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Effect of quantum interference in the nonlinear conductance of metallic microconstrictions
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The influence of the interference of electron waves, which were scattered by single impurities on nonlinear
quantum conductance of metallic microconstrictipas was recently investigated experimentally B. Ludoph
et al, Phys. Rev. Lett82, 1530(1999] is studied theoretically. The dependence of the interference pattern in
the conductanc&(V) on the contact diameter and the spatial distribution of impurities is analyzed. It is shown
that the amplitude of conductance oscillation is strongly dependent on the position of impurities inside the
constriction.

I. INTRODUCTION measurements, is the existence of small random voltage-
dependent fluctuations in conductance, far from steps. The
The scanning tunneling microscog$TM) and the me- measurements clearly indicate suppression of the fluctua-
chanically controllable break junctigMCB) techniques of- tions for conductance values near the integer multiples of the
fer an opportunity to study the conductance of metallic con-conductance quantum. Similar results have been reported by
tacts consisting of only a few atoniguantum contacisThe  using a STM to show the strong voltage dependence of con-
electrical conductance of such contacts, at small bias voltagguctance of one-atom contacts at different temperatiris.
is proportional to the number of propagating electron modesis generally believed that the observed oscillations in con-
N, each one contributing an amount @=2e?/h.* By in-  ductance are due to the quantum interference eff8dts-
creasing the diameter of the contact, the energies of modeoph and co-authors, propose the following interpretation:
continuously decreases, but the number of modes increas@he electron wave transmitted through the contact is back-
whenever a new mode fits into the constriction cross sectiorscattered to the contact by an impurity and then partially
This numbem is limited by the requirement that the kinetic reflected at the contact. These waves interfere and change the
energy for the transverse motion is smaller than the Fermfotal conductivity. The energy and thus the wave number of
energyer . When a new mode is occupied, a new quantuman injected electron into the channel, depends on the voltage.
channel is opened. The conductance then undergoes a jun@onsequently the interference pattern in conductance oscil-
of Gy. Such quantization of conductance has been observddtes as electron wave number varies with the voltage.
in both two- and three-dimensional contacts with diameters Although the theory developed by Ludogt al!! can
comparable to Fermi wave lengthk=h/pr (pr is the Fermi  explain the general feature of fluctuations, here we try to
momentum.?~® Jumps in conductance are also expected t@xamine a different mechanism. Impuritiésr defect$ are
occur, at the constant contact diameter while bias voltage iassumed to be located inside the constriction, and the inter-
varied. If the bias eV is larger than the distances between thierence is effectively between waves scattered from the im-
energy levels of quantum modes, it is possible to change thpurities. The existence of a few defects or impurities inside
number of opened modes by changing the voltslgé\t a  the constriction is rather natural considering the way the con-
certain threshold voltage a channel is opened or closed fdact is formed. Using the model of a long microconstriction
one direction of the electron wave vector along the constricwe can find the conductivity analytically. We discuss the
tion and consequently conductance sufferl&#2 stepwise theory of nonlinear electron transport through a mesoscopic
changé’ microconstriction with a few impurities. We show that the
Quantum interference effects have been studied in differnonlinear dependence of the quantum conductance on the
ent mesoscopic systerfisn ballistic metallic microconstric-  voltage is obtained from this model. The form of this depen-
tions it manifests itself as fluctuations in conductance when aence is affected not only by the distances between impuri-
magnetic field or an electrical voltage is appliéd.Now ties, but also by their positions inside the constriction.
experimental efforts have been done using MCB techniques, In Sec. Il the model Hamiltonian is discussed and is used
in order to measure conductance as a function of voltage ito obtain a general expression for the nonlinear conductance.
atomic-size point contacts. A prominent feature of these In Sec. Il as-function potential is assumed for the interac-
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tact axis,r=(R,z), R is a coordinate in the plain, perpen-
FIG. 1. The model of the quantum microconstriction in the form

_____ - = 2m,’
/5>\ ‘}[ ..’ \ z where a=(,p,), B is the set of two transverse quantum
l‘\
\ V/i2 dicular to thez axis, andm, is the electron mass.
In zero approximation iH;,; the current], through the
of a long channel of the radiu®, which smoothly(on the Fermi Jo=e&Tr(vzpo), (6)
length scalg connects two massive metallic reservoirs. The impu-

U e numbersp, is the momentum of an electron along the con-
*- !
AN
-V/2
contact are&; is
rities inside the constriction are shown schematically.

where

. _ . N . po=Tfr(Ho+Hy), (7)
tion of electrons with impurities and a simplified equation for ) ) ) )

the conductance is obtained. Within the framework of per?z=P./m is the electron velocity andi- is the Fermi func-
turbation theory, a general analytical equation is also derivedion. Using Eqs(6) and(7), and wave functior4), we find
for conductance of the system, for an arbitrary number ofhe equation for the ballistic conductance:

guantum modes and an arbitrary number of impurities lo- 1
cated in arbitrary positions. These analytical results are illus- Gl:_GOZ
trated by numerical calculations for the contact in the form 2 "°B
of a long cylindrical contact. A brief discussion of the result
is given in Sec. IV.
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At zero temperature antf—0, this formula describes the
well known G, steps of quantum conductance and in the
quasiclassical case it turns into the Sharvin conductafite.

In order to investigate the influence of single impurities
on the nonlinear quantum conductance of the point contact,
we use the method, which was developed by Kulik and
Let us consider a |ong narrow Cor‘]striction7 which Con-others%g'lgThe Change in the electrical curret is related

nects two bulk metals, assumieg/<er. The geometry is {0 the rate of energy dissipation by the relation:
shown in Fig. 1. We assume that the contact shape is smooth dE  d(H

on the scale of the wavelengiy. This condition assures AJV= — = 1)
that different transverse modes pass through the ballistic dt dt
contact independentlyadiabatic approximatidr). We also , , . . ,
assume that the contact length is much larger than its diam- 1N€ differential of(H.) with respect to time is we ob-
eter and we can neglect the constriction end effects. Undéfined from the Heisenberg equation. The chasdeof the
these approximations, the electrical field inside the contactU’™ent due to interactions of electrons with impurities,
far from the ends is negligible and the energyf ballistic ~ Would then be

electrons depends only on the sign of velocity along the con- 1

tact axis!*'® The HamiltonianH of the electrons contains AIV=—([H,(1),Hin (D), (10)
the following terms: if

Il. GENERAL EQUATION FOR THE NONLINEAR
CONDUCTANCE OF THE LONG QUANTUM
MICROCONSTRICTION

)

H=Ho+Hy+Hin, (1) Where

where (..)=Trlpt)...]. (12)

All operators are in the interaction representation.

Ho=2 saclca (2 The statistical operatqs(t) satisfies the equation

n
- iltoni . Ip
is Hamiltonian of free electrons, and i~ =[Hin(0),p(V)], (12
eV

H1=7 Ea: sinv,clc, (3)  which can be solved using perturbation theoryHp,; (but

for the arbitraryH,):

describes the influence of applied bias voltdyél;,, de- 1

notes interaction of electrons with impurities, and depends p(t)=po+ __f dt'[Hin(t'),po] + - - - (13)
on the positions of impurities; in the constriction; the op- i)

erator ¢ (c,) creates(annihilate3 a conduction electron

with the wave functiong,, and energys,. The electron We would then have

wave functions and eigenvalues are

1 [t
23— [ AT HL Hin(0) )],

o=t iz @ »
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FIG. 2. The normalized conductan€®, /G, as a function of
voltage in a three modes channel®fR=4.2\¢), for the different
numberk of impurities; k=2 for solid line,k=3 for dashed line,
andk=4 for dotted line.

The decrease in total conductant& = — G,, results in
the quantum interference defined as

dAJ
dav -’

2= (15

If the applied bias eV is much smaller than the differences

between the energies; of modes, Eq.(15) describes the
dependence of total conductance on the voltdge

IIl. THE CONDUCTANCE OSCILLATIONS

Now using the general Egél4) and(15), we investigate
the behavior ofG, for the case ofs5-function scattering po-
tential. The HamiltoniarH;,; can be written as

Hin(r)=9 2 ¢i(r)ea(rjcic, . (16)

aFa

Hereg is the coupling constant of the interaction of an elec-
tron with an impurity located in the poimt .

Substituting Eqs(7) and (16) into Eq. (14), after some
simple but cumbersome calculations we find

em
AJ=— Egzz 2 (SinUZa_SinvZa’)

a,a’ i
X@h (1) @n(r) @, (1) eL(r))

X(fa/_fa)é(fal_fa), (17)
where f, =fr(et+eV/2sinv,). At zero temperaturef
=0(eg—¢), Eq. (17) can be further simplified. Using the
wave functiong4), we obtain for the nonlinear part of con-
ductance the following equation:
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FIG. 3. The normalized conductan€® /G, as a function of
voltage for a channel with two impurities at different number of
opened quantum modes; single moder@=2.7\¢) for the solid
line, three modes (2R=4.2\;) for the dashed line, and five
modes (2rR=5.5\¢) for the dotted line.
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Xlﬂ;;r(Rj)lﬂZ(Ri)lﬁﬁ'(Ri)‘ﬂﬁ(R]‘), (18

where

P = 2my(er=eVi2—ep). (19

The cosine terms in the E¢L8) describe the conductance
oscillations due to the interference of electrons waves scat-
tered by impurities. The transverse pattg(R;) of wave
functions contain the mesoscopic effect of impurity positions
inside the constriction. Equatiof18) diverges atp(ﬁi)=0.
Physically it means that in the Born approximation, the
slowly moving electron is repeatedly scattered on the impu-
rity. In this case the perturbation theofBorn approxima-
tion) is not valid anymore, and we must take into account the
interference of partial waves under the electron scattering by
impurity. We assume that energy levels are not very close to
the boundary energies-+eV/2 and the quantitys, added
to the ballistic conductanc@, [Eqg. (8)] is small.
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FIG. 4. The changing of the interference pat-
tern in theG,(V) dependence of the three mode
channel, which contains two impurities, with in-
creasing the contact diameter. The distance be-
tween impurities and its distances from the con-
tact axis is the same for all values & The
radiusR is changed in the interval, in which the
number of opened quantum modes is constant.
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For the numerical calculations we have used the freedependencé,(V) changes with the contact size. It corre-
electron model of point contact consisting of two infinite sponds to the case of two impurities in the contact. The po-
half-spaces connected by a long ballistic cylinder of a radiusition of impurities and the number of opened quantum
R and a length_ (Fig. 1). modes are kept constant. The difference in the interference

In the limit L — oo the electron wave functions,.(r) and  oscillations is a result of the changing in the relative posi-
energiess,, can be written as tions of nodes and maxima of the electron wave function
from the points in which the impurities are situated.

p . i )

—lexp imo+ —p,z|;
ym”R) p( ¢ P IV. CONCLUSION
(20

’ = —\]m
#arll) \/5Jm+1( Ymn)

The dependence of quantum conductance of metallic ul-
trasmall contacts containing impurities on bias voltage has
been theoretically studied. We have shown that impurities
p§ h? ) situated inside the quantum microconstriction produce a non-
; Smn:m%n- 2D jinear dependence of the conductance on the applied voltage,

€ which is the result of the interference of electron waves re-

We have used cylindrical coordinates=(p,¢,z) with z  flected by impurities. The transmission probability of the
along the axis of cylinder. Hera=(n,m,p,) are the quan- electron through constriction depends on the relation be-
tum numbersQ) = 7R?L is the volume of the channel, and tween the electron wave lengthandAz; , the projection of

Ymn iS the nth zero of the Bessel functiod,,. Since the distances between impurities along the channel. It is maxi-
electron energy has degeneracy for azimuthal quantum nunmiaum when the conditiothz;=n\/2 (n is integey is satis-

ber m (as a result of the symmetry of the modguantum  fied. Since the electron momentum depends on the applied
modes with+ m have the same contribution in conductance.bias, one can change the transmission by changing the volt-
In this model, Sharvin conductance has not only st8gs age. Our numerical calculations show that the resulting non-
but also steps @,.2° In Fig. 2 the dependence of the inter- monotonic dependence of the conductance, is similar in
ference pattern on the number of impurities inside a constricshape to the ones observed in experintént The amplitude
tion with constant radius is shown. It shows that as a result o®f the interference pattern is sensitive to the transversal po-
the interference of electron waves, which were scattered bgition of impurities inside the constriction. If the impurity is
different impurities, the interference maxima @y(V) de-  located near the point where the electron wave function cor-
pendence, may both be depressed and increased. The intégsponding to theith quantum mode vanishes, then the de-
ference oscillation of the conductance depends strongly ofreasing of transmission of that mode would be negligible.
the number of opened quantum modes that follows from the

dependence of its maximum value of Ion_gitudinal electron ACKNOWLEDGMENTS
momentum[see, Eq.(3)] on the contact size. The voltage
dependence o6, for different contact sizes are shown in  We acknowledge fruitful discussion with M.R.H. Khaje-

Fig. 3. Figure 4 illustrates how the changing in the nonlineathpour and 1.K. Yanson.
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