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ELECTRONIC PROPERTIES OF CONDUCTING SYSTEMS

Conductance of a STM contact on the surface of a thin film

N. V. Khotkevycha) and Yu. A. Kolesnichenko

B. Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences
of Ukraine, 47 Lenin Ave., Kharkov 61103, Ukraine

J. M. van Ruitenbeek

Kamerlingh Onnes Laboratorium, Universiteit Leiden, Postbus 9504, 2300 Leiden, The Netherlands
(Submitted January 12, 2012)

Fiz. Nizk. Temp. 38, 644–652 (June 2012)

The conductance of a contact with a radius smaller than the Fermi wave length was investigated

theoretically on the surface of a thin metal film. It is shown that quantization of the electron energy

spectrum in the film leads to a step-like dependence of differential conductance G(V) as a function

of applied bias eV. The distance between neighboring steps in eV equals the energy level spacing

due to size quantization. We demonstrate that a study of G(V) for both positive and negative voltages

maps the spectrum of energy levels above and below the Fermi surface in scanning tunneling

experiments. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4723673]

1. Introduction

A fairly large number of papers have addressed the prob-

lem of calculating point-contact conductance for the analysis

and interpretation of results of scanning tunneling micros-

copy (STM) experiments (e.g., see reviews1,2). The problem

of low symmetry and the wide variety of objects under study

make the development of a general theory of STM unlikely,

and each specific problem is approached differently. Theo-

retical papers on this subject can be divided into two groups.

In one the methods that take into account the specific atomic

structure of the STM tip and of the test specimen are used

primarily. These methods make it possible to reproduce the

crystal structure of the sample surface in calculated STM

images, which is very useful for correct interpretation of ex-

perimental data. The main deficiency of this approach is the

lack of analytical formulas for the STM current–voltage

characteristics, since numerical calculations must be per-

formed for every specific case. The other group of works

exploits simplified models of noninteracting electrons that

allow us to find relatively simple analytical expressions that

describe the STM current qualitatively. For this reason such

theoretical results are widely used by experimentalists.

One of the first free-electron models describing STM

experiments was proposed by Tersoff and Hamann,3 whose

theoretical analysis of tunnel current is based on Bardeen’s

formalism,4 in which a tunneling matrix element is expressed

by means of independent wavefunctions for the tip and the

sample within the barrier region. Using the model wavefunc-

tions the authors3 showed that the conductance of the system

is proportional to the local density of states of the sample at

the tip position. In principle, it is possible to extract informa-

tion on subsurface objects (single defects, clusters, interfaces,

etc.) by STM, but this requires a more detailed theoretical

analysis,5 which takes into account the influence of subsur-

face electron scattering on the tunneling current.

In the physical picture of electron tunneling through a

classically forbidden region the electron flow emerging from

the barrier is defined by the agreement between the wavefunc-

tions of carriers incident to the barrier and those transmitted.

In a three-dimensional STM geometry the wavefunctions for

electrons transmitted through the vacuum region are radically

different from the electron wave functions in an isolated sam-

ple, and they describe the electron propagation into the bulk

from a small region on the surface below the STM tip. In con-

trast, the theory described in Ref. 3 and its varieties (see Refs.

1 and 2 and references therein) uses unperturbed wavefunc-

tions of the surface Bloch states. Changes in the wavefunc-

tions of transmitted electrons due to scattering by subsurface

objects provide information about such scattering in the STM

conductance.

The authors of Ref. 6 proposed to introduce the model by

Kulik et al.7 into the theory of STM. In this model a three-

dimensional STM tip is replaced with an inhomogeneous bar-

rier in an otherwise nonconducting interface that separates the

two conductors. In Ref. 7 it was shown that under the assump-

tion of small transparency of the tunnel barrier the wave func-

tion (and thus the current–voltage characteristics) can be

found analytically for a tunnel area of arbitrary size. The

results for the conductance of the tunnel point contact in Ref.

6 were generalized to an arbitrary Fermi surface for the charge

carriers in Refs. 8 and 9. In a series of papers the model

described in Ref. 7 has been expanded to describe oscillations

of STM conductance resulting from electron scattering due to

subsurface defects6,8–11 (for reviews see Ref. 12).

Scanning tunneling microscopes have been widely used

for the study of various small-sized objects: islands, thin films

deposited on bulk substrates, etc.13–20 First, a discrete periodic

spatial variation of STM current originating from the quantiza-

tion of electron states was observed in the quantum wedge: a

nanoscale flat-top Pb island on a stepped Si(111) surface.13

Later the authors showed that the lattice structure of the inter-

face buried under a film of Pb, whose thickness can be as

many as 10 times the Fermi wavelength, can be clearly

imaged with STM.14 They concluded that the key to the
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transparency of a metal lies in the highly anisotropic motion

of electrons and the strong quantization of their transverse

wavefunction components. In Ref. 15 the electronic states of

thin Ag films grown on GaAs(110) surfaces were investigated

by STM with a single layer thickness resolution, and the

quantum-well states arising from the confinement geometry of

the Ag films were identified. Quantum size effects, that mani-

fested themselves in the formation of new electronically

bound states, were investigated by STM on thin islands of Pb

of varying heights on the Si(111)-(7�7) surface.16 It was

experimentally demonstrated that scanning tunneling micros-

copy and spectroscopy of epitaxial Pb islands on Si(111)

reveal adiabatic lateral modulation of the energy spectra of the

quantum well, providing remote electronic images of the sub-

surface reflection phase.17 In Ref. 18 a step structure was iden-

tified at the buried Pb-on-Si(111) 6�6-Au interface by

utilizing the quantum well states. It was demonstrated that the

spatial step positions, as well as step heights, can be extracted

nondestructively and with atomic layer precision by STM.

Vertical Friedel oscillations in interface-induced surface

charge modulations of Pb islands of a few atomic layers on

the incommensurate Si(111)–Pb surface have been observed.19

Thus, detailed experimental results have been obtained, but a

microscopic theory for STM tunneling spectra on samples of

finite size has not been reported, which provides the motiva-

tion for the present work. Current–voltage characteristics for

size quantization in planar thin film geometries of metal–-

insulator–metal tunneling junctions have been investigated

theoretically.21,22 Standing electron wave states in thin Pb

films have been observed by electron tunneling in early

experiments by Lutskii et al.23

In this paper we present the differential conductance

G(V) for small contacts with a radius a smaller than the

Fermi wavelength kF¼ �h/pF, where pF is the Fermi momen-

tum. The contacts are formed on the surface of a thin metal

film. Here we analyze the voltage dependence of I(V) and

G(V). We focus on the size quantization effects of the elec-

tron energy spectrum in the film on G(V).

The organization of this paper is as follows. The model

that we use to describe the contact, and the method for

obtaining a solution of the three-dimensional Schrödinger

equation asymptotic in the small radius of the contact, are

described in Sec. 2. In Sec. 3 the current–voltage characteris-

tics and the differential conductance are found based on the

calculation of the probability current density through the

contact. Section 4 presents a physical interpretation of

the results obtained. In Sec. 5 we conclude by discussing the

possibilities for exploiting these theoretical results for the

interpretation of electron energy spectroscopy in thin films

by STM. In the Appendixes we solve the Schrödinger equa-

tion for the tunnel point contact in the framework of our

model (Appendix 1) and for a point contact without a barrier

(Appendix 2) and find the wavefunctions for electrons trans-

mitted through the contact. These solutions are used in

Sec. 3 for the calculation of current.

2. Model and electron wave function of the system

An illustration of the model under consideration is pro-

vided in Fig. 1. Electrons can tunnel through an orifice cen-

tered at point r¼ 0 in an infinitely thin insulating interface at

z¼ 0 from a conducting half-space (the tip) into a conduct-

ing sheet of thickness d (Fig. 1(b)). The radius a of the con-

tact and the thickness d of the film are assumed to be much

smaller than the shortest mean free path, i.e., we consider a

purely ballistic problem. The wave function w satisfies the

Schrödinger equation

r2wðrÞ þ 2m�

�h2
½e� UðrÞ�wðrÞ ¼ 0: (1)

In Eq. (1) m* and e are the effective mass and energy of the

electron, respectively. We describe the inhomogeneous

potential barrier in the plane z¼ 0 by the function U(r)

¼U0 f(q)d(z), where q¼ (x, y) is a two-dimensional position

vector in the plane z, and f�1(q)¼H(a�q), where H(x) is

the Heaviside step function. In such a model the wavefunction

Isulation
substratez

ba

Metal film

Isulation substrate

d

Area of
tunnelingArea of

tunneling

Metal film

Tip Tip

2a

2a 2a

Tip

d

V

V z = V( )

V z( ) = 0
V = 0

FIG. 1. Schematic representation of an STM experiment on a thin metal film (a) and the model that we employ to represent the contact between a bulk con-

ductor (tip) and a metallic film (b). The dashed picture of the tip in (a) illustrates a metallic point contact (STM tip touches the surface). Electron trajectories

in (b) are shown schematically.
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w(r) satisfies the following boundary conditions at the inter-

face z¼ 0 and at the metal sheet surface z¼ d

wðq;þ0Þ ¼ wðq;�0Þ; (2)

w0zðq;þ0Þ � w0zðq;�0Þ ¼ 2m�U0

�h2
f ðqÞwðq; 0Þ; (3)

wðq; dÞ ¼ 0: (4)

Equations (1)–(4) can be solved in the limit of a small con-

tact, ka� 1 (k ¼
ffiffiffiffiffiffiffiffiffiffi
2m�e
p

=�h is the absolute value of the elec-

tron wave vector k). In the contact diameter in the zeroth

approximation the solutions of Eq. (1) for z? 0 are inde-

pendent and satisfy the zero boundary condition w(q, 0)¼ 0

at the impenetrable interface at z¼ 0. The quantum states in

the conducting half-space (z < 0) (the tip) are defined by the

three components of the electron wave vector k¼ (kjj, kz),

where kjj is a two-dimensional vector parallel to the inter-

face. In the metal film (0 < z < d) the quantum states are

characterized by a two-dimensional vector j that is perpen-

dicular to the z axis, and by the discrete quantum number n
(n¼ 1, 2,…) resultant from the finite size of the conductor in

the z direction. The energy eigenvalues and eigenfunctions

for the two disconnected conductors are given by

e ¼
�h2ðk2

k þ k2
z Þ

2m�
� �h2k2

2m�
; (5)

w0ðrÞ ¼ 2ieikkq sin kzz; z < 0; (6)

and

e ¼ �h2ðj2 þ k2
znÞ

2m�
; n ¼ 1; 2;…; (7)

w0ðrÞ ¼ �2ieijq sin kznz; 0 < z < d; (8)

where kzn¼pn/d. In Eqs. (6) and (8) we use wavefunction

normalization with unit amplitude of the wave incident to

the interface.

The partial wave for the first order approximation w1(r)

in the small parameter ka� 1, which describes the transition

of electrons from one to the other conductor, is given in the

Appendix. In Appendix 1 Eqs. (A1.5) and (A1.6) give the

solution for a tunnel point contact, having a potential barrier

of small transparency t¼ k�h2/m*U0 � 1 at the orifice in

plane z¼ 0. In Appendix 2 Eqs. (A2.6)–(A2.8) give solutions

for a contact without a barrier. Fig. 2 illustrates the spatial

variation of the square modulus of the wavefunction for elec-

trons transmitted through the contact into the film.

3. Current–voltage characteristic and conductance
of a point contact

As previously shown,24 for a ballistic point contact of

small radius a, where a is much smaller than the electron

mean free path l, the electrical potential V(r) drops over dis-

tance r � a from the contact, and in the limit a ! 0 the

potential V(r) can be approximated by a step function

VH(�z). In this approximation, to calculate electrical current

we can take the functions of electron distribution f (+) at

z 6 0 as the Fermi functions fF with energies shifted by the

applied bias eV (where e is the negative electron charge),

f (+)¼ fF (e � eVH(�z)). Figure 3 illustrates the occupied

energy states in the two conductors for both signs of the

applied bias eV. At eV > 0 the electrons flow from the bulk

conductor (the tip) into the film, and vice-versa: at eV < 0

they flow from the film into the bulk of the conductor. The

total current through the area of the contact can be found by

integration over the flux J(6) in both directions

IðVÞ ¼ 1

2pd

ð1
�1

dj
X1
n¼1

Jð�ÞfFðeÞð1� fFðe� eVÞÞ

� 2

ð2pÞ3
ð1
�1

dkJðþÞfFðe� eVÞð1� fFðeÞÞ: (9)

In Eq. (9) in the second term we integrate the wave vector k

in the semi-infinite conductor to represent the current in the

negative direction, and in the first term we integrate the two-

dimensional wave vector j and the flux sum over the discrete

quantum number n for the opposite direction of current.

For simplicity we choose the temperature to be zero. In

this case the electric current is defined by electrons passing

through the contact in one direction only, depending on the

sign of the applied bias. The flux J(6) integrated over the

area of the contact is calculated in the usual way

Jð6Þ ¼ jej�h
m�

ða
0

dqq
ð2p

0

duIm w�1ðq; zÞ
@

@z
w1ðq; zÞ

� �
z¼60

; (10)

where q 5 (q cos u, q sin u). The wavefunction w1(q, z)

represents the wave transmitted through the contact given

by Eqs. (A1.5) and (A2.6) with k ¼ kz for electron flux

from the tip to the sheet, J(þ), and by Eqs. (A1.6) and

(A2.7) with k ¼ kzn (n¼ 1, 2,…) for fluxes J(�) in the oppo-

site direction. The energy shift eV in the region z < 0

should be taken into account, which for the chosen energy

reference point (see Fig. 3) implies that the absolute value

of the electron wave vector in the half-space z < 0 is given

by ~k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m�ðe� eVÞ

p
=�h:

For the tunnel point contact (tpc) the flux can be

expressed in terms of the wavefunction in the contact plane

(A1.1), and we obtain

J
ðþÞ
tpc ’

p4jeja4�h5 ~k
2
cos2#

12m�3d3U2
0

NðN þ 1Þð2N þ 1Þ (11)

FIG. 2. Space distribution of the square modulus of the wave function for

electrons injected by an STM tip into a metal sheet of thickness d¼ 15,

where k¼ 2p/k is the electron wave length, k� ¼ k=2p:
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and

J
ð�Þ
tpc ’�

pjeja4�h5 ~k
3
k2

zn

6m�3U2
0

: (12)

Here, # is the angle between the vector k and the z-axis, and

N(k)¼ [kd/p], where [x] is the integer part of x.

For a metallic point contact (mpc) without a barrier the

expressions for the flux J
ð6Þ
mpc can be written using Eqs. (A2.4)

and (A2.9)–(A2.11),

JðþÞmpc’
p2jej�ha6 ~k

2
cos2#

9m�d3
NðN þ 1Þð2N þ 1Þ (13)

and

Jð�Þmpc’�
8pjej�ha6 ~k

3
k2

zn

9m�
: (14)

Substituting Eqs. (11)–(14) into the general expression (9) we

determine the current–voltage characteristic of the system

IðVÞ ¼ I0

ðkFdÞ3
ð~kF

kF

dkk2

k5
F

k2 � 2meV

�h2

� �
S2ðkÞ; eV> 0 (15)

and

IðVÞ ¼ � I0

ðkFdÞ3
S2ðkFÞ

1

5
þ 2

3

eVj j
eF
þ 1

3

eVj j
eF

� �2
" #(

þ S3ð~kFÞ � S3ðkFÞ
� � p

kFd

eVj j
eF

� �2

þ 2

3
S5ð~kFÞ � S5ðkFÞ
� � p

kFd

� �3 eVj j
eF

þ 1

5
S7ð~kFÞ � S7ðkFÞ
� � p

kFd

� �5

� S2ð~kFÞ
~kF

5kF
1þ 4

3

eVj j
eF
� 8

3

eVj j
eF

� �2
" #

; eV6 0;

(16)

where eF¼ �h2kF
2 /2m* is the Fermi energy,

I0;tpc ¼
jejp2a4�h5k8

F

12m�3U2
0

; (17)

I0;mpc ¼
e�ha6k8

F

9m�
; (18)

Sm(k) is a finite sum of the mth powers of integers

SmðkÞ ¼
XNðkÞ
n¼1

nm: (19)

Note that Sm(k):H�m(N), where Hm(n) are the generalized

harmonic numbers. The current is plotted in Fig. 4 as a func-

tion of bias voltage for two different film thicknesses. Differ-

entiating Eqs. (15) and (16) with respect to voltage we

obtain the differential conductance G(V)¼ dI/dV for a point

contact with radius a� kF,

GðVÞ ¼ G1

~kF

2kF
S2ð~kFÞ �

1

k3
F

ð~kF

kF

dkk2S2ðkÞ

8><
>:

9>=
>;; eV>0;

(20)

GðVÞ ¼G1

(
4

3
1þ eVj j

eF

� �
S2ðkFÞ þ 4

eVj j
eF

p
kFd

� S3ð~kFÞ � S3ðkFÞ
� �

þ 4

3

p
kFd

� �3

S5ð~kFÞ � S5ðkFÞ
� �

� kF

3~kF

1þ 4
eVj j
eF
� 8

eVj j
eF

� �2
" #

S2ð~kFÞ
)
; eV6 0:

(21)

In the limit eV ! 0 the zero-bias conductance taken from

both sides coincides, as it should,

Gð0Þ ¼ G1S2ðkFÞ ¼
G1

6
NFðNF þ 1Þð2NF þ 1Þ; (22)

eV > –N F+1
|eV| > NF –

N +1

F

F + eV

N

eV

z0 d

F

F + eV

N

N –1

z0 d

ba

FIG. 3. Illustration of the occupied energy states at zero temperature in the two conductors for both signs of applied bias eV: eV > 0 (a), eV < 0 (b).
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where NF¼N(kF), and G1 is the conductance of the contact

between the bulk conductor (the tip) and a thin film that has

only a single energy level available below eF for the motion

along z,

G1 ¼ G0ð0Þ
3p3

ðkFdÞ3
: (23)

G0 (0) is the conductance of a contact between two conduct-

ing unbound half-spaces. For a tunnel point contact this is

given by7,12

G0;tpcð0Þ ¼
kF�h2

m�U0

� �2
e2ðkFaÞ4

36p�h
; (24)

and for a metallic point contact we have25

G0;mpcð0Þ ¼
8e2ðkFaÞ6

27p3�h
: (25)

For d ! 1 Eqs. (20) and (21) transform into the known

voltage dependence of the conductance for a point contact

between unbound conducting half-spaces,27

G0ðVÞ ¼ G0ð0Þ 1þ jeVj
eF
� 1

3

jeVj
eF

� �3
" #

: (26)

The dependence of the differential conductance G(V)

for both signs of applied voltage is illustrated in Fig. 5. For

comparison, the dependence of G0(V)/G0(0) from Eq. (26) is

shown also.

4. Discussion

Thus, in the framework of the model illustrated in Fig. 1

we have obtained the current–voltage characteristic and the

differential conductance for a contact on the surface of a thin

metal film. Under the assumption that the contact radius a is

much smaller than the Fermi wavelength kF we found

asymptotically exact formulas for the dependence of the total

current I(V) (Eqs. (15) and (16)) and the contact conductance

G(V) (Eqs. (20) and (21)) on the applied voltage. In the limit

of zero temperature and neglecting scattering processes we

have demonstrated that the dependence I(V) has kinks, and

G(V) exhibits jumps at the same values of applied bias eV
(see Figs. 4 and 5). These events result from the size quanti-

zation of the electron spectrum in the film.

The results obtained show that even in Ohm’s-law

approximation (22), eV ! 0, the conductance G(V) is not

simply proportional to the electron density of states (DOS)

in the isolated film,

qf ðeÞ ¼
m�NF

p�h2d
: (27)

It is remarkable that the dependence of conductance

G(0) (Eq. (22)) on the number of quantum levels NF is the

same for both the tunnel and the metallic point contacts.

This fact proves that such dependence is not sensitive to the

model taken for the potential barrier, and that it is the result

of point-contact geometry. Recently, the relationship

between the differential conductance and the local density of

states has been studied in a tight-binding approximation for

tunnel junctions, where the junction geometry can be varied

between the limiting cases of a point-contact and a planar

junction.28 In the framework of real-space Keldysh formal-

ism the authors of Ref. 28 have shown that the differential

conductance is not, in general, proportional to the DOS of

the sample for planar junctions, although features of the

DOS may be present.

From Eqs. (20) and (21) it follows that the conductance

is nonsymmetric in the applied bias. This asymmetry can be

explained as follows: Let eV > 0 and electrons tunnel from

the bulk conductor into the film (Fig. 3(a)), in which NF sub-

bands of the size quantization are partially filled. If the bias

eV is smaller than the distance De between the Fermi level eF

and the bottom of the next (empty) subband eNþ1¼ p2�h2

(NFþ 1)2/2m*d2, De¼ eNþ1� eF, the electron can tunnel

into any of the NF subbands. At eV¼De tunneling into the

(NF þ 1)-th subband becomes possible, and the conductance

G(V) undergoes a positive jump. Such jumps are repeated

with increasing voltage for all higher subbands. For eV < 0,

when electrons tunnel from the thin film into bulk metal

(Fig. 3(b)) the situation is somewhat different. If the bias

jeVj becomes larger than distance De between the bottom of
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FIG. 4. Dependence of the total current, I(V), on the applied bias over the

point contact for two values of metal film thickness. The constant I0 is given

by Eqs. (17) or (18).
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FIG. 5. Dependence of the normalized differential conductance, G(V)/

G0(0), on the applied bias over the point contact for two values of metal film

thickness. The voltage dependence for a point contact between two semi-

infinite bulk conductors is shown for comparison (short-dashed curve).
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the last partially filled subband eN¼p2�h2NF
2/2m*d2 and the

Fermi energy, De¼ eF � eN, the contribution of the NF-th

subband to the tunnel current does not depend on the voltage

because for any jeVj > De all the electrons of this subband

can tunnel into the bulk states of the left conductor. For this

reason the differential conductance drops for values of jeVj
that coincide with the bottom of size quantization subbands

in the film. The distance between the neighboring jumps of

conductance on the voltage scale equals the distance

between energy levels DeN¼ eNþ1 – eN¼p2�h2(2NF þ 1)/

2m*d2. For eV < 0 the number of conductance jumps is finite

and equals the number of discrete levels below the Fermi

surface NF. The asymmetry around V¼ 0 and the general

shape of the jumps in the conductance can be recognized in

the experiments, e.g., see Ref. 15. In the special case of a 2D

electron system, which has only one level in the potential

well, there is a single negative jump of G(V). Such a jump

was observed in Ref. 29 by STM investigations of the 2D

electron gas at noble-metal surfaces. For eV > 0 the number

of conductance jumps formally is not restricted. However,

for eV> eF our approach is no longer applicable, and the

influence of field emission on the tunnel current must be

taken into account.30,31

The observation of manifestations of the size quantiza-

tion in the STM conductance requires a few conditions to be

fulfilled: the distance between the energy levels must be

large enough and should satisfy the condition DeN 	 �h/s, T,

where s is the mean scattering time of the electrons in the

film, and T is the temperature. The surfaces of the metal film

in the region of the contact must be atomically smooth.32

When the finite lifetime of the quantized states becomes rel-

evant, the temperature broadening of the Fermi function, or

surface imperfections, need to be taken into account. This

will result in a rounding of the jumps in the curve G(V) pre-

sented in Fig. 5 (Eqs. (20) and (21)), which was plotted

under assumptions of perfectly specular surfaces, T¼ 0, and

s!1. With these restrictions taken into account the

current–voltage curves in Fig. 4 give a fair qualitative

description of the experimental results of Ref. 14.

It can be easily seen that for the conducting film the

results obtained have a wider domain of applicability than

that of a rectangular well. For any model of potential that

restricts the electron motion in one direction the differential

conductance has a step-like dependence on the applied bias

with distances between the steps equal to the distances

between the quantum levels.

5. Conclusion

In summary, we have investigated the conductance of

ultrasmall contacts, the radius of which is smaller than the

Fermi wavelength, on the surface of a thin film. The discrete-

ness of the component of electron momentum that is trans-

verse to the film surface is taken into account. The distance

between the electron energy levels is assumed to be larger

than the temperature due to size quantization. Both, a contact

with a potential barrier of low transparency and a contact

without a barrier have been considered. In the framework of

our model we obtained the current–voltage characteristic

I(V) of the system and the differential conductance G(V)

using a d-function potential barrier. We predict a sawtooth

dependence of G(V) on the applied bias and show that the

distance between neighboring jumps is equal to the distance

between neighboring energy levels of size quantization, i.e.,

this dependence can be used for spectroscopy of size quan-

tized levels. At eV > 0 the jumps in the conductance are pos-

itive and correspond to distances between the levels found

above the Fermi surface, while G(V) undergoes negative

jumps for eV < 0, the distances between which are equal to

the distances between the levels below the Fermi surface.

The predicted quantization of conductance can be observed

in STS experiments, and the shape of theoretical curves

agrees with experiments well.

Appendix 1: Electron tunneling between the tip
and the thin film

We look for a solution to Eq. (1) at V¼ 0 in the form of

a sum w¼w0þw1 for the incident and backscattered waves,

and w¼w1 for the transmitted wave. Here, w0, as given by

Eqs. (6) and (8), is the unperturbed wave function that does

not depend on the barrier amplitude U0, while w1 � 1/U0

gives the first order correction. Substituting the wave func-

tion into the boundary conditions (2) and (3) one should

match the terms of the same order in 1/U0. As a result,

boundary condition (3) becomes7

w1ðq; 0Þ ¼ �
ik�h2

m�U0

eijqHða� qÞ; (A1.1)

where k ¼ kz when the wave is incident to the contact from

the tip side, and k ¼kzn when the wave arrives at the contact

from the sheet. For ka � 1 we have jq � 1 in the plane of

the contact, and we can neglect the exponent in the boundary

condition (A1.1).

The function w1(q, z) can be represented as a Fourier

integral

w1ðq; zÞ ¼
ð1
�1

dj0e�ij0qWðj0; zÞ: (A1.2)

The Fourier components in Eq. (A1.2) should satisfy the

zero boundary condition at z¼ d, but are otherwise freely

propagating along z,

Wðj0; zÞ ¼ Wðj0; 0Þ sin k0zðz� dÞ
sin k0zd

; 06 z6 d; (A1.3)

Wðj0; zÞ ¼ Wðj0; 0Þexp ð�ik0zzÞ; z6 0; (A1.4)

with k0z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � j02
p

, k ¼
ffiffiffiffiffiffiffiffiffiffi
2m�e
p

=�h. From Eqs. (A1.1) and

(A1.2) it follows that

Wðj0; 0Þ ¼ 1

ð2pÞ2
ð1
�1

dqeij0qwðq; 0Þ ¼ � ik�h2a

2pm�U0

J1ðj0aÞ
j0

:

(A1.5)

Substituting this into Eq. (A1.2) we find the wavefunctions

for the electrons transmitted through the contact as
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W1ðq; zÞ ¼
ik�h2a

m�U0

ð1
0

dj0J0ðj0qÞJ1ðj0aÞ
sin k0zðd � zÞ

sin k0zd
;

0 < z6d; (A1:6)

W1ðq; zÞ ¼
ik�h2a

m�U0

ð1
0

dj0J0ðj0qÞJ1ðj0aÞ expð�ik0zzÞ;

z < 0; (A1:7)

where Jn(x) is the Bessel function of the first kind.

Appendix 2: Metallic point contact between STM tip
and metal film

Here we consider a point contact without a potential bar-

rier in the plane of the interface. When the contact radius is

small, ka � 1, we can use perturbation theory for the elec-

tron wavefunction in the limit a ! 0. In the zeroth approxi-

mation the wavefunctions are given by Eqs. (6) and (8). The

first order correction, w1(q, 0), to the wave function in the

plane of the contact can be found by the method proposed in

Ref. 25. For distances r� k from the contact we can neglect

the second term in the Schrödinger equation (1), and it

reduces to the Laplace equation. We express the wavefunc-

tion in coordinates of an oblate ellipsoid of revolution (r, s,

u), with r > 0 and �1 6 s 6 1. As a consequence of the cy-

lindrical symmetry of the problem the wavefunction w1(r, s)

does not depend on u. The interface corresponds to s¼ 0

and the plane of the orifice is at r¼ 0. In these coordinates

we obtain the equation

@

@r
ð1þ r2Þ @W1

@r

� �
þ @

@s
ð1� s2Þ @W1

@s

� �
¼ 0; (A2.1)

with the boundary condition at the interface

w1ðr > 0; s ¼ 0Þ ¼ 0: (A2.2)

The solution of the boundary problem (A2.1) and (A2.2) is

w1ðr; sÞ ¼ s½c1rþ c2ð1þ r arctan rÞ�; (A2.3)

where c1 and c2 are constants. For r¼ 0 Eq. (A2.3) gives the

function w1(q, z) in the plane of the contact z¼ 0, q 6 a

w1ðq; 0Þ ¼ c2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

a2
:

r
(A2.4)

As in Appendix 1, we express w1(q, z) as a Fourier integral

and, using Eq. (A2.4), we find for the Fourier components

Wðj0; 0Þ ¼ 1

ð2pÞ2
ð1
�1

dqeij0qw1ðq; 0Þ ¼ c2a
j1ðj0aÞ

j0
; (A2.5)

where j1(x) is the spherical Bessel function of the first kind.

Substituting Eqs. (A2.5) into (A1.2) and using Eqs. (A1.3)

and (A1.4) we obtain

w1ðq; zÞ ¼
c2a

2p

ð1
0

dj0J0ðj0qÞj1ðj0aÞ
sin k0zðd � zÞ

sin k0zd
:

0 < z6d; (A2:6)

and

w1ðq; zÞ ¼
c2a

2p

ð1
0

dj0J0ðj0qÞj1ðj0aÞe�ik0zz; z < 0: (A2.7)

The constant c2 must be found from the boundary condition

(3) at U0¼ 0, which for this case takes the form

@w1ðq;þ0Þ
@z

� @w1ðq;þ0Þ
@z

� 2ik ¼ 0: (A2.8)

The meaning of the symbol k is explained below Eq. (A1.1).

Differentiating Eqs. (A2.6) and (A2.7) with respect to z and

calculating the integrals in the limit of small a we find

@w1

@z

				
z¼þ0

’ c2a

2p
� p

2a2
þ i

p3a

18d3
NðN þ 1Þð2N þ 1Þ

� �
;

(A2.9)

@w1

@z

				
z¼�0

’ c2a

2p
p

2a2
þ i

pk3a

9

� �
; (A2.10)

where N ¼ [kd/p], and [x] is the integer part of x. Substitut-

ing Eqs. (A2.9) and (A2.10) into Eq. (A2.8) in the leading

approximation in a, in which only the first terms in the

brackets (proportional to 1/a2) should be taken into account,

for the unknown constant we find

c2 ’ 2ika: (A2.11)
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