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Nonlocal mixing of supercurrents in Josephson ballistic point contacts
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We study coherent current states in the mesoscopic superconducting weak link simultaneously subjected to
the order parameter phase differert®n the contact and to the tangential to the junction interface superfluid
velocity v in the banks. The Josephson current-phase reldtjogd) controlled by the external transport
currentl+(vs) is obtained. At¢ close tow the nonlocal nature of the Josephson phase-dependent current
results in the appearance of two vortexlike states in the vicinity of the contact.
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The superfluid flow of Cooper pairs in a superconductor iSocity in the banksvg, in particular, the absolute value of the
related to the space dependence of the phaséthe order derivativedj;/d¢ at ¢=m is suppressed by the transport
parameter. In dquas)homogeneous current state the super-current.
current densityj locally depends on the superfluid velocity = We consider the Josephson weak link with direct
vs=h/2mV x(r). Such a state is realized in narrow films or conductivity—a microbridge between thin superconducting
wires? In the case in which the phagestrongly varies in the  films. The bridge sizes, lengthand width 2, are assumed
scale of superconducting coherence lengghthe relation to be smaller than the coherence lenggh In this case even
between the current densitgr) and x(r) becomes nonlocal. for temperatureT near the critical temperaturg; the local
This situation(opposite to the homogeneous current $tate  description based on the Ginzburg-Landau approach is not
realized in Josephson weak link®r a review, see Ref.)2 ~ applicable. To describe the coherent current states in the sys-
e.g., in superconducting point contacts—microconstrictiondM We use the quasiclassical Eilenberger equatiovisich
between two bulk superconductofisanks. The Josephson are valid for temperatures<OT<T. and for arbitrary rela-
current nonlocally depends og(r) and is determinedpa- tion between the contact size and coherence leggthOn

rametrized by the total phase differencg across the weak tEe other hand, ‘INe as;ume;lam?dL are much llarger thkz]ar.n
link. The current-phase relatigri¢) for ballistic point con- the Fermi wavelength... The electron mean free path is

tact was obtained in Ref. 3. The nonlocal nature ofJosephso%Upposed to be much larger thgg .
Suppose the homogeneous transport curremtith a su-

thjgﬁ;n;:é gi%?jg?g'?h]:ggg; ;v;;é?semonstrated by He'dSerfluid velocity vg flows in the banks of the contact. The

. . situation with controlled phase differenegeand preset cur-
. .The" Josephson weak I|nk' could be consldered as ?entIT may be realized if the microbridge is incorporated in
mixer” of two superconducting macroscopic quantum

in the banks. Th It of th ina is the bh a cylindrical thin film(Fig. 1). Let the radius of the cylinder
states In the banks. The result of the mixing Is the phaseqg jogq than the London penetration depth and larger than the

dependent current carrying state _With cur_rent flowing from. herence length. In this case the phase differehizegov-
one bank to another. The properties of this state depend of}eq by the external magnetic fldx ¢=(2e/4c)®, and
the properties of the states of the banks. For example, in g external transport currehi flowing along the cylinder is
Josephson junction between unconventiddalave) super-  pomogeneously distributed far from the microconstriction.
conductors the surface current, tangential to the contact in- The Eilenberger equations for thgintegrated Green's
terface, appears simultaneously with Josephson cufseet functions have the forfn
e.g., Ref. 6.

In this paper we study coherent current states in the Jo- @
sephson weak link between conventional superconductors, _i’_
whose banks are in the homogeneous current states. The @
guestions we raise are the following: How are two supercon-
ducting current carrying states in the banks coherently mixed u ll
by a mesoscopic Josephson junction, or in other words, what
is the result of the interplay between transport curjefs) ] .1 .
flowing parallel to the junction interface and nonlocal Jo- 1 i
sephson currerjty( ¢)? How are the Josephson properties of
the system influenced by the external controlling transport am==H===x
current? We have found that the distribution of the current in N—]
a region of nonlocal mixing strongly depends on the global [ I
phase difference between banks and fet= the distribu-
tion contains the vortexlike states. The current-phase relation FIG. 1. Scheme of the realization of the microbridge with trans-
j3(#) at ¢ nearm essentially depends on the superfluid ve-port current in the banks and the controlled phase difference.
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spatial variation ofA and vy is essential at the distances
from the contacpp<a. The Green'’s functions are varied at
the distances of ordef,, and in the main approximation on
the parameter/é,<1 they are defined by the values of
A(vg) andvg in the banks of the contact. Fdrandvg being
constants at each half plane an analytical solution of Eilen-
berger equations can be found by the method of integration
along quasiclassical trajectories. Under the conditdg,

<1 such a solution is self-consistent. In any pgint(x,y)

all ballistic trajectories can be classified as transit trajectories
(marked by a “1” in Fig. 3, for which vg € a(p) [a(p)
being the angle at which the slit is seen from the ppinand
nontransit trajectorieg: & a(p) (marked by a “2” in Fig. 2.

For transit trajectories the Green’s functions satisfy the
boundary conditions in both the banks. For the nontransit

FIG. 2. Model of the microbridge as the slit in the thin insulat-
ing partition.

vpiémwp,r)ﬂw%ﬁﬁ(vp,r>,ém<vF,r>]=o, (1)

ar trajectories they satisfy to a specular reflection condition at
h the partition and the conditions in the left or right bank.
where Making use of the solution of Eilenberger equations, we ob-
tain the following expression for the current density at
~ O A A gw fa) il
_ G, (Ve,r)= ) the slit:
At o) TR g,

74 is the Pauli matrixA is the superconducting order param- j(x=0]y|<a,$,vs)

eter, andG,(vg,r) is the matrix Green's function, which

depends on the electron velocity on the Fermi surface =4m|e[N(0)veT

the coordinater, and the Matsubara frequenay=(2n P b
+ 1) T, with n being an integer number. iQ sinE— ) cosE

The order paramete\ is determined by the self- X > Im , (5)
consistency equation ®>0 70 cose —i% siné

2 2 N

AN =mATX (F,(Ve N, 3)

_ _ _ where Q= w?+A?, w=w+ipgVs, V=Vg/vg is the unit
Solution of the matrix Eq(1) together with Eq.(3) deter-  vector, andy=sign(v,). We should require R& >0, which

mines the current densifyr) in the system, fixes the sign of the square root to be siga¢). Under the
condition a/¢y<<1 the current density at the slit does not
N depend on thg coordinate, and the total current through the
ry=—2nwieNO)T \Y VE,[))y.. 4 ) ,
Jr) meN(©) % (VeQu (v )>VF @ contact (Josephson currentis equal to |;=2awj, (x
=0Jy[<a,¢,vy).

Here\ is the BCS.coupIing constarml(O) is the density of Forv,=0 the component of the curret) tangential to

states at the Fermi surface, and. . ),_is the averaging over o contactj, =0 and for the Josephson current densify

directions of the velocity . =j, we have the result obtained in Ref. 3. In the general case
If the film thicknessw is much smaller thag,, the spatial vs#0 the current(5) has bothj; and j, components. The

distributions ofA(r) andj(r) depend only on coordinates in tangential curren, depends on the phageand is not equal

the plane of the film and the Eilenberger equatiseduce  to the transport current density in the banks. In particular,

to the two-dimensional ones. We solve these equations in tI'@[ ¢ near T it goes in the direction opposite the external

model of the microbridge as a slit in a thin impenetrabletransport currentsee below.

partition (L=0) atx=0 between two half planess0 (Fig. To describe the influence of the transport current in the

2). The equationgl) for Green’s functiorG,,(Vg ,X,y) have  banks on the Josephson current we introduce the dimension-

to be supplemented by the continuity condition at the slitess parameterq=vgspr/Ag[Ag=A(T=0ps=0)]. The

(x=0,Jy|<a) and by the condition of the specular reflection value ofq is varied in the range€q<gq,. The critical value

at the line &=0|y|=a). Far from the constriction the q. corresponds to the critical current density in the homoge-

Green'’s functions must satisfy the conditions, which describeeous current state. At zero temperatqge-1, and the gap

the homogeneous current parallel to thexis. A does not depend 0g. In Fig. 3 we plot the Josephson
As was shown in Ref. 3 in the zero approximation on thecurrentl ;(¢) at temperatur@ = 0.1T . for different values of

small parametea/¢,<<1 for a self-consistent calculation of g. The presence of the tangential transport current in the

the superconducting current it is not necessary to find th&anks suppresses the value of the critical Josephson current

spatial dependenca(x,y). In the same approximation the and essentially changes the derivatdlg/d¢ at ¢p=m. We

superfluid velocityvs does not depend on coordinates. Theemphasize that the dependence of the Josephson cuijrent

172504-2



BRIEF REPORTS PHYSICAL REVIEW B57, 172504 (2003

w

0.2} D — = Vs v b b b« SO e oy P
T S (ST T TN S [ L

,,,,, o N - T IS [ v s

01k ~N g=0.5 a0y % v % b 3 R D

X e G=0.9 O TR Y AR N

3 \\ TPy % O % T T T e e ey

< 0.0 NN R M N S TR R e e w w
\5 X WO M Ne A Y Ty T TR TR A ey e e
= I s, Ll N T e T S N T
0.1} N R

v '.. e . : L e :

b A £ T U T R

P ey st [N N

-02¢ L 1 P T ‘.l P T 3 DO i L R
0.0 0.2 0.4 0.6 0.8 1.0 e e B A L L

W2 3 T T T

-3 : LI sl & % %k ik N %

-3 -2 -1 a 1 2 3

FIG. 3. Josephson current; versus phase¢. |,=2aw
-47|e|N(0)veT,. FIG. 5. Vector plot of the current density fab=w/2 and q
=0.5. Numbers mark andy axes in the units of the contact siae

(¢) on g, which is shown in Fig. 3, does not relate to the he di he interf . d
suppression of the gap by the transport current, which ighe |stances~§o>a)t € interference current is spread out
negligible for such low temperatures and the current density is equal to its value in the banks.

The derivatived|,/d¢ at ¢= determines the kinetic A simple and transparent expression for the current-

inductance of the Josephson junctiomvhich is relevant, density distributiorj(p) can be found for temperatures close

e.g., for the operation of a superconducting quantum inter}?ort:fhgré?)ftlgétem%ecrﬁt;iTé;s:falciﬁeAéoLh:reiliéalnCes;h
ference device. The expression for the derivative of the Joénd arbitrary in (’:c\>Nm| arison to the siag(p) takes the f?)grbr%
sephson currerit; at ¢=7r has the form y P e

1(p, Ve =]a(p, &) tit(Vs) +isr(p, b,Vs), (7)

dl; le[N(0)A? (%PF)
w f ,

@Lj’:”:_ a Mo 7T ©

jJ(p! ¢) = ZJ CSirI ¢<\75igdvx)>\7€ a(p)

where the functiorf(x) is plotted in Fig. 4. The derivative

dl;/d¢(¢p=m) is inversely proportional tag at T<prug

and it is inversely proportional t® at T>pgrvs. . . ~n
By using the Green'’s functions along transit and nontran- J01(p, $,Vs) =] k(1= COSA)N (VD y)sc afp) »

sit trajectories, calculated in the main approximation on th here

small parametea/&,, we can find the spatial distributions of

Jr(ve)=—]j ck<\7i>y>\7 )

the order parameter and the current density in the contact 7lelN(0)ve A2(T.vy)
(see Ref. 3 The numerically calculated current-density dis- jo(Tve)= F s (8)
tributions for different values of phasgkand the temperature 8 Te

T=0.1T, are shown in Figs. 5 and 6. For small values of the, . .
phase differences between banks, the current dengity) is is a critical gurrent density of the contagt.'ﬁch and k
just the vector sum of the homogeneous transport currenT[Mg(S)/W 1(vsPr/Tc). We detach explicitly the Joseph-

density in the bankg(vs) and the conventional Josephson °" curreij(p,qS.),. and the spatially homogeneo@sans-
curren)':jj(¢,p,us= OfT((FiB). 5). For ¢ neara the construc?ive port) current density;(vs) produced by the superfluid veloc-

interference of supercurrents takes placeg¢it 7 there are ity vs, and write the total currenf?) as the sum of three

no Josephson currerjt;=0, and the current is distributed in com_ponentsr”, i, and th_e rest, 1.e., '_[he interference” cur-
such a way that there are two antisymmetric “vortices” close"®ntiaT- The macroscopic quantum interference takes place

to the contact regioiiFig. 6). Far from the constrictiorfat
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FIG. 6. Vector plot of the current density fap== and q
FIG. 4. The functionf(x) from expression(6). =0.5.
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in the vicinity of the contact region where both coherenttransport supercurrent, increasing the temperature leads to
current densitief;(p, ¢) andj1(v,) exist. We emphasize that additional thermal noise.
at ¢ nears at the slit the “interference” currerijt; is anti- Moreover, the current distribution pattern in the vicinity
parallel tojr. If the phase difference=, the current;r  of the contact was obtained. The current pattern drastically
=—2j7. When there is no phase differenc@ ¢=0), we  depends on the external phase differegicein particular, at
havej;r=0. ¢ =1 the existence of two antisymmetric vortexlike current

In conclusion, we have investigated the coherent currendtryctures is predicted. Considering the current pattern, we
statgs in the Josephson ballistic point contz_ict simultaneouslyave also demonstrated that the superposition of the super-
subjected to the order parameter phase differeh@nd 10 cyrrents in the vicinity of the weak link is not just their
the_ tangential to the junction interface the superflwd Veloc'tyvector sum. These results can be relevant in a wide range of
vs in the banks. The current-phase relatig(x) is shown to Froblems, in which the curret@nd corresponding magnetic-

i

be controlled by thg transport supercondgcﬁng CUITeNie|d) distribution in the vicinity of the weak link is impor-
I+(vs). Thus, by varyingl+(vs), the characteristics of the

weak link, such as the shape of the Josephson current-phase

relation and the value of the critical current, can be changed. We thank I. Dmitrenko, I. Yanson, A. Zagoskin, and A.
A similar effect can be produced by increasing the temperaAmin for stimulating discussions. We acknowledge support
ture T of the system. But, as compared to controlling by thefrom D-Wave Systems, In¢Vancouvey.
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