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Abstract The magnetoresistance (MR) of a two-dimensional hole gas in a quantum
well of compressively strained Si0.05Ge0.95 has been investigated as a function of
temperature. The MR shows a maximum at intermediate magnetic fields between the
regions of weak localization and the Shubnikov-de Haas oscillations, which is dis-
cussed in terms of a recent theoretical study of the electron-electron interaction effect
by Sedrakyan and Raikh (SR). The magnetic field MR dependence is clearly observed
to cross over from quadratic to linear at T = 7.8 K and B ≈ 0.3 T. It is shown that the
SR theory provides a good description of both the measured quadratic and positive
linear MR, but over estimates the field position of the MR maximum and does not
account for the shift in position with temperature that is observed. Earlier theories
of electron-electron interaction (by Altshuler and Aronov, Gornyi and Mirlin) show
a better agreement with the experimentally observed behavior of the MR maximum,
but fit the low field MR less accurately.
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1 Introduction

The magnetoresistance (MR) of a two-dimensional (2D) electron, or hole, gas of-
ten exhibits effects of quantum origin at low temperatures. In weak magnetic fields
(ωcτ � 1, where ωc = eB/m∗ is the cyclotron frequency, τ is elastic scattering time,
and m∗ is effective mass) an effect of weak localization (WL) is observed [1, 2],
which is due to quantum-interference. The WL effect gives a quantum correction
�σloc(B,T ) to the conductivity that depends on the temperature and magnetic field.
The magnetic field region where the WL effect is observed is characterized by the
condition LB/l � 1, where LB = (�/eB)1/2 is the magnetic length, and l is the mean
free path [3, 4]. In higher magnetic fields (ωcτ � 1), magnetic quantization leads to
Shubnikov-de Haas (SdH) oscillations that are exhibited in the conductivity of high
quality samples. In addition, there is a contribution from electron-electron interac-
tions (EEI) over a wide region of magnetic fields up to the quantum limit [5–7] that,
like WL, is of a quantum-interference nature. The EEI gives a quantum correction to
the conductivity of �σint (B,T ) again determined by the temperature and magnetic
field.

The well known Altshuler-Aronov theory describes EEI corrections [7] in the dif-
fusion limit, described by the inequality kBT τ/� < 1 when the effective EEI time
�/kBT is larger than momentum relaxation time and is sufficiently long for the two
electrons involved to each scatter at several impurities. EEI corrections at an arbitrary
correlation between kBT and �/τ were obtained by Zala, Narozhny and Aleiner who
considered the temperature dependence of EEI corrections [8], the EEI correction to
the Hall coefficient [9] and the correction to MR in a parallel field [10]. The theory
was developed for electron scattering at point impurities having a short-range poten-
tial. In the case of kBT τ/� > 1 electrons can only be scattered at a single impurity
during the EEI time. This regime of scattering, which occurs at high electron energies,
has been called the ballistic regime [8–10], although in the diffusion regime an elec-
tron also performs a ballistic motion between two impurity scattering events. A gen-
eral theory of EEI corrections, including electron scattering at a short-range potential
and the Coulomb interaction with scattering centers, was developed by Gornyi and
Mirlin [11]. It is applicable in all of the diffusion, intermediate and ballistic regimes.
This theory (see also Ref. [12]) applies to a perpendicular magnetic field, but it actu-
ally concentrates on temperature variations of the EEI corrections. The magnetic field
is characterized using a factor ω2

cτ
2 whose meaning is as follows. In a magnetic field

the inversion of the conductivity tensor to the resistance tensor gives the following
correction to the resistance [13]:

�ρint (B,T ) ≈ − 1

σ 2
0

(
1 − ω2

cτ
2)�σint (B,T ), (1)

where σ0 is the conductivity in zero magnetic field. In the case of strong magnetic
fields (ω2

cτ
2 � 1) the factor 1 − ω2

cτ
2 can be relapsed with ω2

cτ
2 and (1) becomes

ρint (B,T ) − ρ0

ρ0
= 1

σ0
ω2

cτ
2�σint (B,T ). (2)
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Since the correction �σint (T ) is negative, (2) describes a negative field-quadratic
magnetoresistance. In the case of weak magnetic fields, a simplified expression
ρint (B)/ρ0 = −σ int (B)/σ0 can be used (ωcτ < 1) for the inversion of conductiv-
ity tensor to the resistance tensor.

The current theories of EEI have been supplemented by Sedrakyan and Raikh
(SR) [14] who investigated quantum EEI corrections for magnetic fields in the region
between those where WL effects and SdH oscillations are observed. These authors
consider electron scattering at an impurity with a short-range potential in a sample
having a long mean free path (kF l � 1, kF is the Fermi wave number). As in the
previous study [8–10], the EEI correction to the conductivity is examined due to in-
terference arising from back scattering off the impurity and Friedel oscillations of the
electron density induced by the electric field of the impurity. Note that the interfer-
ence of the electron waves reflected from the impurity and the Friedel oscillations is
caused by the coherence because the radius of the Friedel oscillations are a multi-
ple of the electron wavelength. The advantage of this study [14] is that the theoretical
computation arrives at an explicit expression for the EEI correction in a perpendicular
magnetic field which compares favorably with experimental results. These processes,
each involving two scattering acts are much more sensitive to magnetic field than the
one described by (2), even for ωcτ < 1. In this case the interaction contribution is

�σSR(B,T )

σ0
= 4λ2

(kF l)3/2
F1

(
ωc

Ωl

)
, (3a)

where

Ωlτ = (kF l)−1/2,

here Ωl is the cyclotron frequency which originates from the new physical process:
double backscattering from the impurity-induced Friedel oscillations, λ is the inter-
action constant, kF is Fermi momentum. The function F1 can be approximated by
the expressions

F1(x) =
{

−x2/8, x � 1,

−2x/3, x � 1.
(3b)

Since the region of the Friedel oscillations is restricted by the size rT = vF �/

(2πkBT ) (vF is the Fermi velocity), the authors of Ref. [14] describe the temperature-
dependent EEI correction to the conductivity in the region between weak localization
and the SdH oscillations as:

�σSR(B,T )

σ0
= 4λ2

(
πkBT

εF

)3/2

F2

(
ωc

2π3/2ΩT

)
, (4a)

where

ΩT = (kF T )3/2

ε
1/2
F

,
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εF is Fermi energy and the function F2 can be approximated by the expressions

F2(x) =
{

−0.7x2, x � 1,

−2x/3, x � 1.
(4b)

It is seen that the correction decreases with rising temperature. As the magnetic
field increases the correction to conductivity, which exhibited a quadratic growth in
very low fields, starts to grow linearly with increasing field. The most important result
of the SR theory [14] is this prediction of positive magnetoresistance for 2D electron
systems that is linearly dependent on the magnetic field.

The experimental observation of MR maxima in various 2D electron systems (in-
version layers in silicon, GaAs/AlGaAs heterostructures and quantum wells of GaAs
and InGaAs) [15] were compared with the SR predictions [14]. The theory and ex-
periment exhibit some qualitative agreement: (i) the magnetoresistance is positive in
weak magnetic fields; (ii) the magnetoresistance has a maximum in stronger magnetic
fields; (iii) the order of MR magnitude agrees with the prediction. However some
experimental findings disagree with theory [14]: (i) the magnetic fields of the MR
maxima exceed the predicted ones; (ii) the MR maximum moves to higher magnetic
fields as temperature increases, in contrast to predictions; (iii) the magnitude of the
effect increases with temperature rather than decreasing as the theory [14] predicts.

As the magnetic field grows to the region ωcτ > 1, the factor ω2
cτ

2 should be taken
into account because according to (2), it is responsible for negative and quadratic
magnetoresistance. The competition of those two functions results in a maximum
in MR.

2 Object of Investigation

In our experiments the magnetoresistance of a 2D hole gas in a modulation-doped
strained SiGe quantum well has been studied as a function of temperature with par-
ticular emphasis on the MR maximum in the region of magnetic fields between the
WL effect and the SdH oscillations. Here we analyze the experimental results ob-
tained and compare them with the SR theory [14]. The sample was a quantum well of
Si0.05Ge0.95 with hole conduction and a distinct MR maximum (Fig. 1). It was pre-
pared by molecular beam epitaxy, starting with a 4650 nm thick SiGe relaxed buffer
layer grown onto a (001) Si substrate in which the Ge concentration increased linearly
from 5 % to 63 %. The subsequent layers were arranged as follows: a 500 nm thick re-
laxed Si0.37Ge0.63 constant composition layer, a 11 nm thick compressively strained
Si0.05Ge0.95 layer (the active quantum well), a 10 nm thick Si0.37Ge0.63 spacer layer, a
10 nm thick supply layer of the same composition doped with boron (volume concen-
tration 2×1018 cm−3), a 10 nm thick Si0.37Ge0.63 layer and finally a 3 nm thick Si cap
layer. The sample configuration was a double cross. In the experiments the magnetic
field was applied perpendicular to the quantum channel. Since the quantum well in
the heterostructure does not contain impurity atoms, the main scattering mechanism
in this structure is remote Coulomb interaction of the holes with the boron acceptor
atoms, which are located in a layer separated from the quantum well by an impurity-
free spacer layer 10 nm thick. At T = 0.355 K the charge carriers had the following



J Low Temp Phys

Fig. 1 Magnetic field dependence of resistance ρxx at temperatures: (1) 0.355 K, (2) 1.1 K, (3) 2.73 K,
(4) 4.55 K, and (5) 7.8 K. Vertical arrow shows the condition ωcτ = 1. (b) The low field WL and MR
maximum at intermediate fields are more clearly seen in the expanded field view

parameters: effective hole mass m∗ = 0.156m0 (estimated from the temperature vari-
ation of SdH oscillations amplitude), hole concentration pH = 1.76 × 1012 cm−2

(obtained from Hall effect) and pSdH = 1.62 × 1012 cm−2 (obtained from the SdH
oscillation period), elastic scattering time τ = 6.05 × 10−13 s, quantum scattering
time τq = 2.77 × 10−13 s, mean free path l = 149.6 nm, mobility μ = 6.8 × 103 cm2

V−1 s−1. The object investigated had the parameter kF l � 50 and the transition to the
ballistic regime with rising temperature, determined by kBT /� = 2/(πτ), occurs at
T � 7.7 K [8, 9]. Therefore, the low temperature results discussed below refer to the
diffusion and intermediate regimes. The following effects were observed in different
regimes of magnetic field: a weak localization effect (in the weakest magnetic fields),
a MR maximum (at intermediate magnetic fields) due to the change from positive to
negative MR as the magnetic field increases, and Shubnikov-de Haas oscillations (in
strong magnetic fields). All these magnetoresistance features are discussed in more
detail below.

3 Weak Magnetic Fields: Weak Localization Effect

The quantum correction to the conductivity of 2D electron system that comes from
the weak localization effect varies in a perpendicular magnetic field follows from the
theory[6]:

�σloc(B) = e2

2π2�

[
3

2
f2

(
4eDB

�
τ ∗
ϕ

)
− 1

2
f2

(
4eDB

�
τϕ

)]
, (5a)
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Fig. 2 Magnetic field-induced
variation of resistance ρxx in
low magnetic fields at
T = 0.355 K. The doted line is
the contribution of the WL
(calculated as in [16], including
phase and spin-orbit relaxation
times) correction, the dashed
line describes the SR-EEI
contribution [14] (calculated
by (7) at λ = 0.6). The solid line
is a combined contribution of
WL and SR-EEI effects

where f2(x) = ln(x) + Ψ (1/x + 1/2), Ψ is the logarithmic derivative of the
Γ -function,

f2 =
{

x2/24, x � 1,

ln(x) + Ψ (1/2), x � 1.
(5b)

In (5a) D is the diffusion coefficient of carriers, (τ ∗
ϕ )−1 = τ−1

ϕ + 4/3 τ−1
so , τϕ is the

phase relaxation time, and τso is spin-orbit relaxation time. The terms of different
signs in (5a) correspond to the triplet and singlet states of the interfering charges.
To calculate the corrections due to the weak localization of holes we employed the
theoretical model of Ref. [16], which is based on the theory of Ref. [6] and can be
applied to undeformed and deformed bulk p-type semiconductors and quantum-well
structures based on them.

In the investigated object, the WL-related quantum correction appeared in very
weak magnetic fields (B < 0.1 T) as a feature in ρxx(B) (Fig. 2) close to the condition
LB � l which is obeyed at a magnetic field of 0.03 T. The dashed line in Fig. 2 de-
scribes the EEI correction obtained in accordance with theory [14] (see below), which
can be added to the WL contribution calculated according to Ref. [16] and shown as
a dotted line, to reveal good agreement with the experimental ρxx(B). The typical
form of the expected WL correction corresponds to the case of similar values of τϕ

and τso. As the field grows, the relationship between the singlet and triplet contribu-
tions in (5a) changes and positive MR transforms into negative MR. This peculiarity
of the MR, determined by the spin-orbital effects, was quite distinct when the EEI
contribution was small [17–19] or less evident [20] than in the present sample. The
analysis of the WL-related correction at different temperatures gives the dependence
τϕ(T ) which can be approximated by the expression τϕ(T ) = 1.17 × 10−12T −p ,
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where p = 0.87. This dependence is expected to describe the hole-hole scattering for
which the theory predicts p = 1 in the case of a 2D gas of charge carriers [21].

4 Intermediate Magnetic Fields: Magnetoresistance Maximum

It is interesting to compare the experimental results on the MR maximum at inter-
mediate fields with the predictions of the SR theory [14]. Note that experimentally
a MR maximum is observed in magnetic fields which are 16–28 % lower (at the
T = 7.8–0.355 K range) than the predicted temperature independent Bmax = 0.84 T
from the condition ωcτ = 1/

√
3 that from the theory [14]. In the investigated case the

linear approximation for large x (4b) is applicably. Then, from (1) and (4a) we have:

�ρSR(B)

ρ0
= 4

3
λ2(1 − ω2

cτ
2)

(
ωc

εF

)
. (6)

At low temperatures (T < 2 K) the region of quadratic approximation of (4b) is neg-
ligibly small but it grows with increasing temperature. In order to take it into account
in the region of the transition from quadratic to linear approximation of (4b), the
calculation was made using an approximate function F2 obtained by matching those
approximations. For calculating magnetoresistance we use a complete form of (4a)
and take into account the full factor 1 − ω2

cτ
2. The calculated equation is

�ρSR(B)

ρ0
= 4λ2

(
πkBT

εF

)3/2(
1 − ω2

cτ
2)F2(ωc, T ). (7)

The curves in Fig. 3 (solid lines) were plotted using only one fitting parameter λ.
Its most suitable estimate was λ = 0.6. Note that the curves calculated with this single
λ-value coincide with the initial parts of the experimental dependences including the
crossover from quadratic to linear magnetic field dependence at all the temperatures
used; however, they all have a maximum that appears at much higher magnetic fields
than observed in the experiment. This MR maximum can be seen to shift slightly with
increasing temperature towards higher magnetic fields. To visualize the efficiency of
the SR theory [14] in describing the initial regions of MR variation, the calculated
curves also include the resistance in zero magnetic fields where the WL contribution
is essential.

The predicted linear MR [14] is bound above by the condition ωcτ = 1 (for our
sample the magnetic field corresponding to this condition is 1.46 T). However, the
SR theory [14] does not allow for logarithmic saturation of the EEI correction to
the magnetoconductivity predicted earlier [6, 7, 22] for EEI corrections in the diffu-
sion regime. The saturation of the EEI corrections may be caused by the increasing
curvature of hole trajectories as the field increases, which reduces the probability of
interference for the wave functions of the interacting holes.

Model calculations were also made to investigate the role of the logarithmic satu-
ration of the interaction correction on the formation of the MR maximum. Formulas
for quantum EEI corrections in a perpendicular magnetic field in the diffusion and
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Fig. 3 Magnetic field
dependences of ρxx(B) at
temperatures: (a) 0.355 K,
(b) 0.7 K, (c) 1.1 K, (d) 1.56 K,
(e) 2.73 K, (f ) 4.55 K, (g) 7.8 K
(open circles as experimental
data). The solid lines are
SR-EEI calculation according to
(7). The dotted lines represent
the contribution of the WL
correction [16]. The dashed line
describes the EEI correction
calculated according to
combination of (9a) due to [7]
and (1) due to [13]. Vertical
arrow shows the condition
ωcτ = 1/

√
3
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Cooper channels were chosen as the model functions. The correction to the magne-
toconductivity due to interactions between charge carriers having close energies and
a small momentum difference (the so called diffusion channel) was obtained by Lee
and Ramakrishnan [22] as:

�σLR
D (B,T ) = − e2

2π2�
λDg2(h), (8a)

where h = gμBB/(kBT ), g is the Lande factor, μB is the Bohr magneton, and λD is
the interaction constant in the diffusion channel. The function g2(h) has the following
bounded approximations:

g2(h) =
{

0.084 h2, h � 1,

ln(h/1.3), h � 1.
(8b)

The characteristic magnetic field where the quadratic dependence of g2(h) changes
into the logarithmic one is specified by the expression BD0 = πkBT/(gμB). The
characteristic field in the diffusion channel is BD0 ≥ 1 T where EEI corrections are
small and so can be ignored.

The correction to magnetoconductivity determined by the interaction between
charge carriers with close energies and a small sum of momentums (the so-called
Cooper channel) was obtained by Altshuler and Aronov [7]:

�σAA
C (B,T ) = − e2

2π2�
λcϕ2(α), (9a)

where α = 2eDB/(πkBT ), λC is the interaction constant in Cooper channel:

ϕ2(α) =
∫ ∞

0

t dt

sinh2(t)

[
1 − αt

sinh (αt)

]
,

ϕ2(α) =
{

0.3α2, α � 1,

ln(α), α � 1.
(9b)

The characteristic magnetic field BC0 = πkBT/(2eD) for our object at T = 1 K is
0.15 T. Hence, the logarithmic saturation �σAA

C (B,T ) is within the region of the
formation of the MR maximum.

The behavior of MR in our object was calculated at different temperatures using
(1) and the correction �σAA

c from (9a) as the model function which saturates in
strong magnetic fields. The result obtained is very instructive. The calculated MR
curve (Fig. 3 dashed line) has a maximum which now practically coincides with the
MR maximum in the experimental curve at all the temperatures used. To visualize
the coincidence, the calculated curves were plotted after excluding the contribution
of the WL correction from the resistance values taken in a zero magnetic field. It is
important to note that, unlike the magnetic field dependence of corrections �σSR ,
the correction �σAA

c does not describe the initial part of experimental MR curves,
but it does provide a good description of the MR maxima.
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Fig. 4 Example of separating
the magnetic field dependence
of the EEI correction to ρxx(B)

at temperatures: (1) 0.355 K,
(2) 2.73 K, and (3) 4.55 K. The
solid lines are a calculation
according to (2) due to [13] and
(10) due to [11]

The interaction constant λc is used as the fitting parameter in this calculation and is
found to decrease from 0.75 to 0.6 as the temperature increases from 0.355 to 7.8 K.
This interaction constant is commonly expressed in terms of the Fermi-liquid con-
stant Fσ

0 , which accounts for the intensity of the spin-exchange interaction, although
the functional relation between λ and Fσ

0 depends on the particular situation. For ex-
ample, λc is determined by the function 1 + 3[1 − ln(1 + Fσ

0 )/Fσ
0 ] in the diffusion

regime and by 1 + 3Fσ
0 /(1 + Fσ

0 ) in the ballistic regime [8]. Thus, the diffusion-to-
ballistic change as temperature rises causes an appreciably decrease in the coupling
constant, as we observe. However, the temperature variation of λ is commonly ne-
glected and a particular constant λ-value is used for a limited temperature interval.

5 Strong Magnetic Fields

The interaction constant can also be obtained by analyzing MR in the strong magnetic
field region, where the inequality ωcτ � 1 is obeyed [23]. Figure 4 illustrates how (2)
describes the monotonic part of the experimental dependence ρxx(B), in the region
B > 1 T at different temperatures. The monotonic part of ρxx(B) is taken as the
mid-point locus between the neighboring maxima and minima of SdH oscillations.
The relative EEI-induced variation of resistance in a perpendicular magnetic field is
described as [11]:

�ρGM(B,T )

ρ0
= (ωcτ)2

πkBl

[
GF

(
kBT τ

�

)
+ GH

(
kBT τ

�
;Fσ

0

)]
, (10)

where GF and GH are the functions describing the contribution of the exchange
(Fock term) and direct (Hartree term) interactions, respectively, and their analytical
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Fig. 5 Variations of the EEI
correction to the conductivity
with rising temperature. The
solid line is a calculation
according to the theory Ref. [11]

form is given in Ref. [11]. These contributions form singlet and triplet channels of
interaction and together describe well the temperature variation of the EEI correction
to the conductivity. It is shown theoretically [8, 11] that the general picture of inter-
action reduces to the triplet interaction channel in which the interaction is determined
by the Fermi-liquid interaction constant Fσ

0 present in the function GH .
The agreement between the calculated temperature dependence of the correction

to the conductivity (solid curve) and the EEI correction to conductivity �σint (T )

(symbols) derived from the analysis of negative quadratic MR using (2) is illustrated
in Fig. 5. It is seen that the magnitude of the EEI correction decreases rapidly with
rising temperature and then becomes saturated.

The analysis of the dependence �σxx(B,T ) (Fig. 5) yields Fσ
0 = −0.225, using

the commonly accepted relation between λ and Fσ
0 for the diffusion regime (see

above). From this we obtain λ = 0.6, which coincides nicely with the value obtained
from analysis of the magnetic field-resistance dependences obtained for our object
on the basis of the SR theory [14].

6 Conclusions

The maximum of magnetoresistance of the investigated two-dimensional system has
been a sort of “touchstone” for detecting corrections between predictions of different
EEI theories and experimentally observed MR variations in different regions of mag-
netic fields. It is found that the equations of the Sedrakyan-Raikh theory [14] for EEI
corrections are applicable in low magnetic fields (down to 0.3 ωcτ ) in which the pre-
dicted crossover from quadratic to linear positive MR is observed. In higher magnetic
fields there is no consensus between experiment and theory Ref. [14] concerning the
position of MR maximum. We suggest that the logarithmic saturation of the EEI cor-
rection to the magnetoconductivity in high magnetic fields can help to reach a better
consensus.
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