functions of the ideal two-dimensional elec-

tron gas with Rashba SOI ŵ
ð00Þ
s (q) can be written as1

ŵ
00ð Þ

1;2 qð Þ ¼
1

2p
ffiffiffi
2
p eijqû1;2 hð Þ; û1;2 hð Þ ¼ 1

6ieih

� �
; (31)

wherein h is the angle between the direction of the j vector

and the x axis, i.e., the phase of the spin part of the wave func-

tion û1;2ðhÞ depends on the direction of the electron wave

vector in the xy plane. The eigenvalues of the energy e1,2(j),

corresponding to the wave functions (31), are equal to

e1;2 ¼
�h2j2

2m�
6a�hj > 0: (32)

In the following calculations we will assume that the

SOI constant is limited by the condition a < �hjF(2m*).

The Fermi “surface” due to SOI is split into two con-

tours (Fig. 2)

e1;2ðjÞ ¼ eF � e0 > 0: (33)

This results in the removal of spin degeneracy without the

occurrence of a gap in the spectrum. The orientation of the
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spin in each contour of the Fermi surface (33) is determined

by the average

s1;2 ¼ û†
1;2ðhÞrû1;2ðhÞ ¼ 7ðsin h;�cos h; 0Þ: (34)

The vectors s1,2 (34) are perpendicular to the wave vector:

s1,2 ? j ¼ j(cos h, sin h,0).

We will note a particularity of the energy spectrum (33)

that will be useful in discussing the process of scattering by

a defect. When the direction of the wave vector reverses,

there are two possible states with the same energy. One of

them belongs to the same Fermi contour and has a spin that

is opposite to the spin of the initial state (for example, states

a $ d and b $ c in Fig. 2). The second belongs to another

Fermi contour (i.e., it corresponds to another absolute value

of the wave vector) and has a spin that is parallel to the spin

of the initial state (for example, states a $ c and b $ d on

Fig. 2).

We will now write the retarded Green’s function for a

two-dimensional electron gas with SOI Ĝ
R

0 ðq; q0; eÞ,
41 which

will be necessary in order to account for the scattering by a

defect in the wave function (22)

Ĝ
R

0 q; q0; eð Þ ¼ im�

4~j�h2
�
(

j1H 1ð Þ
0 j1jq� q0j
� 	

þ j2H 1ð Þ
0 j2jq� q0j
� 	� 


r̂0� i�h
r̂y x� x0ð Þ � r̂x y� y0ð Þ

jq� q0j

� j1H 1ð Þ
1 j1jq� q0j
� 	

� j2H 1ð Þ
1 j2jq� q0j
� 	� 
)

; (35)

where

~j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m�e

�h2
þ m�a

�h2

� �2
s

; (36)

j1;2 ¼ ~j7
m�a

�h2
: (37)

The Green’s function (35) contains a divergence at q! q0,

Ĝ
R

0 q; q0; eð Þ �
�

j1

j2

1þ 2i

p
cþ ln

j1jq� q0j
2

� �� �

þj2

~j
1þ 2i

p
cþ ln

j2jq� q0j
2

� �� �)
: (38)

This divergence leads to a divergence of the wave function

(22), which is the result of a “non-physical” selection of the

coordinate dependence of the scattering potential (6) in the

form of the d-function. c is the Euler constant. The asymp-

totic behavior in (38) allows us to assess the range of applic-

ability of Equation (22), which according to the order of

magnitude is determined by the inequality jFj q – q0j � 1.

By knowing the wave function (31) and the Green’s

function (35) of an ideal 2DEG with SOI, we can find the

wave function (22) in a linear approximation of the scatter-

ing potential at the defect (6), which we can use to calculate

the LDS (28) and LMD (29).

4. Local density of states

Substituting the wave functions (22) into Equation (28),

we find the local density of states. As a result of relatively

simple, however rather cumbersome calculations, we get

q2D q0ð Þ ¼
m�

p�h2

�
1þ m�g

4�h2~j2
½ j1J0 j1q0ð Þ þ j2J0 j2q0ð Þ
� 	

� j1Y0 j1q0ð Þ þ j2Y0 j2q0ð Þ
� 	
þ j1J1 j1q0ð Þ þ j2J1 j2q0ð Þ
� 	
� j1Y1 j1q0ð Þ þ j2Y1 j2q0ð Þ
� 	��; j1;2q0 � 1:

(39)

In Expression (39) and below, the values of j1,2 (e) and ~jðeÞ
are taken at an energy of e ¼ eF � e0. Note that Expression

(39) does not contain a magnetic input into the LDS, as is

the case with the absence of SOI.19 The result we obtained is

in agreement with the conclusions in Ref. 22, and does not

confirm the result of Ref. 26, in which the approximation

that is linear with respect to SOI constants and exchange

interaction of the electrons and the magnetic defect is given

a nonzero correction with respect to LDS, proportional to J.

Formula (39) is reduced to the following at large distan-

ces from the defect
FIG. 2. Two Fermi contours of 2DEG with Rashba SOI. The arrows indicate

the direction of the spin.
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q2D q0ð Þ ¼
m�

p�h2
1� m�g

p�h2~j2q0

ffiffiffiffiffiffiffiffiffiffi
j1j2

p
cos j1þj2ð Þq0ð Þ

� �
;

j1;2q0 � 1;

(40)

where

j1 eF � e0ð Þj2 eF � e0ð Þ ¼
2m� eF � e0ð Þ

�h2
;

j1 eF � e0ð Þj2 eF � e0ð Þ ¼ 2~j eF � e0ð Þ

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m� eF � e0ð Þ

�h2
þ m�a

�h2

� �2
2

s
:

(41)

Thus, the period of LDS oscillations depends on the sum

of the wave vectors j1,2 (eF � e0) of two Fermi contours (33)

Dq0 ¼ p=~jðeF � e0Þ: (42)

Such a conclusion, however, can be made even from the

consideration that during the potential scattering in the oppo-

site direction, the electron spin conservation requirement is

allowed only by the state belonging to another Fermi

contour.24

5. Local magnetization density

In cases when the magnetic moment of the defect lies in

the plane of the 2DEG with Rashba SOI, the expression for

LMD near a magnetic point defect was obtained and ana-

lyzed in Ref. 29. Below we examine a more general case,

when the magnetic moment of the defect is directed under

an arbitrary angle toward the surface plane. The components

of the LMD vector, obtained by calculating Formula (29),

look like

Mx q0ð Þ ¼ �
m2

4p�h2~j2q2
0

�
q0 j1J0 j1q0ð Þ þ j2J0 j2q0ð Þ
� 	� ðJxq0 j1Y0 j1q0ð Þ þ j2Y0 j2q0ð Þ

� 	
� Jzx0 j1Y1 j1q0ð Þ � j2Y1 j2q0ð Þ

� 	� 	þ j1J1 j1q0ð Þ � j2J1 j2q0ð Þ
� 	

� Jzq0x0 j1Y0 j1q0ð Þ � j2Y0 j2q0ð Þ
� 	� Jx x2

0 � y2
0

� 	
þ 2Jyx0y0

� 	
j1Y1 j1q0ð Þ � j2Y1 j2q0ð Þ
� 	h i)

; (43)

My q0ð Þ ¼ �
m2

4p�h4~j2q2
0

�
q0 j1J0 j1q0ð Þ þ j2J0 j2q0ð Þ
� 	� ðJyq0 j1Y0 j1q0ð Þ þ j2Y0 j2q0ð Þ

� 	þ Jzy0 j1Y1ðj1q0ð Þ�j2Y1 j2q0ð ÞÞÞ

þ j1J1 j1q0ð Þ � j2J1 j2q0ð Þ
� 	� ½Jzq0y0 j1Y0 j1q0ð Þ þ j2Y0 j2q0ð Þ

� 	
þ Jy x2

0 � y2
0

� 	
þ 2Jxx0y0

� 	
j1Y1 j1q0ð Þ � j2Y1 j2q0ð Þ
� 	��; (44)

Myðq0Þ ¼ �
m2

4p�h4~j2q2
0

n
ðJxx0 þ Jyy0Þ � ½ðj1J1ðj1q0Þ � j2J1ðj2q0ÞÞðj1Y0ðj1q0Þ þ j2Y0ðj2q0ÞÞ

þðj1J0ðj1q0Þ þ j2J0ðj2q0ÞÞðj1Y1ðj1q0Þ � j2Y1ðj2q0ÞÞ�
þ Jzq0½ðj1J1ðj1q0Þ � ðj2J1ðj2q0ÞÞðj1Y1ðj1q0Þ � j1Y1ðj1q0ÞÞ

�ðj1J0ðj1q0Þ þ j2J0ðj2q0ÞÞðj1Y0ðj1q0Þ þ j2Y0ðj2q0ÞÞ�
o
: (45)

As follows from Formulas (43)–(45), in the absence of

SOI Mi(q0)�Ji, which corresponds to a well-known result.19

We can confirm that

Mzðq0; eFÞ ¼ q"ðq0; eFÞ � q#ðq0; eFÞ; (46)

where q"(#) (q0, eF) is the LDS for electrons with a spin “up”

(“down”).

Figures 3 and 4 are composed using Formulas (43)–(45),

and illustrate the distribution of local magnetization in the

defect region. The charts exclude the region jFq0 < 1 near

the point q0 ¼ 0, at which our theory is applicable. For com-

parison, on Fig. 5 we see the LMD in the absence of SOI.

Based on Figs. 2–5 we can make the following conclusions:

1. A strong SOI interaction has a significant influence on the

LMD distribution M(q0) near the magnetic defect. 2. The

presence of a plane perpendicular to the interface (close to

which the surface states are localized), a Jz component of the

defect magnetic moment vector J, affects the distribution of

the LMD component Mjj(q0), which is parallel to the inter-

face, in the presence of SOI (see Figs. 3(a) and 3(b)). In turn,

the momentum component Jjj that is parallel to the interface,

influences the distribution of Mz (q0) (see Figs. 4(b) and

5(b)). In the absence SOI, there is no influence of the J vec-

tor components on the perpendicular components of the

LMD vector (see Fig. 5). 3. Even in the case when the J vec-

tor is in the xy plane, the LMD component perpendicular to

this plane Mz(q0) is nonzero (see Fig. 4(a)).

Using well-known asymptotes for the Bessel function42

at j1,2q0 � 1, we will find the asymptotic expressions

for the components of the local density of magnetization

vector
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Mx q0ð Þ ¼
m2

2p2�h4~j2q2
0

� ½x0Jn
0ð Þ
jj j1 cos 2j1q0ð Þ þ j2 cos 2j2q0ð Þð Þþ 2y0

ffiffiffiffiffiffiffiffiffiffi
j1j2

p
Jn

0ð Þ
? cos j1 þ j2ð Þq0ð Þ

þ Jzx0 j1 sin 2j1q0ð Þ � j2 sin 2j2q0ð Þð Þ�; (47)

My q0ð Þ ¼
m2

2p2�h4~j2q2
0

� ½y0Jn
0ð Þ
jj j1 cos 2j1q0ð Þ þ j2 cos 2j2q0ð Þð Þ

þ2x0

ffiffiffiffiffiffiffiffiffiffi
j1j2

p
Jn

0ð Þ
? cos j1 þ j2ð Þq0ð Þþ Jzy0 j1 sin 2j1q0ð Þ � j2 sin 2j2q0ð Þð Þ�;

(48)

Mz q0ð Þ ¼
m2

2p2�h4~j2q2
0

� Jn
0ð Þ
jj j1 sin 2j1q0ð Þ þ j2 cos 2j2q0ð Þð Þþ Jz j1 cos 2j1q0ð Þ � j2 cos 2j2q0ð Þð Þ

h i
: (49)

We introduce the following notations for two mutually

perpendicular vectors, one of which is directed along the

direction of the q0, njj
(0) ¼ q0/q0 vector, and the second n

0ð Þ
?

perpendicular to it

n
ð0Þ
jj ¼ njjðh0Þ ¼ ðcos h0; sin h0; 0Þ;

n
ð0Þ
? ¼ n?ðh0Þ ¼ ð sinh0;�cos h0; 0Þ; njjn? ¼ 0: (50)

In the case when the magnetic moment of the defect is per-

pendicular to the plane of the interface, J ¼ Jz, Formulas

(47)–(49) describe the skyrmionic-like spin texture of the

electron magnetization around the defect, first investigated

theoretically in Ref. 29.

6. Discussion of results

As shown in Ref. 35, the amplitude and period of the

oscillations of the density of states and the STM of the con-

ductance at a distance of q0 from the defect, are determined

by electron interference, the wave vectors of which before

and after defect scattering are collinear to the q0 vector. In

order to explain the obtained results (47)–(49), we will

examine the matrix elements of the magnetic interaction of

the electron with the defect, which determine the probability

of backscattering. An electron, approaching a defect at an

angle h with respect to the x axis, with the wave vector j,

corresponds to an electron moving in the opposite direction

with the wave vector –j, with an angle h þ p with respect to

the x axis. The matrix elements û†
1;2ðhÞJrû1;2ðhþ pÞ of the

transition between states belonging to the same Fermi sur-

face contour, are equal to43

û†
1;2ðhÞJrû1;2ðhþ pÞ ¼ Jz7iðJx cos hþ Jy sin hÞ

¼ Jz7iJnjjðhÞ; (51)

whereas the matrix elements û†
1;2ðhÞJrû1;2ðhþ pÞ of the

transition between states belonging to different Fermi sur-

face contours, look like

û†
1;2ðhÞJrû2;1ðhþ pÞ ¼ 6ðJy cos h� Jx sin hÞ ¼ 7Jn?ðhÞ:

(52)

Equations (51) and (52) reflect the fact that the probability of

backscattering depends on the projection of the electron spin

direction s1,2 (j)jj n? (h) (34) in the direction of the mag-

netic moment of the defect J.

Expressions (51) and (52) explain the dependence of the

vector components M(q0) on the direction of the magnetic

moment of the defect J.

The terms proportional to the projection of the magnetic

moment of the impurity on the direction of the spin Jn?,

describe the input of the no spin-flip scattering process into

(b)

.

.

.

.

.

.

FIG. 3. The distribution of the magnetization density M2
x þ M2

y in the xy plane. J ¼ J(1,0,0) (a); J ¼ J(1/�2, 0,1/�2) (b), arrows show the directions of the vec-

tor Mjj(Mx, My); m*a/jF�h2 ¼ 0.3.
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the M(q0) vector, which is accompanied by transitions

between energy spectrum branches. The corresponding term

in LMD oscillations as a function of the distance q0, depends

on the sum of Fermi wave vectors for two energy bands

(42), as is the case for LDS oscillations (40).

The terms proportional to vector components Jnk and Jz

of the defect magnetic moment J, which are perpendicular to

s1,2, take into account the spin-flip scattering. The periods of

these harmonics in the LDS depend on the radii of each of

the Fermi surface contours, separately

Dqð1;2Þ0 ¼ p=j1;2ðeFÞ: (53)

In accordance with this substantially isotropic distribu-

tion of local magnetization M(q0), the most convenient oscil-

lation analysis is in the q0 direction, which is parallel to the

projection Jjj of the J vector on the xy plane. With this type

of geometry, Jn? ¼ 0 and Jnjj ¼ Jjj ¼ (J2
x þ J2

y)
1/2, and the

amplitude of the oscillations with periods (53) is maximized.

Knowing the periods Dqð1;2Þ0 of the spatial oscillations of the

M(q0) vector components, caused by spin-flip scattering, we

can define the SOI constant

1

Dq 2ð Þ
0

� 1

Dq 1ð Þ
0

¼ 2m�a

p�h2
: (54)

Note that the eigenstates and the wave functions are also

known for the Dresselhaus Hamiltonian of SOI44 (see Ref. 1,

for example)

ĤSOD ¼
b
�h

r̂xp̂x � r̂yp̂y

� 	
; (55)

wherein b is the SOI constant. They allow us to obtain ana-

lytic expressions for Green’s function for 2DEG on an

unbounded plane, similar to Expression (35), and calculate

the spatial distribution for LDS and LMD around the mag-

netic defect. Despite the fact that the Hamiltonian in (55) has

a different symmetry in comparison to the Bychkov-Rashba

Hamiltonian (30), the final results differ from the ones

obtained above in Section 5, due to the substitutions in

Formulas (43)–(45) x0! y0, y0! x0, a! b, and also due to

the substitution

n
ð0Þ
jj ! n

ð0Þ
jj ¼ ðsin h0; cos h0; 0Þ;

n
ð0Þ
? ! n

ð0Þ
? ¼ ðcos h0;�sinh0; 0Þ; nð0Þjj n

ð0Þ
? ¼ 0; (56)

in Formulas (47)–(49).

All conclusions presented in this section, relative to the

LDS and LMD distributions, remain valid for the Dresselhaus

(b)

.

.

.

. .

.

.

.

FIG. 4. Spatial distribution of the Mz component in units m*2J/4p�h4; m*a/jF�h4 ¼ 0.3: J ¼ J(1,0,0) (a); J ¼ J(1/�2, 0,1/�2) (b).

(b)

.

.

.

.

.

.

FIG. 5. The distribution of the magnetization density M2
x þ M2

y in the xy plane (a) and Mz components perpendicular to the interface (b) in units m*2J/4p�h4 in

the absence of SOI, a ¼ 0; J ¼ J(1/�2, 0,1/�2); arrows show the directions of the Mjj ¼ (Mx, My) vector.
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SOI, even though the concrete distribution of the absolute

value and direction of the LMD vector changes significantly,

as illustrated by Fig. 6 (compare Figs. 3(b) and 4(b), and Figs.

6(a) and 6(b)).

Conclusion

In this study we have generalized the model of an inho-

mogeneous d-barrier32 for a case of a potential barrier con-

sisting of magnetic dielectrics (1). We examined tunneling

between quasi-two-dimensional (surface) states and bulk

states. For a large amplitude of the barrier, an expression for

the tunneling current through the contact (24), that can be

used to describe SP-STM experiments, is obtained. It is

shown that in the case when the typical size of the tunneling

field is significantly smaller than the de Broglie electron

wavelength k�F ¼ 1=jF, the conductance of the contact is

proportional to the scalar product of a specific magnetization

barrier and the local magnetization of 2DEG (25). The result

in (25) is similar to the results from Ref. 13, in which the

conductance of the SP-STM conductance is calculated when

tunneling occurs between two ferromagnetic conductors,

within the framework of the Tersoff and Hamann model.9

We examine a case when the inhomogeneous magnetization

in 2DEG with SOI is associated with the presence of a single

magnetic defect. Within the framework of the Born approxi-

mation, we found the dependence of the local density of

states and local magnetization of 2DEG, on the distance

between the contact and the defect (39), (43)–(49). At large

distances jFq0 � 1 we obtained asymptotic expressions for

q2D (q0) and M(q0) (40), (47)–(49). It is shown that the study

of SP-STM images showing spatial oscillations of the con-

ductance allows us to determine the SOI constant (54).

In conclusion, one of the authors (Yu. K.) wishes to

thank A. A. Zvyagin, G. P. Mikitik, and A. N. Omelyanchyk

for the useful discussions.
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