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1. INTRODUCTION

The quantum two-level system is a model used to de-
scribe a number of physical objects such as atoms, quantum
dots, molecular magnets, etc. The system can be excited
from the ground state to the upper state by changing its pa-
rameters in time �by means of external fields�. If the param-
eters vary adiabatically slowly, the excitation mechanism is
called Landau–Zener �LZ� transition;1,2 if the amplitude of
the field is small and its frequency is comparable to the level
distance, Rabi oscillations occur.3,4 Thus the occupation of
the levels in a two-state system can be controlled by several
parameters, e.g., the amplitude and frequency of an external
field.5

Recently, the two-level model was used to describe
Josephson-junction systems,6 i.e., both charge qubits7 and
flux qubits.8 The subject of the present work is the investi-
gation of the dynamic behavior of superconducting qubits
with periodically swept parameters, which is important from
the point of view of state control and readout. We will relate
our results to some other articles concerning the resonant
excitation of a two-level system9–13 which has been shown to
be relevant for superconducting qubits, too.14–17 In particu-
lar, we will describe the dynamic behavior of the
interferometer-type charge qubit.18–21

To study theoretically the dynamic behavior of a Joseph-
son qubit, we make use of the master equation for the density
matrix rather than the Schrödinger equation because this al-
lows one to take into account both relaxation and nonzero-
temperature effects. �However, in this paper we will assume
the zero-temperature limit, because we are interested in the
5691063-777X/2005/31(7)/8/$26.00
influence of relaxation processes only on the qubit dynam-
ics.�

The diagonal components of the density matrix give the
probabilities of finding the system in the respective states of
the basis in which the density matrix is presented. Thus, in
executing the calculations we ought to deal with a particular
basis. Our calculations are mostly carried out in the station-
ary basis ���� ,���� of the eigenstates of the Hamiltonian

Ĥ (0) in the absence of time-dependent terms. We do that for
two reasons. First, it is convenient to describe Rabi oscilla-
tions and multiphoton transitions. Second, in the case of the
charge qubit these states ���� ,���� are eigenstates of the
current operator, which is related to the experimentally mea-
surable values.21 The important point is that we can get the
occupation probability of any state provided we know the
probabilities for the states in a particular basis. To demon-
strate this, we will change over from the stationary basis to
the so-called adiabatic basis �consisting of the instantaneous

eigenstates of the time-dependent Hamiltonian Ĥ) to de-
scribe the LZ effect. We emphasize that the results presented
are valid for the description of any two-level system with
periodically swept parameters, particularly, of a supercon-
ducting qubit. In a Josephson-junction qubit the gate voltage
or the magnetic flux can be modulated periodically.

The paper is organized as follows. In Sec. 2 the basic
equations are presented. In Sec. 3 we study multiphoton pro-
cesses and LZ transitions in a two-level system with time-
dependent parameters. We apply the respective results to the
phase-biased charge qubit in Sec. 4.
© 2005 American Institute of Physics
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2. THE BASIC EQUATIONS

We start from the Hamiltonian of a two-level system
�see, e.g., Ref. 6�

Ĥ �0 ���
Bx

�0 �

2
�̂x�

Bz
�0 �

2
�̂z �1�

in the basis of ‘‘physical’’ states �0�,�1��, where �̂z�0���0� ,
�̂z�1����1�; �̂x ,y ,z are the Pauli matrices. The ‘‘physical’’
states are the eigenstates of the Hamiltonian Ĥ (0) for
Bx

(0)/Bz
(0)→0. In the case of a charge qubit, these states cor-

respond to a definite number of Cooper pairs on the island.
For a flux qubit, they correspond to a definite direction of the
current circulating in the ring. The Hamiltonian �1� is diago-
nalized by means of the matrix

Ŝ�exp� i
	

2
�̂y ��� cos 	/2 sin 	/2

�sin 	/2 cos 	/2� ,

where

sin 	��
Bx

�0 �


E
, cos 	�

Bz
�0 �


E
, 
E��Bx

�0 �2�Bz
�0 �2.

The eigenstates ��� and ��� of the time-independent Hamil-
tonian Ĥ (0) are connected with the initial basis:

� ���
�� � � Ŝ� �0�

�1�� .
Next, we introduce the time-dependent terms into the Hamil-
tonian �1�,

Ĥ �0 �→Ĥ�Ĥ �0 ��Ĥ �1 �� t �.

We consider two situations,

�a �: Bx�Bx
�0 � , Bz�Bz� t ��Bz

�0 ��Bz
�1 �� t �, �2�

�b �: Bz�Bz
�0 � , Bx�Bx� t ��Bx

�0 ��Bx
�1 �� t �, �3�

where the time-independent/dependent terms are marked
with (0)/(1) indices. Making use of the transformation Ĥ�

� Ŝ�1ĤŜ , we get the Hamiltonian Ĥ� in the energy repre-
sentation ���� ,���� corresponding to these cases:

Ĥa���

E

2
�̂z�

Bz
�1 �� t �

2
�sin 	�̂x�cos 	�̂z�, �4�

Ĥb���

E

2
�̂z�

Bx
�1 �� t �

2
�cos 	�̂x�sin 	�̂z�. �5�

For convenience, we use different notations for the Pauli
matrices, �̂ i and �̂ i , which operate in the bases ��0� ,�1�� and
���� ,����, respectively.

We emphasize that after the substitution

Bx
�1 �� t �→Bz

�1 �� t � �6�

Bz
�0 �→�Bx

�0 �

Bx
�0 �→Bz

�0 �

problem �b� coincides with problem �a�. This transition from
Eq. �5� to Eq. �4� corresponds to a �/2 rotation about the y
axis.
To unify expressions �4� and �5� to get the equations for
numerical calculations, we write down the Hamiltonian Ĥ�
as follows:

Ĥ��
A

2
�̂x�

C

2
�̂z . �7�

The quantum dynamics of our two-level system can be
characterized within the standard density-matrix approach.22

The time evolution of the total system composed of the two-
level system and the reservoir is described by the Liouville
equation. After tracing over the reservoir variables, the Liou-
ville equation can be simplified to the so-called master equa-
tion for the reduced density matrix 
̂ . It can be written in the
form


̂�
1

2 � 1�Z X�iY

X�iY 1�Z �
which ensures the condition Tr
̂�1. The effect of relaxation
processes in the system due to the weak coupling to the
reservoir can be described phenomenologically with the
dephasing rate �� and the relaxation rate � relax �Ref. 23�.
Then the master equation takes the form of Bloch
equations:22

dX

dt
��CY���X , �8�

dY

dt
��AZ�CX���Y , �9�

dZ

dt
�AY �� relax�Z�Z�0 ��. �10�

�Throughout the paper we set ��1.) From these equations
we get Z(t) which defines the occupation probability of the
upper level ���, P�(t)�
22(t)� 1

2(1�Z(t)). We choose the
initial condition to be X(0)�Y (0)�0, Z(0)�1, that corre-
sponds to the system in the ground state ���. We have cal-
culated the time evolution of P�(t) �which is essential, e.g.,
for the snapshot measurements24� as well as the time-
averaged probability P̄� �which is essential, e.g., for the im-
pedance measurement technique25�. We note that the
asymptotic expression, P�(t)� t→� , is periodic in time with
the period T�2�/� of the time-dependent term of the
Hamiltonian Ĥ (1)(t) �see Sec. 12 of Ref. 5�.

3. NON-STATIONARY EFFECTS IN A TWO-LEVEL SYSTEM

3.1. Rabi oscillations

Hereafter we will treat the problem �a� �see Eq. �2��,
making use of the following notation:

Ĥ�
�̂x�x� t ��̂z , x� t ��xoff�x0 sin �t �11�

with

Bx
�0 ���2
 , Bz

�0 ���2xoff , Bz
�1 �� t ���2x0 sin �t .

�12�

This reformulation is convenient for comparing our results
with the results of other papers.9–12 Then the Hamiltonian �4�
can be rewritten:



571Low Temp. Phys. 31 (7), July 2005 Shevchenko et al.
FIG. 1. Time dependence of upper-level occupation probabilities. Rabi oscillations in P� with the period TR�2�/x0 �a�, LZ transition in P↑ �see Sec. 3.2.�
�b�, P� probability evolution in the case of periodically swept parameters at xoff�0 �c� and xoff�0 �d�. Here ���� relax�0; T�2�/� .
Ĥ���

E

2
�̂z�x0 sin �t•V̂ ,

V̂�
2



E
�̂x�

2xoff


E
�̂z . �13�

First consider the situation xoff�0; then the difference be-
tween the stationary energy levels is 
E�2
 . In the case


����
E�
E and x0�
E , �14�

one can use the so-called rotating wave approximation, and
the result is26

P�� t ��
1

2

x0
2

x0
2��
��2 �1�cos�x0

2��
��2t �. �15�

For the average probability, it follows that

P̄��
1

2

x0
2

x0
2��
��2 . �16�

This means that at ��
E there is resonance, P̄�� 1
2, and

P�(t) is an oscillating function with the frequency x0 . This
is illustrated in Fig. 1a. The peak at ��
E on the P̄���
curve has a width at half maximum �i.e., at P��1/4) of
approximately 2x0 �see the upper panels of Fig. 2�.

Resonant excitations of a two-level system for x0 /
E
�1 may occur not only at ��
E . In the Kth order approxi-
mation, (x0 /
E)K, resonances exist at ��
E/K .4,27 For
xoff�0, the resonances occur at odd K only. The dependence
of P� on time in the vicinity of the Kth resonance is de-
scribed by a relation similar to Eq. �15� �with substitutions

�→
�K�K��
E and x0→x0
K). Hence, the width of

the Kth resonance is of the order of x0
K . At resonance,


� (K)�0, the energy levels ��� and ��� are equally popu-
lated, so that P̄�(��� (K)�
E/K)�1/2, which is the
maximum value of P̄� , since population inversion is not
possible in a two-level system.

When xoff�0, the matrix V̂ has nonzero diagonal ele-
ments �see Eq. �13��. The appearance of the nonzero diago-
nal elements does not influence Rabi resonances at odd K ,
but rather results in the generation of resonances at even K .
This is demonstrated in Fig. 2 and discussed in Sec. 3.3.

3.2. LZ effect

The LZ effect is manifested in the nonadiabatic transi-
tion with the probability

PLZ�exp� �
�
2

�x0
� �17�

between two adiabatic energy levels during a single-sweep
event.1

The time-dependent Hamiltonian Ĥ is diagonalized in
the adiabatic basis, denoted as ��↓� ,�↑��, by the matrix Ŝ1 ,

Ŝ1�� cos
�

2
sin

�

2

�sin
�

2
cos

�

2

� ,
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FIG. 2. Dependence of the probability P̄� on the frequency � for different x0 at ���� relax�0 and at xoff�0 �solid line� and xoff�0.2
 �dashed line�. �Only
the first few resonant peaks are plotted; the others, which are very narrow, are not shown on the graphs.� Inset: enlargement of the low-frequency region.
sin ���
Bx


E1
�

2



E1
,

cos ��
Bz


E1
��

2x� t �


E1
,


E1� t ��2�
2�x� t �2.

The instantaneous eigenvalues of Ĥ are E↓ ,↑��
E1(t)/2.
We now can change over from the stationary basis to the

adiabatic one,

� �↓�
�↑��� Ŝ1� �0�

�1��� Ŝ1Ŝ�1� ���
����� Ŝ2� ���

���� .
Assuming xoff�0, we obtain

Ŝ2�
1

& � cos
�

2
�sin

�

2
�cos

�

2
�sin

�

2

cos
�

2
�sin

�

2
cos

�

2
�sin

�

2

� .

Thus, provided we calculate the density matrix in the station-
ary basis 
̂ , we find it in the adiabatic basis 
̂adiab ,


̂adiab� Ŝ2
�1
̂ Ŝ2 . �18�

The initial condition for 
̂ can be obtained from the initial
condition for 
̂adiab by inverting the relation �18�.

Let us now consider as an illustrative example the one-
sweep process,

t�� �
T

4
,
T

4 � , T�
2�

�
,

x� t ��x0 sin �t , x� t ����x0 ,x0�, x0�
�� ,

which corresponds to the LZ model.28 We choose the initial
condition to be


̂adiab� �
T

4 ���1 0

0 0� ,

which means that the system at t��T/4 is in the lower
adiabatic state. We look for the occupation probability P↑
�
adiab

22 (t) of the upper adiabatic level �↑�, which is equal to
the LZ probability at the end of the sweep,28 P↑(T/4)
�PLZ . Thus, for the functions X , Y , Z introduced in Sec. 2,
we get the initial condition

X� �
T

4 ��
x0

�
2�x0
2

, Y � �
T

4 ��0,

Z� �
T

4 ��



�
2�x0
2

and find

P↑� t ��
1

2
�




2�
2�x� t �2
Z� t ��

x� t �

2�
2�x� t �2
X� t �.

This is illustrated in Fig. 1b, which is equivalent to Fig. 3d in
Ref. 10.

In the general case, xoff�0, we calculate Ŝ2 and then

̂adiab according to Eq. �18�. Then the probability P↑ is given
by
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FIG. 3. Dependence of the probability P̄� on ��4x0 /� at x0�/
2�0.45 �which corresponds to PLZ�10�3); ���� relax�0 and xoff�0 for graphs �a� and
�b�; �� /
�� relax /
�10�3 and xoff /
�0.05 for graphs �c� and �d�.
P↑� t ��
1

2
�

�
2�x� t �xoff�

2�
2�x� t �2�
2�xoff
2

Z� t �

�

�x� t ��xoff�

2�
2�x� t �2�
2�xoff
2

X� t �.

This should be supplemented with the corresponding initial
condition.

3.3. Crossover from multiphoton Rabi resonances to LZ-
interferometry: numerical results

Now making use of the numerical solution of Eqs. �8�–
�10� for the Hamiltonian �13�, we study the dependence of
the time-averaged probability P̄� on the frequency � and
amplitude x0 . For small amplitudes, x0�
E , there are reso-
nant peaks in the P̄��� dependence at ��
E/K , as de-
scribed in Sec. 3.1 and illustrated in Fig. 2. With increasing
amplitude x0 , the resonances shift to higher frequencies. For
xoff�0, the resonances appear at ‘‘odd’’ frequencies (K
�1,3,5,.. .) only, as was studied in Ref. 9. For xoff�0 there
are also resonances at ‘‘even’’ frequencies (K�2,4,.. .),
which is demonstrated in Fig. 2. We note that Fig. 2 is plot-
ted for the ideal case of the absence of decoherence and
relaxation, ���� relax�0, when the resonant value is P̄�

�1/2. The effect of finite dephasing, ���0, and relaxation,
� relax�0, is to decrease the resonant values of P̄� and to
widen the peaks for ���� relax . Thus from the comparison
of the theoretically calculated resonant peaks with the experi-
mentally observed ones, the dephasing �� and the relaxation
rates � relax can be obtained.16
When the system is driven slowly, ��
 , and with large
amplitude, x0�
 , the LZ excitation mechanism is relevant
for the description of the system dynamics. In the previous
subsection we considered the LZ transition for a single-
sweep event. Now we study the periodic driving of the sys-
tem: interferences between multiple LZ transitions arise,
leading to resonant excitations.2,12,13 We will compare these
resonances with the multiphoton Rabi ones.

First, we note that the resonance positions depend on the
amplitude; this is demonstrated for ��
�x0 in the inset of
Fig. 2. But it is more illustrative to study the resonance prop-

erties via the dependence of P̄� on the ratio x0 /� �or, more
precisely, on the phase the state vector picks up per half
period,12 ��4x0 /�). It is reasonable to carry out the calcu-
lation for a fixed value of the product x0 /� , which in turn
defines the LZ probability �see Eq. �17��. This allows us not
only to compare our results with the results of Ref. 12, where
the periodicity of the resonances in � was predicted, but also
to demonstrate the transition from the multiphoton Rabi
resonances to the ones induced due to the interference of LZ

excitations by means of the P̄��� dependence.

In Fig. 3a,b we plotted the dependence of P̄� on � for
xoff�0 and ���� relax�0. The first few peaks, in the region
x0	
), corresponding to the multiphoton Rabi resonances,
are situated at ��K2 �that follows from the resonance rela-
tion ��
E/K). With increasing � �which is proportional to
x0) we observe the overall rising of the curve in accordance
with the conclusions of Ref. 9. At ��1, i.e., at ��
�x0 ,
the resonance position is 2�-periodic, in agreement with Ref.
12. A nonzero offset xoff�0 results in the appearance of ad-
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FIG. 4. Dependence of the probability P̄↑ on the phase ��4x0 /�; ���� relax�0 and �off�0 for graphs �a� and �b�, ���� relax�0 and �off��/4 for graph
�c�, ���5
10�4, � relax�2.5
10�4, xoff�0.35 for graph �d�.
ditional resonances between the basic ones,12 which is dem-
onstrated in Fig. 3c,d. Such a feature is similar to the multi-
photon Rabi resonances. Nonzero decoherence decreases and
widens the peaks, as we have also demonstrated in Fig. 3c,d.

In Fig. 4 we present the dependence of P̄↑ on � for the
calculations carried out in the adiabatic basis �cf. Sec. 3.2.�.
In Fig. 4a,b we plotted such a dependence for different val-
ues of � at xoff�0 and ���� relax�0. For ��1 �see Fig. 4b�
the resonances are 2�-periodic, and the peaks are situated at
the integer values of �/2�, as predicted in Ref. 12. We also
plotted the dependence of P̄↑ on � for nonzero offset xoff

�0 �see Fig. 4c,d��, namely for �off�4xoff /���/4.

4. MULTIPHOTON EXCITATIONS IN THE INTERFEROMETER-
TYPE CHARGE QUBIT

4.1. Interferometer-type charge qubit

In this Section, we consider the quantum dynamics of
the interferometer-type charge qubit with periodically vary-
ing control parameters.19–21 This qubit consists of two Jo-
sephson junctions closed by a superconducting ring. The
charge en of the island between the junctions is controlled by
the gate voltage Vg via the capacitance Cg . The junctions are
characterized by Josephson energies EJ1 , EJ2 and phase dif-
ferences �1 , �2 . The relevant energy values are the island’s
Coulomb energy, EC�e2/2C tot , where C tot is the total ca-
pacitance of the island, and the effective Josephson energy

�J��EJ1
2 �EJ2

2 �2EJ1EJ2 cos ��1/2.

An important feature of the qubit is that its Josephson energy
is controlled by the external magnetic flux �e piercing the
ring. In this paper, the ring inductance L is assumed to be
small. Then the total phase difference, ���1��2 , is ap-
proximately equal to �e�2��e /�0 , and thus �J��J(�)
��J(�e).

Within the two-level model with the basis of ‘‘charge
states’’ �0� and �1� corresponding to the excess number of
Cooper pairs on the island, the Hamiltonian of the
interferometer-type charge qubit can be written as6

Ĥ��
1

2
�J�̂x�

1

2
Ech�̂z , �19�

where Ech�4EC(1�ng) and ng�CgVg /e . Here the domi-
nation of the Coulomb energy of a Cooper pair 4EC over the
coupling energy �J is assumed, 4EC /�J�1. The eigenstates,
���� ,����, of this Hamiltonian are discriminated by the di-
rection of the supercurrent in the ring.21

The qubit is considered to be coupled not only to the
gate but also to the tank circuit that enables both phase con-
trol and readout. Thus there are two possibilities for making
the Hamiltonian of the two-level system �19� time-
dependent. First, the gate voltage Vg can be driven,

ng�ng
�0 ��ng

�1 � sin �t , �20�

and, second, the dc and ac components of the current in the
tank circuit can induce a periodically varying magnetic flux,

���dc��ac sin �t . �21�

Here we restrict our consideration to the case of sinusoidal
time dependence of the parameters.
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Further we study the time-averaged occupation probabil-
ity of the excited state P̄� . We note that because the two
states ��� and ��� belong to oppositely circulating currents
in the ring, they correspond to different signs of the qubit’s
Josephson inductance. The latter can be probed by the im-
pedance measuring technique,25 which makes it possible to
observe the resonant behavior of P̄� studied in the following
subsection.

4.2. Resonant excitation of the interferometer-type charge
qubit

The case of the excitation of the interferometer-type
charge qubit via the gate �Eq. �20�� can easily be related to
the case considered in Sec. 3; see the Hamiltonians �11� and
�19� with the diagonal time-dependent parameters defined by
Eq. �20�. Then the ratio x0 /
 is given by

x0



�

4EC

�J
ng

�1 � .

Thus, both mechanisms considered in Sec. 3 can be realized:
multiphoton excitations (x0 /
�1) and LZ interferometry
(x0 /
�1).

Let us now consider the second possibility, excitation of
the qubit by a time-dependent magnetic flux. The Hamil-
tonian of the interferometer-type charge qubit �19� with the
periodically varying phase � �Eq. �21�� is related to the
Hamiltonian of a two-level system considered in Sec. 2 �Eq.
�5�� by the following relations:

Bx� t ���J ,

Bx
�0 ��Bx�0 ��Bx��ac�0

,

Bx
�1 �� t ��Bx� t ��Bx�0 �,

Bz
�0 ��Ech .

In two limiting cases, the expressions can be simplified to
result in a time-dependent term of the form

Bx
�1 �� t ��sin �t . �22�

Namely, for

����
�EJ1�EJ2�

�EJ1EJ2

, �ac	�dc���� �23�

we have

Bx
�0 ���EJ1EJ2��dc���, �24�

Bx
�1 �� t ���EJ1EJ2�ac sin �t , �25�

and for

����
�EJ1�EJ2�

�EJ1EJ2

, �ac��dc���� , �26�

it follows that

Bx
�1 �� t ���EJ1�EJ2�, �27�

Bx
�1 �� t ��

EJ1EJ2

�EJ1�EJ2� ��dc����ac sin �t . �28�
When relation �22� holds, the present problem �of the charge
qubit with time-dependent magnetic control� can be related
to the problem considered above in Sec. 3 by the expressions
�6�. Then we can estimate the ratio x0 /
E , which character-
izes the mechanism of the excitation of the qubit. For ex-
ample, at x0 /
E	1 we expect multiphoton resonances in
the qubit’s response to the external alternating magnetic flux.
We consider this case below in detail.

We note that the width of the resonant peaks is defined
by the off-diagonal components of the Hamiltonian �13�, i.e.,
by the product x0
 . Then looking at Eqs. �25� and �28�, we
conclude that the width of the resonances is defined by the
product �ac(1�ng).

Finally, we illustrate the multiphoton resonant excita-
tions of the interferometer-type charge qubit. Making use of
the numerical solution of the master equation �Sec. 2�, we
find the time-averaged probability P̄� plotted in Fig. 5. The
position of the multiphoton resonant peaks is defined by the
relation ��
E/K , where 
E�
E(�dc) is supposed to be
fixed. Alternatively, when the �dc component of the phase is
changed and the frequency � is fixed, a similar graph can be
plotted with resonances at �dc��dc

(K) defined by the relation

E(�dc

(K))�K� .

5. CONCLUSIONS

We have studied the dynamic behavior of a quantum
two-level system subjected to periodic sweeping of its pa-
rameters. The energy levels population was calculated by
solving the master equation for the density matrix with re-
laxation terms. Studying the population of the excited state
in both stationary and adiabatic bases, we analyzed some
features of the multiphoton Rabi and LZ effects. Particularly,
we have shown certain similarities of the multiphoton reso-
nances at x0�� with the resonances at x0�
�� due to the
interference between multiple LZ transitions. Based on the
solution of the master equation for the density matrix, we
described in detail the dynamic behavior of the
interferometer-type charge qubit subjected to periodically
changing gate voltage or magnetic flux.

FIG. 5. Dependence of the probability P̄� on the frequency � for the phase-
biased charge qubit at ng�0.95, EJ1 /EC�12.4, EJ2 /EC�11, � relax /EC

�10�4, �ac�0.2� , �dc���0.2� .
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