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The modern physics of superconductivity can be called the physics of unconventional
superconductivity. The discovery of tllewave symmetry of the order parameter in high-
temperature superconductors and the triplet superconductivity in composiRdG3rhas caused

a huge stream of theoretical and experimental investigations of unconventional
superconductors. In this review we discuss some novel aspects of the Josephson effect which are
related to the symmetry of the order parameter. The most intriguing of them is spontaneous
current generation in an unconventional weak link. The example of a Josephson junction in the
form of a grain boundary between two disorientatedave orf-wave superconductors is

considered in detail. Josephson current—phase relations and the phase dependences of the
spontaneous current that flows along the interface are analyzed. The spontaneous current

and spontaneous phase difference are manifestations of the time-reversal syffimétmgaking

states in the system. We analyzed the region of appeararitédmefaking states as function

of temperature and mismatch angle. A review of the basics of superconducting qubits with
emphasis on specific propertiesafvave qubits is given. Recent results in the problem of
decoherence ird-wave qubits, which is the major concern for any qubit realization, are
presented. €2004 American Institute of Physic§DOI: 10.1063/1.178911]2

1. INTRODUCTION sic science and practical applications. Numerous experiments

. - how that high¥, cuprates are singlet superconductors with
The modern physics of superconductivity can be called5 o ghte cup 9 P
nontrivial orbital symmetry of the order paramete@r so-

the physics of unconventional superconductivity. It should be : .
noted that right after the famous papef Bardeen, Cooper, callgrdhd-v\\]/ave sr'][at(;, W;rtg :Ze )(:trrb|:2I Im omre]nitti\(jf F?[a"tiz)a i
and Schriffer (BCS it became clear thatconventional € Josepnson efiecks extremely sensitive 1o the de
s-wave singlet pairing is not the only possibilf, and pendence of the complex order parameter on the momentum

more-complex superconductinguperfluid states may be dlrectlgn on the Ferml surface. Thus the investigation of th|§
realized, with nonzero orbital and spin momenta of the CooE&ffect in unconventional superconductors enables one to dis-

per pairs. Because of the success of the BCS theory in déinguish among different candidates for the symmetry of the
scribing properties of the known metallic superconductors?“perconducmg state. Thls_ has stimulated numerous theoret-
theoretical research on unconventional superconductivityc@ and experimental studies of unconventional Josephson
was of purely academic interest and did not attract muchveak links. One of the possibilities for forming a Josephson
attention. Interest in unconventional pairing symmetry hadunction is to create a point contact between two massive
increased after the discovery of superfluidity 3de, with ~ Superconductors. A microscopic theory of the stationary
triplet spin symmetry and multiple superfluid pha$ésow- Josephson effect in ballistic point contacts between con-
temperature experiments on complex compounds led to théentional superconductors was developed in Ref. 9. Later
discovery of unconventional superconductivity in heavy-this theory was generalized for a pinhole modefiite,****
fermion system§.The heavy-fermion metal UPt like He, ~ for point contacts betweend-wave highT. super-
has a complex superconducting phase diagram, which show®nductors>**and for triplet superconductot3A detailed
the existence of several superconducting phases, while theory of the Josephson properties of grain-boundanave
weak temperature dependence of the paramagnetic susceptinctions was developed in Ref. 16. In those papers it was
bility indicates triplet pairing. Another triplet superconductor shown that the current—phase relations for the Josephson cur-
is the recently discovered compound,RBu0. rent in unconventional weak links are quite different from
The real boom in investigations of unconventional superthose of conventional superconductors. One of the most
conductivity started after the discovery by Bednorz andstriking manifestations of a unconventional order-parameter
Miiller” of high-temperaturéhigh-T.) superconductivity in Ssymmetry is the appearance, together with the Josephson
cuprates, because of its fundamental importance for both baurrent, of a spontaneous current flowing along the contact
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interface. The spontaneous current arises due to the breaking Here theo; are Pauli matricesi&x,y,z); d(k) and o

of the time-reversal symmet(y) in the system. Such a situ- =(4y,0y,5,) are vectors in the spin space. The components
ation takes a place, for example, in a junction between twf the vectord(k) are related with the amplitudegssz(k) of
d-wave superconductors with different crystallographic ori-states with different spin projectiors,=(—1,0,1) on the
entations. Thed-wave order parameter itself doesn't break quantization axis:

the 7 symmetry. But the mixture of two differently oriented

order parameter@roximity effech forms aZ-breaking state 91=—dytidy; go=d;; g-=dxt+idy. ©)

near the interface’ Such spontaneous supercurrgio The functionsy(k) andd(k) are frequently referred to as
(and corresponding spontaneous phase diffejemésts  5n order parameter of the superconductor. For the isotropic
even if the net Josephson current equals zero. The state of the e g(k)=const the paring state is singlet. In a triplet
junction with the spontaneous current is twofold degenerat%uperconductor the order parameti¢k) is a vector(some

and in fact, two valuest jspo, appear. An interesting possi- 4ythors call it the gap vectpin the spin space and in any
bility arises then to use these macroscopic quantum states f@hse it depends on the direction on the Fermi surface. This

the design ofi-wave quantum bit¢qubits. vector defines the axis along which the Cooper pairs have
This review consists of three parts. In Sec. 2 the genergjqrq spin projection.

features of unconventional superconductivity are presented. The angular dependence of the order parameter is de-
The diﬁergnt types of order parameters are de_scribed. Wened by the symmetry groug of the normal state and the
briefly outline the essence Gtsymmetry breaking in uncon- gy mmetry of the electron interaction potential, which can
ventional superconductors and experimental tests for ordefegk the symmetrg. In a model of an isotropic conductor
parameter symmetry. In Sec.(&8nd Appendix I} the theory e quantum states of the electron pair can be described in
of coherent current states in Josephsqn junctions betwe§Rms of an orbital momentuinand itsz projectionm. The
d-wave superconductors and between triplet superconductogf,ngbt (triplet) superconducting state is the state with an
is considered. The current—phase relations for the Josephsgqen(odd) orbital momentum of Cooper pairs. The respec-
and spontaneous currents, as well as the bistable states, & states are labeled by lettess,d, ... (similar to the la-

analyzed. Section 4 is devoted to Josephson phase qubigjing of electron orbital states in atorand are called
based ord-wave superconductors. It contains a review of theg_\yave p-wave,d-wave, ... states. In the general case the

basics of superconducting qubits with emphasis on specifig nerconducting state may be a mixture of states with differ-
properties ofd-wave qubits. Recent results in the problem of gt orbital momenta.
decoherence iml-wave qubits, which is the major concern

4 eV The spherically symmetrical superconducting state,
for any qubit realization, are presented.

which now is frequently called the conventional one, corre-
sponds tes-wave singlet pairing=m=S=0. In this case of
isotropic interaction, the order parameter is a single complex
2. UNCONVENTIONAL SUPERCONDUCTIVITY function g=const. Fortunately, this simple model satisfacto-
rily describes the superconductivity in conventional metals,
where the electron—phonon interactions leads to spin-singlet
pairing with s-wave symmetry. The simplest triplet super-
The classification and description of unconventional su-conducting state is the state withwave pairing and orbital
perconducting states can be found, for example, in thenomentum of a Cooper pal=1. In the case ofp-wave
book'® and review article$?~3In our review we do not aim  pairing different superconducting phases with differemt
to discuss this problem in detail. We present only general1,0,1 are possible. A Cooper pair inpawave supercon-
information on the unconventional superconductors and theiductor has internal structure, becauselfsrl it is intrinsi-

2.1. Order-parameter in unconventional superconductors.
s-wave, d-wave, p-wave ... pairing

most likely model descriptions. cally anisotropic. The next singlet-wave state has the or-
It is well known' that a Cooper pair has zero orbital bital momentum of Cooper paits=2.
momentum, and its spin can be eitt®* 0 (singlet statgor In unconventional superconducting states the Cooper

S=1 (triplet statg. It follows from the Pauli exclusion prin- pairs may have a nonzero expectation value of the orhbital
ciple that the matrix order parameter of the superconductopr (and spin S momentum of a pair. States witB+0 (S
A,p(K) (a,B are spin indicgschanges sign under permuta- =0) are usually called nonunitaiynitary) triplet states.

tion of particles in the Cooper paits ,5(k) = — A g,(—K). The gapA(k)
Hence, the even parity state is a singlet state with zero spin . R
moment,S=0: A?(k)= 3 TrAT(k)A (k) (4)
Alsinged () = g (k)i ; in the energy spectrum of elementary excitations is given by
y the relations
kK)=g(—k). 1 i
900790~k D g = g, 5)
The odd parity state is a triplet state w1, which is _
in general a linear superposition of three substates with dif- AP (k)= \[[d(k)|?=[d(k) x d* (k)[]. (6)

ferent spin projectior, = —1,0,1: In unconventional superconductors the gap can be equal to

A(triplet)(k):(d(k)o_)a_ . zero for some directions on the Fermi surface, and for non-
Y unitary states $+# 0, so-called magnetic superconducjdhe
d(—k)=—d(k). (2 energy spectrum has two branches.
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In the absence of magnetic field the transition to a su-
perconducting state is a second-order phase transition. Ac-
cording to the Landau thed®/of second-order phase transi-
tions, the order parameter of such a state must transform
according to one of the irreducible representations of the
point symmetry group; of the normal phase, i.e., the sym-
metry group of the superconducting state is a subgroup of the
symmetry group of the normal state. The symmetry grGup
of the normal state contains the symmetry operations
Gspin-orbit IN SPin and orbitalcoordinat¢ spaces, the opera-
tion of time reversall, and the gauge transformatiah(1):

Gg=U(1)XT X Gspin-orbit- FIG. 1. The modulus of the order parameg(k)| (7) in momentum space
for a d-wave superconductor.
The transition to a superconducting state breaks the

gauge symmetrnyJ (1), andstates with different phases of

the order parameter become distinguishable. The Conver\]/\'/hereA(T) is a real scalar function, which depends only on

tional superconducting state is described by the symmetr%/he temperaturd, andk= (k. .K.). This type of pairing is a
] - X1y /-

groupH =7 X Ggpinormir- If @another point symmetry property ! : i :
of the superconducting state is broken, such a supercoﬁ\zvo—d|menS|onaI analog of the singlet superconducting state
in an isotropic metal and usually is called

ductor is termed an unconventional one. The order parametéfith =2 OF nd
of different superconducting states can be expanded on basi§-Wave” (or d,z_,2) pairing. The excitation gafg(k)| has
functions of different irreducible representations of the pointoUr liné nodes on the Fermi surface @{=(/4)(2n+1),
symmetry groupG. For non-one-dimensional representa-N=0,1,2,3(Fig. 1), and the order parametek) changes
tions the order parameter is a sum of a few complex funcS$'9n IN Momentum space.

tions with different phases, and such an order parameter is _'/Plet superconductivityan analog of triplet superfluid-
called a multicomponent one. ity in *He, was first discovered in the heavy-fermion com-

27 :
In real crystalline superconductors there is no classifica2Und UP§ more than ten years ago?’ Other triplet super-
tion of Cooper pairing by angular momentuns-ave, conductors have been found recently; RO, (Refs. 28, 2_9
p-wave,d-wave, f-wave pairing, etd. However, these terms and (TMTSF)}PF; (Ref. 30. In these compounds, the triplet

are often used for unconventional superconductors, meanirfgfifing can_be reliably determined, e.g., by Knight shift

that the point symmetry of the order parameter is the same gxperiments!~*It is, however, much harder to identify the
that for the corresponding representation of #@&(3) sym- symmetry of the order parameter. Apparently, in crystalline

metry group of an isotropic conductor. In this terminology tr.|plet- superconductors the grQer parameter dgpends on the
conventional superconductors can be referred te-amve.  direction in momentum spack, in a more complicated way

If the symmetry ofA cannot be formally related to any irre- than the well-knownp-wave behavior of the superfluid

ducible representation of tH8O(3) group, these states are phases ofHe. While numerous experimental and theoretical
usually referred to as hybrid states. works have investigated various thermodynamic and trans-

port properties of URtand SyRuQ,, the precise order-

parameter symmetry is still to be determirsde, e.g., Refs.

34-37 and references thergiymmetry considerations al-
2.2. Pairing symmetry in cuprate and triplet superconductors low considerable freedom in the choice of irreducible repre-

Cuprate superconductarAll cuprate high-temperature Sentation and its basis. Therefore numerous autfsess, for
superconductors (LaSr,CuQy, TI,Ba,CaCyOg, example, Refs. 34—4@onsider different modeléso-called
HgBa,CaCyOg, YBa,Cu;0-, YBa,Cw,0O,_5,  scenariosof superconductivity in URtand SgRuQ,, based
Bi,Sr,CaCyOg and othershave a layered structure with the on possible representations of crystallographic point groups.
common structural ingredient—the Cp@lanes. In some A conclusion as to the symmetry of the order parameter can
approximation these compounds may be considered as qua$e reached only after a comparison of the theoretical results
two-dimensional metals having a cylindrical Fermi surface With experimental data.

It is generally agreed that superconductivity in cuprates ba- Pairing symmetry irS,RuQ,. In experiment, SIRuQ,
sically originates from the Cuf layers. Knight shift —shows clear signs of triplet superconductivity below the criti-
measurements below T, indicate that in the cuprate super- cal temperatureT.=1.5 K. Investigation of the specific
conductors pairs form spin singlets, and therefore evenheat;" penetration deptfY; thermal conductivity;’ and ultra-
parity orbital states. sound absorptid# shows a power-law temperature depen-

The data of numerous experimefsge, for example, the dence, which is evidence of line nodes in the energy gap in
review articlé®), in which the different properties of cuprate the spectrum of excitations. The combination of these results
superconductors had been investigated, and the absenceWith the Knight shift experiment led to the conclusion that
multiple superconducting phases attests that the supercoB®RuUQO, is an unconventional superconductor with spin-
ducting state in this compounds is most probably describedfiplet pairing. A layered perovskite material ,8u0O, has a

by a one-component nontrivial order parameter of the formguasi-two-dimensional Fermi surfate.
Co oy The first candidate for the superconducting state in
g(k)=A(T)(k;—kj), (7)  spRuO, was the ‘p-wave” modef®4’
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d(k)=Az(k+ik,). (8)

The order parameter of the for(®) is a two-dimensional
analog k= (k,k,)) of the order parameter in thAe phase of
3He. Thed vector pointing along the direction implies that
the spin part of the Cooper pair wave function is the spin-
triplet state withS,=0, i.e., in-plane equal-spin pairirithe z
direction is along the axis of S,RuQ,). In a system with
cylindrical symmetry the orbital part of the pair wave func-
tion is a state with finite angular momentum along thexis,
L,==1.

However, the modd(i8) does not describe the whole cor-
pus of the experimental data. Recefft/ it was shown that
the pairing state in SRuQ, most likely has lines of nodes,
and some others models of the order parameter have beé&tg. 2. The modulus of the order parameitifi)| (11) in momentum space

proposed®?’ for the polar phase in afrwave superconductor.
o= A2 © line nodes are closed and there is a pair of point natles
d(k)=A2(k;—kf) (ke xiky). 10 O (Fig.3.

Other orbital state candidates, which assume weak effec-
In unitary state€8)—(10) the Cooper pairs have=+1 and tive spin—orbital coupling in UR{ are the unitary planar
S=0. state
Theoretical studies of specific heat, thermal conductivity, AL rori2 D2 -
and ultrasound absorption for different models of triplet su- d(k) = Akg[X(ky=ky) +2keky §1, (13
perconductivity show considerable quantitative differencesand the nonunitary bipolar state
between calculated dependences fop-Wwave” and TR, . .
“f-wave” mode's?4_36r4o d(k) = AkZ[X( kX_ ky) + 2|kxkyy]- (14)
Heavy fermion superconduct@Pt;. One of the best- More models for the order parameter in YRire dis-
investigated heavy fermion superconductors is the heavycussed in Refs. 21, 34 and 35. The mod@s-(10), (12),
fermion compound URt(Refs. 34 and 36 The weak tem-  (14) are interesting in that they spontaneously break time-

perature dependence of the Knight sfift,multiple  reversal symmetry(7-breaking, which we discuss in the
superconducting phas&sunusual temperature dependencenext Section.

of the heat capaci{? thermal conductivity®*® and sound
absorptior! in UPt; show that it is a triplet unconventional 2.3. Breaking of the time-reversal symmetry in
superconductor with a multicomponent order parameter.  ,nconventional superconductors. Spontaneous magnetic
The heavy-fermion superconductor YmRielongs to the  fields and currents
hexagonal crystallographic point groupg,. The models ) .
which have been successful in explaining the properties of ;nme-reversgl symmetry means that the Hamiltorfén
the superconducting phases in YR based on the odd- ~ /* bece’tuse ii){r) is a solution of the Schrbnger equa-
parity two-dimensional representatid,,. These models ton: theny™(r) is also a solution of the same equation. The
describe the hexagonal analog of spin-trifflatave pairing. ~ ime-reversal operatiof'is equivalent to complex conjuga-
One of the models corresponds to the strong spin—orbitdion 7¥ =¥*. The simplest example, when both the time-
coupling with vectord locked along the latticec axis
(cll2).3*3° For this modeld=2[ 7,Y;* 5,Y,], where Y;

=k,(k;—kJ) andY,=2k.kk, are the basis functions of the 5 %}\
representation. For the high-temperature polar phase ( : vl /‘
=1,7,=0) - '
d(k) = Azk,(kE—KD), (1) sy
. . k ‘
and for the low-temperature axial phase, € 1,7,=1i) z
d(k)=Azk,(kexk,)?, (12)

wherek=(ky,ky ,k,).

Both are unitary states. The stdtel) has zero expecta-
tion value of orbital momentum, while in the statE2) (L)
==+ 2. For the polar phas€ll) the gap in the energy spec-
trum of excitations|d(k)| has an equatorial nodal line &t

=m/2 and longitudinal nodal lines ap,=(m/4)(2n+1), FIG. 3. The modulus of the order parameltifk)| (12) in momentum space
n=0,2,3,4(Fig. 2). In the axial statg12) the longitudinal for the axial phase in afrwave superconductor.

A

X ky

x>



Low Temp. Phys. 30 (7-8), July—August 2004 Kolesnichenko et al. 539

reversal symmetryZ and parity? are broken, is a charged ing phases with finite orbital moments of the Cooper pairs.
particle in an external magnetic field, where ¢(r,H) and T-breaking leads to interesting macroscopic physics in a
&* (r,—H) are solutions of the Schdinger equation, while superconductor. Local currents generating orbital angular
(r,—H) and * (r,H) describe different degenerate statesmomenta flow in the bulk. In general, superconductivity and
of the system. This fact is crucial for understanding of themagnetism are antagonistic phenomena, but in this case, the
appearance of nondissipatiyeersistent currents in mesos- superconducting state generates its own magnetism. The
copic rings, that reflects the broken clockwise—Meissner—Ochsenfeld effect, however, prevents uniform
counterclockwise symmetry of electron motion along themagnetization inside the superconductor, and magnetism is
ring, caused by the external vector potential. restricted to areas of inhomogeneities—that is, around impu-

Unconventional superconductivity allows for a large va-rities and domain walls or at interfaces and surfaces. In these
riety of possible phases. In some of théfrand P are vio- ~ regions, spontaneous supercurrents flow. The surface current
lated; such superconductors are frequently catlichl ones.  generates a spontaneous magnetic moritéfitin triplet su-
(The word “chiral,” literally “handed,” was first introduced perconductors all nonunitary models break time-reversal
into science by Lord KelvinWilliam Thomson in 1884)  symmetry. For these states Cooper pairs have finite spins,
The time reversalthat is, complex conjugatiorof a one-  While the magnetization in the bulk is negligible. It was dem-
component order parameter is equivalent to its multiplicatiorPnstrated that chiral superconductors could show quantum
by a phase factor and does not change the observabléé?‘”"es"fe effects even in thg ab;ence of an external magnetlc
Therefore only in unconventional superconductors with di€ld>" & transverse potential difference would appear in re-
multicomponent order parameter can fisymmetry be bro-  SPONSe to the supercurrent.
ken. In particular, all superconducting states possessing non-
zero orbital or/and spin momenta are chiral ones. 2.4. Tests for order parameter in unconventional

If the 7-symmetry is broken, the superconducting phasesuperconductors
is determined not only by the symmetry of the order param- - rpq simplest way to test the unconventional supercon-
eter but also by the topology of the ground state. The latter i§,ing state is to investigate the effect of impurity scattering
characterized by the_égteger-valued topological invarlint 1, inetic and thermodynamic characteristics. Bevave
In momentum spac¥. Among the various implications of g nerconductors, nonmagnetic impurities have no effects on
ch|r§I|ty, perhaps the. most striking is the set of ch|rgl quasiT ' (Anderson’s theorejn In superconductors with uncon-
particle states, localized at the surface. These chiral stat€sntional pairing the nonmagnetic impurities induce pair-
carry spontaneous dissipation-free currents along the Surfacﬁreaking and suppress superconductivity. Increasing impurity
They are gapless, in contrast to bulk quasiparticles of th@goncentration leads to the isotropization of the order param-
superconductct. eter. In the state with broken spatial symmetry the only way

Volovik and Gor'kov? have classified chiral supercon- tq achieve it is make the order parameter to zero over entire
duc_tmg states into two categories, the so-called “ferr_orr_1ag1:ermi surface. This happens &f,7~1, whereA, is of the
netic” and “antlferl’omagnetlc" states. They are d|St|n' Order Of the average gap magnitude in the absence of impu_
guished by the internal angular moment of the Cooper pairsities at T=0, and 7 is the quasiparticles’ mean free
In the “ferromagnetic” state the Cooper pairs possess a finitgjme 62-64
orbital or (for nonunitary statésspin moment, while in the The Knight shift 6w of the nuclear magnetic resonance
“antiferromagnetic” state they have no net moments. (NMR) frequency(for details, see Ref. §5s the most suit-

In high-temperature superconductors with the order pagple instrument for determining the spin structure of the su-
rameter(7) the time reversal-symmetry is preserved in the perconducting state. Because it results from electron interac-
bulk. However, it has been shown theoreticallsee the tion with nuclear magnetic momentéw is proportional to
review’” and references thergirthat the pured,2_y2 pair  the Pauli paramagnetic susceptibiligyof normal electrons,
state is not stable against thiEbreaking states, such as the temperature dependence &#(T) depends strongly on
dy2—y2+idy, or dy2_y2+is, at surfaces and interfaces, near whether the pairing is singlet or triplet. In singlet supercon-
impurities, or below a certain characteristic temperatakg ( ductors the Cooper pair spB= 0, and the density of normal
or s means an admixture of theé-wave state withg(k)  electrons goes to zero @it—0. Thereforedw—0 as well. In
~2k,k, or the s-wave state withg(k)=const. It turns out triplet superconductors both Cooper pairs and excitations
that such states have larger condensation energy. Thsbntribute to the susceptibility, which changes little with
d2_,2+id,,-wave state represents a ferromagnetic pairinglecreasing temperature.
state, while thed,._,2+is-wave state is antiferromagnetic. The presence of point and line nodes of the order param-

Among the heavy-fermion superconductors there are tweter in unconventional superconductors may be determined
well-known systems which havé&violating bulk supercon- from the temperature dependence of thermodynamic quanti-
ducting phases: URtand U,_,Th,Be;3 (0.01<x<0.45). ties and transport coefficients. In fully gapped = const)
These materials show double superconducting transitions aswave superconductors they display thermally activated be-
decreasing temperature, arféviolation is associated with havior (~exp(—A/T)). In a superconductor with nodes in the
the second of them. The proposed modél8) and (14) of  gap of the elementary excitation spectrum the thermody-
the order parameter in UPtorrespond to theZ-violating  namic and kinetic quantities have power-law temperature de-
states. A more recent candidate fBriolating superconduc- pendence.
tivity is Srp,RuQ,. The “p-wave” and “f-wave” unitary The most-detailed information on the order parameter
models(8)—(10) describe theZ-violating bulk superconduct- can be obtained from phase-sensitive pairing symmetry tests.
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These are based on Josephson tunneling and flux quantiza- Unconventional Josephson weak link§ie properties of
tion: SQUID interferometry, tricrystal and tetracrystal mag-the current-carrying states in the weak link depend not only
netometry, magnetic flux imaging, and thin-flm SQUID on the manner of coupling but also on the properties of the
magnetometry (for review see Ref. 19 and referencesbanks states. For example, the S—c—S junction with the
therein. banks subjected to external transport current was considered
in Ref. 77. In such a system the time-reversal symmetry is
artificially broken, which leads to some interesting features

3. JOSEPHSON EFFECT AND SPONTANEOUS CURRENTS in the junction propertiegthe appearance of vortex-like
IN JUNCTIONS BETWEEN UNCONVENTIONAL states and a surface current flowing opposite to the tangential
SUPERCONDUCTORS transport current in the banksn this review we consider the

junctions formed by unconventionad{wave and triplet su-

_ ) ) perconducting banks, which we call unconventional Joseph-
The Josephson effécrises in superconducting weak son weak links. The most striking manifestation of the un-

Iinks—_the junctions of two weakly cpupled superconductorsconvemiona| symmetry of the order parameter in the

(massive banksS, andS,. The couplingcontacting allows  jynction is the appearance of a spontaneous phase difference

the exchange of electrons between the banks and establishgsy spontaneous surface current in the absence of current
the superconducting phase coherence in the system asfigying from one bank to the other.

whole. The weakness of the coupling means that the super-

conducting order parameters of the banks are essentially the, ;.ctions between d-wave superconductors

same as for separate superconductors, and they are charac- o _
terized by the phases of the order parametgrandy,. The Measurements of the characteristics of unconventional
Josephson weak link could be considered as the “mixer” ofJ0Sephson weak links give informati(_)n7about the symmetry
two superconducting macroscopic quantum states in thef superconducting pairingsee the revie). There are sev-
banks. The result of the mixing is a phase-dependent currenfral approaches to the calculation of coherent current states
carrying state with current flowing from one bank to anotherin unconventional Josephson junctions. These include the

This current (Josephson currentis determined (param- ~ Ginzburg—Landau treatmefftdescription in the language of
etrized by the phase difference= y,— y; across the weak Andreev bound statég, and the numerical solution of the

link. Bogoljubov—de Gennes equations on a tight binding
Classification. General propertieaccording to the type  lattice™ A powerful method of describing inhomogeneous
of coupling, Josephson junctions can be classified as followsUperconducting states is based on the quasiclassical Eilen-
1) Tunnel junctions(originally considered by Josephgon berger equations for the Green’s functions integrated over
S—I-S(l is an insulator layer Weak coupling is provided by energy?! It was first used in Ref. 9 to describe the dc Joseph-
guantum tunneling of electrons through a potential barrjer. 250N effect in a ballistic point contact between conventional
Junctions with direct conductivit—c—S(c is a geometrical Superconductors. The Eilenberger equations can be general-
constriction. These are the microbridges or point contacts.ized to the cases af-wave and triplet pairingAppendix I).
To have the Josephson behavior the constriction size must B8 this Section we present the results of quasiclassical calcu-
smaller than the superconducting coherence length lations for the Josephson and spontaneous currents in the
~fve/A. 3) Junctions based on the proximity effect, 9rain boundary ~junction between d-wave
S—N-S(N is a normal metal layer S—F-S(F is a ferro- superconductor§:*®*!
magnetic metal layer The different combinations of these 32 1. current —phase relations
types of junctions are possible, e.g., SNHI-S or S—I- We consider a Josephson weak "819)_8(2) which is
¢S structures. Another type of Josephson weak links are thf%rmed by the mismatching of the orientations of the lattice
multiterminal Josephson microstructures, in which the sev- y 9

i (d) (d) in Ei
eral bankgmore than two are coupled simultaneously with axes In the bar_1k§1 ands;”, as shown in Fig. 4 The
each othef®-6° axis is perpendicular and tlyeaxis is parallel to the interface

An important characteristic of a Josephson junction iSbetween two superconducting 2D half-spaces with different

the current—phase relatid€@PR) |4(¢). It relates the dc su-

percurrent flowing from one bank to another with the differ- \
ence of the phases of the superconducting order parameter in

the banks. The maximum value kf ¢) determines the criti- %

cal currentl . in the system. The specific form of the CPR

depends on the type of weak link. Only in a few cases does X Ve 2
it reduce to the simple fornhs(¢)=1sin(¢) that was pre- 9
dicted by Josephson for the case of a S—I-S tunnel junction.

In the general case the CPR is a-geriodic function. For S,
conventional superconductors it also satisfies the relation
Is(¢)=—14(—¢). The latter property of CPR is violated in
superconductors with broken time-reversal symmé&r{?

For general properties of the CPR and its form for different

types of weak links the reader is referred to the books angg, 4. interface between twd-wave superconductors, and S, with

reviews®6:74-76 different orientationsy,; and y, of the lattice axeg—b.

3.1. Superconducting weak links

d
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a—b axis orientationganglesy, andy, in Fig. 4). Far from
the interface X— +«) the order parameter is equal to the 0.12¢
bulk valuesA; (vg). In the vicinity of the interfacex=0, if
the anglesy; andy, do not coincide, the value @ deviates 0.08}
from A;,. To describe the coherent current states in the
system, the Eilenberger equatiag}) for the Green’s func- =
tions must be solved simultaneously with the equationfor 0.04}
(A5). The equation of self-consisten€}5) determines the
spatial distribution ofA(r). The problem of solving the 0
coupled equationA4) and(A5) can be treated by numerical A
calculations. Analytical solutions can be obtained for the 004!}
model (non-self-consistentdistribution of A(r): . . .
Ay (Ve)exp —igl2), x<O0, 0 0.5 1
A(Vg ,r)= . (15) o/n
As(vp)exp(iel2), x>0. 0

The phasep is the global phase difference between super- b
conductorsS; andS;. In the following we consider the case -0.01} 4
of an ideal interface with transparenBy=1. For the influ-
ence of interface roughness and effect of surface reflectancy -0.02}
(D#1) as well as the numerical self-consistent treatment of ¢ 3
the problem, see Ref. 16. -0.03 ¢}

Analytical solutions in the model with the non-self- 2
consistent order-parameter distributitkt) are presented in -0.04
Appendix Il. Using the expression&9), (A12) and (A13), 1
we obtain the current densitigg(x=0)=]; and j,(x=0) -0.051

© A,A,|cosd] 0085 ' 0.5 ' 1
cosé .
jJ=47-reN(O)vFTw§>:0 <91(22+1c()22+A1Azcos<p>Simp’ o/n
(16) FIG. 5. Josephson currerd) and spontaneous currerit)(versus the phase
difference in a clean DD grain boundary junction calculated in a non-self-

4N TS < A1A, singsign(cosé) >s'n consistent  approximation. ~ Current  densities are in units jof
Js s Uk “ Qlﬂz+w2+A1AZCOS¢ @ :jgoe(ng?L%E'Ezing4I (3())1;';d ;’;:oafmatch angles arg;=0 and x,

17

We denote byj ; the Josephson current flowing fro&
to S, and byjg the surface current flowing along the inter-
face boundary. Expressiori$6) and (17) are valid (within
the applicability of the mod€{l15)) for arbitrary symmetry of
the order parameterd,,. In particular, fors-wave super-
conductors from Eq.16) we have the current—phase relation
for the Josephson current in a conventior&ivave 2D bal-
listic S—c—Scontact?

superconductor varies. The Josephson current—phase relation
(Fig. 58 demonstrates a continuous transition from a
m-periodic (sawtooth-like line shape atdy=45° to a 2r-
periodic one for smalby, as expected in the case of a clean
DND junction® The phase dependence of the surface cur-
rent(Fig. 5b is also in qualitative agreement with results for
SND and DND junction§®

Ao(T)cod ¢/2) 3.2.2. Spontaneous currents and bistable states

2T In contrast to the weak link between two conventional
The surface currerits (17) equals zero in this case. superconductors, the currep is not identically equal to
For aS{?—S interface(DD junction) betweend-wave ~ Z€ro. Moreover, in some region of angles and x, a value
superconductors, the functiods Ave) in (16) and(17) are  Of the equilibrium phase difference= ¢, exists at which
Ay ,=Aq(T)cos 2¢0—x12). In Appendix | the temperature (djs(@)/de),—, >0 andj;(¢o)=0 butjs(¢o)#0. These
dependence of the maximum gap(T) in d-wave super- spontaneous phase differengg and spontaneous current
conductors is presented for reference. The results of the cajs(¢g)=]spon COrrespond to the appearance of time-reversal
culations ofj ;(¢) andjs(¢) for a DD junction are displayed symmetry breaking states in the systém fact, two values
in Fig. 5 for different mismatch angle$y between the crys- = ¢, of the phase and corresponding spontaneous currents
talline axes across the grain boundary and at temperature j gy, appea). The region of7-breaking stategas a func-
T=0.1T. (assuming the same transition temperature on bottion of temperature and mismatch angle shown in Fig. 6.
sides. The interface is between twlbwave superconductors In Figs. 6 and 7 we also present the self-consistent numerical
S, andS, with differenta—b lattice axis orientationg, and  result!® for comparison. Only in the asymmetrigy = 45°
X2- junction does the degeneraést ¢= = 7/2) survive at all
In these figures, the left superconductor is assumed to biemperatures, due to its special symmetry which leads to
aligned with the boundary, while the orientation of the right complete suppression of all odd harmonicsl 6f); gener-

j3=2eN(0)v FAO(T)singtan
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FIG. 6. Equilibrium phase difference in a clean DD grain boundary junction
as a function ofSy=x,— x1 (keeping x;=0), at different values ot
=TIT.. The circles and triangles correspond to non-self-consigi¢8C)

and self-consistentSC) calculations, respectively. For nonzerg, the
ground state is twofold degeneratge= =+ ¢;).

FIG. 8. Josephson energy of a DD junction.

momentum direction on the Fermi surface than are the ther-
modynamic and kinetic coefficients. In this Section the con-
ally, ¢o—0 at some temperature that depends on the oriersideration of the Josephson effect in point contacts is based
tation. The equilibrium value of the spontaneous current ion the most favorable models of the order parameter in, UPt
nonzero in a certain region of angles and temperat(fegs ~ and SyRuQO,, which were presented in Sec. 2.

7), which is largest in the case of the asymmeijg=45°
junction.

The Josephson currehf( ) is related to the Josephson
energy of the weak linkE;(¢) through |;(¢)=(2e/#%)
X(JE;(¢)/de). The Josephson energy for DD junction as Let us consider a model of the Josephson junction as a
function of phase difference is shown schematically in Fig flat interface between two misoriented bulk triplet supercon-
8. The arrows indicate two stable states of the system. Thes#ictors(Fig. 9). In this Section we follow the results of Ref.
are two macroscopic quantum states which can be used fd5. In order to calculate the stationary Josephson current
d-wave qubit desigrisee Sec. 4 below contact we use “transport-like” equations fa@rintegrated
Green’s function® (see Appendix Il.3 Here we consider
the simple model of a constant order parameter up to the
surface. The pair breaking and the electron scattering on the
) . .85 O Tnterface are ignored. For this non-self-consistent model the
first discovere in weak links in"He. It was found that at current—phase relation of a Josephson junction can be calcu-

low temperatures the mass current—phase dependigge lated analytically. This makes it possible to analyze the main

can essentially differ from the ca;se of f,i cor;lvenuonal SUPETaatures of the current—phase relations for different scenarios
conductor, and a so-called #*state” (J'(w)>0) is

. : of “ f-wave” superconductivity. We believe that under this
possible®>®® In several theoretical papers the Josephson ef- P Y

fect has been considered for a pinhole in a thin wall separat(sqtrong assumption our results describe the real situation
. ) qualitatively, as was justified for point contacts between
ing two volumes of®He-B.10111387-9The discovery of Y J P

: L J “ d-wave” superconductot$ and pinholes ifHe !
metal superconducting compounds with triplet pairing of
electrons has made topical the theoretical investigation of the

3.3.1. Current density near an interface of misoriented
triplet superconductors

3.3. Junctions between triplet superconductors

The Josephson effects in the case of triplet pairing wa:

Josephson effect in these superconductors. The Josephson 7
effect is much more sensitive to dependencé\ @) on the ¢ A
0.04 (i)
Lo by
&-—-01=0.3, NSC _
=0.2, NSC e
0.03[ ¢ 0t=0.1.NSC o %
o—eo t=0.01, NSC : e
i’ a-—-A1=0.3,SC g R A o«
0.02F &~ —at=0.2,SC g8 i
&--At=01,5C /Z/ &=t
Aa—~A1=0.01, SC 5 &
0.01 £q A
177 ; (ii)
¢ I$ ;4
‘_ﬂ 21 LA 1
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FIG. 9. Josephson junction as interface between two unconventional super-

FIG. 7. Spontaneous current in the junction of Fig. 6. conductors misorienated by an angleand with order parametet(k).
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Knowing the componeng,(0) (A29) of the Green'’s joxel
functiong(k,r,e,,), one can calculate the current density at
the interfacej(0):

]

j(0)=477eN(O)v,:TmE:0 dkk Re(§,(0)), (18

where
sin(* 6)

1Q,+AA,cod+6)°
(19

-I:he real VeCtorSALz are related to the gap vectors FIG. 10. Josephson current densities versus phader axial (12) and
d; (k) in the banks by the relation planar (13) states in the geometri); misorientation anglex=/4; the
R N ) current is given in units of = m/2eN(0)vrAy(0).
dn(K)=An(k)exp(i ). (20)

The angle 6 is defined by A;(k)-Ay(k) .
— AL (R)A (k) cos6, and () = (k) — g (K) + appearance of the-state at low temperatures is due to the
1(K)A, ' 2 1 @ fact that different quasiparticle trajectories contribute to the

Misorientation of the crystals would generally result in current with different effective phase differencefs) (see
the appearance of a current along the interfdces can be | .
bp . 9 , Egs. (18) and (19)].1* Such a different behavior can be a

calculated by projecting the vectpron the correspondin e T L .
y proj g 9 P g criterion for distinguishing between the axial and the planar

direction. : o
We consider a rotatiomR in the right superconductor states, taking advantage of the phase-sensitive Josephson ef-

| Ei e do(R)=Rd.(R-1K)). We ch h fect. Note that for the axial model the Josephson current
on y_(s_ee ig. 9, (i.e., dy(k) =Rdy( ). Ve choose the formally does not equal zero gt=0. This state is unstable
¢ axis in the left half-space a_long the partmgn between the(does not correspond to a minimum of the Josephson en-
supercondu_ctor(salong thez axis n Fig. 9. To illustrate the ergy), and the state with a spontaneous phase difference
results obtained by c_:omputmg the formuls), we PIOt the (value ¢q in Fig. 10, which depends on the misorientation
current—phase relation for different below-mentioned Sceé\nglea is realized
narios of "f-wave” superconductivity for two different ge- Thé remarkable influence of the misorientation angle
ometries corresponding to different orientations of the CYSon the current—phase relation is shown in Fig. 11 for the
tals to the right and to the.Ieft .at the interfagee Fig. 9 0 axial state in the geometiyi). For some values af (in Fig.
The basal pJarlab to the ”ght.'s rotateo_l abc_>ut theaxis by 11 it is a= 7/3) there are more than one state which corre-
the anglew; ¢,1IC,. (i) Thec axis to the right is rotated about spond to minima of the Josephson energy=0 and

AA
ReG:(0)= 5 2 77

the contact axisy( axis in Fig. 9 by the anglex; byllb,. dj,/de>0).
Further calculations require a definite model of the vec- ~ The calculatec andz components of the current, which
tor order parameted. are parallel to the surfaciy(¢), are shown in Fig. 12 for the

same axial state in the geometiiy). Note that the current
tangential to the surface as a functiong@fs nonzero when
the Josephson curreiiFig. 11 is zero. This spontaneous
tangential current is due to the specific “proximity effect,”
similar to spontaneous current in contacts betwegmwave”

Let us consider the models of the order parameter isuperconductors. The total current is determined by the
UPt which are based on the odd-parify, representation of  Green’s function, which depends on the order parameters in

the hexagonal point grouPg,. The first of them corre-  poth superconductors. As a result, for nonzero misorientation
sponds to the axial statd2) and assumes the strong spin—

orbital coupling, with the vectad locked along the axis of

the lattice. The other candidate to describe the orbital states, .10
which imply that the effective spin—orbital coupling in UPt
is weak, is the unitary planar stat&3). The coordinate axes S a=n/6
x,y,z here and below are chosen along the crystallographic ~ 0.05 ST

axesa,b,¢ as at the left in Fig. 9. These models describe the
hexagonal analog of spin-triplétwave pairing.

In Fig. 10 we plot the Josephson current—phase relation
ja(¢)=]jy(y=0) calculated from Eq(18) for both the axial
[with the order parameter given by E@.2)] and the planar -0.05}
[Eq. (139)] states for a particular value efunder the rotation
of the basal planab to the right[the geometry(i)]. For T
simplicity we use a spherical model of the Fermi surface. For -0.10

the ax_ial state the current—phase_ relation is just a slanteglg 11. josephson current versus phaser the axial state(12) in the
sinusoid, and for the planar state it shows &S$tate.” The  geometry(ii) for different e

3.3.2. Current —phase relations and spontaneous surface
currents for different scenarios of “f-wave”
superconductivity

1y/lo
o
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FIG. 14. Josephson current versus phaser the hybrid “f-wave” state(9)
in the geometry(i) for different .

b
002 - — a=7t/3 . .
- a=1/4 equals zerp Just as in Fig. 10 for the f“wave” order pa-
0.01F — a=n/6 rameter(12), in Fig. 14 for the hybrid f-wave” model (9)

the steady state of the junction with zero Josephson current
corresponds to a nonzero spontaneous phase difference if the
misorientation anglex# 0.

Thus, in this Section the stationary Josephson effect in a
planar junction between triplet superconductors is consid-
ered. The analysis is based on models withwave” sym-
metry of the order parameter belonging to the two-
dimensional representations of the crystallographic
FIG. 12. z component &) andx component §) of the tangential current  symmetry groups. It is shown that the current—phase rela-
versus phase for the axial statg12) in the geometryii) for different a. tions are quite different for different models of the order
parameter. Because the order parameter phase depends on
the momentum direction on the Fermi surface, the misorien-
{Qtion of the superconductors leads to a spontaneous phase
difference that corresponds to zero Josephson current and to
, , i the minimum of the weak-link energy. This phase difference

The candidates for the superconducting state #80,  jopends on the misorientation angle and can possess any
are the ‘p-wave” model(8) and the ‘f-wave” hybrid model 5,0 "It has been found that in contrast to the-wave”

(10). Taking into ag:count the quasi-two-dimensional eIectroandeL in the ‘f-wave” models the spontaneous current may
energy spectrgm in SRUQ,, we calcglatg the currgniﬂ.S) be generated in a direction which is tangential to the orifice
numerically using the model of a C,Y"’)d”C%' Fermi Surface'plane. Generally speaking this current is not equal to zero in
The Josephson current f(_)r the hybrit-ivave” model of the the absence of the Josephson current. It is demonstrated that
order parametefEq. (10)) is compared to the-wave model o o4,dy of the current—phase relation of a small Josephson
(Eq. (8) in Fig. 13 (for a=m/4). Note that the critical cur- ,,ction for different crystallographic orientations of banks

rent for tTe f—Yﬁvaveh molfiel '; several times Zmlallé;‘:_)r tg,? enables one to judge the applicability of different models to
fsame V‘; ue of\o) ]f :;]m or the ‘p-\r/]vave ”I]o_ el. T Ii)l ™ the triplet superconductors UPand SRuO, .
erent character of the current-phase relation enables Us 10 is clear that such experiments require very clean su-

distinguish between the two states. rEjferconductors and perfect structures of the junction because

In Figs. 14 and 15 we present the Josephson current ang i hreaking effects of nonmagnetic impurities and de-
the tangential current for the hybridf‘wave” model for fects in triplet superconductors

different misorientation angles (for the “p-wave” model it

angles a current parallel to the surface can be generated.
the geometry(i) the tangential current for both the axial and
planar states af =0 is absent.

4. JOSEPHSON PHASE QUBITS BASED ON d-WAVE
SUPERCONDUCTORS

4.1. Quantum computing basics

As we have seen, unconventional superconductors sup-
port time-reversal symmetry breaking states on a macro-
scopic, or at least, mesoscopic scale. An interesting possibil-
ity arises then to apply them in quantum bitgibity, basic
units of quantum computersee, e.g., Refs. 92—84using
T-related states of the system as basic qubit states.

A quantum computer is essentially a sethoftwo-level
quantum systems which, without loss of generality, can be

FIG. 13. Josephson current versus phaseer hybrid “f-wave” (10) and ~ 'epresented by spin operatoés”, i=1..N. The Hilbert
“p-wave” (8) states in the geometry); a= /4. space of the system is spanned BY Qates|s;)®|s,)®...

-0.31 7 gl2n
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0.15]  --- a=n/12 lution. Initialization and readout explicitly require nonunitary
____gz;‘ﬁ """""""""""""""""" operations(projectiong. Therefore any practical implemen-
0.10¢ e tation of a quantum computer must satisfy contradictory re-
0.05+ P quirements: qubits must be isolated from the outside world to
'\—: 1] . A , * allow coherent quantum evolutidicharacterized by a deco-
Toosl T 02 9.4 06 08)i10 herence timery) for long enough time to allow an algorithm
e, T to run, but they must be sufficiently coupled to each other
—010p e and to the outside world to permit initialization, control, and
-0.15 \__/ '''' o/2n S~ readout® Fortunately, quantum error correction allows one

to translate a larger size of the system into a longer effective
FIG. 15. Tangential current density versus phader the hybrid “f-wave” ~ decoherence time by coding each logical qubit in several
state(9) in the geometry(i) for different . logical oneg(currently it is accepted that a system witfy 7,

in excess of 1Hcan run indefinitely, wherey is the time of

a single gate applicatiote.g., the timeT in the example of

®|sy), si=0,1. The information to be processed is contained®P(7))-

in complex coefficientga} of the expansion of a given state Note that the operation of a quantum computer based on
in this basis: consecutive application of quantum gates as described above
is not the only possible, or necessarily the most efficient,
|7) = Z tss < |51)®]S)®...0|sy). (21 Wway of its use. In parti_cular, it reqL_Jires a huge overhead for
s=01 27N quantum error correction. Alternative approaches have been

guggestede.g., adiabatic quantum computifig’) which
may be more appropriate for the smaller-scale quantum reg-
isters likely to be built in the immediate future.

The unitary operations on states of the qubits are calle
gates, like in the classical case. Single qubit gate$Safe)
rotations. An example of a two-qubit gate iscanditional
phase shift CP(vy), which, being applied to a two-qubit
wave function, shifts its phase byif and only if they are in  4.2. Superconducting qubits
the same (“‘up” or “down” ) state. In the basig{|0)

©10),0)®[1),|1)|0),| 1)@ |1)} it is The size of the system is crucial not only from the point

of view of quantum error correction. It is mathematically

e€” 0 0 0 proven that a quantum computer is exponentially faster than

10 0 a classical one in factorizing large integers; the number of

CP(y)= (220 known quantum algorithms is still small, but an active search
0 01 0 for more potential applications is under wésee the above
0 0 0 €7 reviews and, e.g., Refs. 96 98\evertheless the scale on

which its qualitative advantages over classical computers be-
gin to be realized is about a thousand qubits. This indicates
that solid-state devices should be looked at for the solution.
The use of some microsopic degrees of freedom as qubits,
e.g., nuclear spins of'P in a Si matrix, as suggested by
Kane¥is attractive due to both the largg and well-defined
basis states. The difficulties in fabricatiqdue to small
scalg and control and readoutiue to weak coupling to the
external controlshave not allowed realization of the scheme
so far.

Among mesoscopic qubit candidates, superconducting,
more specifically Josephson systems have the advantage of a

is, one that can realize any possible quantum algorithm, thgoherent ground state and the absence or suppression of low-

way a Turing machine can realize any possible classical aENeray exc[tatlons, which increases the decoherence time.
. . : : ogether with well-understood physics and developed ex-
gorithm) can be modeled by a chain of qubits with only ™= o . )
. : . perimental and fabrication techniques, this makes them a
nearest-neighbor interactions:

natural choice.
N i) 0 @ 0 The degree of freedom which is coupled to the control
H:izl {Ui(f(z +Ajo, }+i:j2+l Jjoy’ a3 (23) and readout circuits determines the physics of a qubit. In the
superconducting case, one can then distingeisérge and
Further simplifications are possibigput this would be irrel- phasequbits, depending on whether the chafgember of

Obviously, if CP(y) is applied to a factorized state of two
qubits, [ W) = (a1]0) + B11)) ® (2| 0) + /1)), in the gen-
eral case we will obtain aantangledstate. Up to an unim-
portant global phase facto€ P(y) results from the free
evolution of two qubits, generated by the Hamiltonian
H=36"1. 52 for a timeT=%1y/(2J).

Another nontrivial example is theontrolled-not gate
CNy,, which, acting orls;)®|s,), leavess, intact and flips
s, (1—0,0~1) if and only if s;=1. The combination
SW,;,=CN;5,CN,,CN;, swaps(exchangesthe states of two
qubits.

It can be shown that a universal quantum comp(iteat

evant for our current discussion. particles or phasgJosephson currenf the superconductor
The operations of a quantum computer require that thes well defined.
parameters of the above Hamiltonian be controllgbiere The simplest example of a Josephson qubit is an rf

specifically, one must be able toitialize, manipulate and  SQUID 1°° with the Hamiltonian

read outqubity. For the unitary manipulations discussed s 5

above, at least some of the parameterd, J of the Hamil- " . &( o) &cos{ ) (24
tonian must be controllable from the outside during the evo- a"2C T ggaL P #x 2 @)
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wherelL is the self-inductance of the loop, ahdandC are  where this time the role of extern&symmetry breaking

the critical current and capacitance of the Josephson jungarameter is played by the char@g induced on the island
tion. The charge on the junctio®= —2ied,, is conjugate by a gate electrode. The working states are eigenstates of
to the phase difference across it. The external flux through charge on the island; at appropriaf the states withQ

the loop is®, = ¢, P, /(27). If it equalsexactly®y/2 (¢, ~ =2ne and Q=2(n+1)e are degenerate due to a parity
=) the T-symmetry is broken. The potential part {84)  effect'®wheren is the number of Cooper pairs in the SSET.
acquires a symmetric two-well structure, with tunneling be-Quantum coherence in an SSET has been observed not just
tween the wells possible due to the derivative terniJa), through the observation of level anticrossing near the degen-
which reflects quantum phase uncertainty in a Josephsd#facy point, as in Refs. 100 and 102, but also in the time
junction with finite capacitance. The tunneling rate is of thedomain:®” The system was prepared in a superposition of
order of w, exp(—U(0)/wy), where the frequency of oscilla- Stategn),[n+1), kept at a degeneracy point for a controlled
tions in one of the potential welle,~\E,;Eq, and the time 7, and measured. The probabili§(r) of finding the
height of the potential barrier between théhi0)~E;. system in state exhibited quantum beats.

The states in the right and left wells differ by the direc- A “hybrid” system, with E;/Eq=1, so-called “quantro-
tion of the macroscopic persistent current and can be used &m,” was fabricated and measured in the time domain at
qubit stated0) and|1). The dynamics of the system is deter- CEA-Saclay,”® with an extraordinary ratioy/7~8000(the
mined by the interplay of the charging ene@ézzg/c tunneling timer; can be considered as the lower limit of the
and Josephson energg;=hl./(2€). HereE;/Eq>1, and ~ gate application timeg). Quantronium can be described as a
charging effects are responsible for the tunneling splitting ofharge qubit, which is read out through the phase variable,
the levels. Coherent tunneling between them has actuallgnd is currently the best superconducting single qubit.
been observéd’ in a Nb/AIO,/Nb SQUID at 40 mK; the An interesting inversion of the quantronium desfyris
magnetic flux difference was approximate(@o/4, which also a hybrid qubit, this time a flux qubit read out through the
corresponded to currents of abouj?. (The actual design charge variable. It promises several advantages over other
was a little more complicated than the simple rf SQUID. superconducting qubits, but has not yet been fabricated and
Fine tuning of the external flux is essential to allewsonant  tested.
tunnelingthrough the potential barrier. Finally, a single current-biased Josephson junction can

In the case of small loop inductance the phase will bealso be used as a qulijthase qubjt*****'The role of basis
fixed by flux quantization. For phase to tunnel, one has tétates is played by the lowest and first excited states in the
introduce extra Josephson junctions in the loop. In the threewashboard potential. Rabi oscillations between them have
junction desigrt®® two junctions are identical, each with a been successfully observed.

Josephson energy;, and the third one has a little smaller ~ The charge, hybrid, and phase qubits are mentioned here
energyaE;, a<1. In the presence of external flux,, the only for the sake of completeness, since unconventional su-
energy of the system as a function of phases on the identicferconductors are more naturally employed in flux qubits.

junctions ¢, , ¢, is Various Josephson qubits are reviewed in Ref. 112.
U(e1,02) 4.3. Application of d-wave superconductors to qubits
g COSp;— COSpr— a COS @yt @1~ ¢3).

One of the main problems with the above flux qubit
designs is the necessity of artificially breaking the

7-symmetry of the system by putting a fldx,/2 through it.

As before, ife, =, the system has degenerate minima. DueEstimates show that the required accuracy is 010 .

to the two-dimensional poFentlaI landscape, tunneling be=I'he micron-size qubits must be positioned close enough to
tween them does not require a large flux transfer of order

®,/2, as in the previous case. Tunneling is again pOSSibIeach other to make possible their coupling; the dispersion of

. . . 'heir parameters means that applied fields must be locally
due to charging effects, which give the system an EzﬁeCt'VE%:alibrated; this is a formidable task given such sources of

mass” proportional to the Josephson junction capacﬂanceﬁeld fluctuations as fields generated by persistent currents in

gk.)s;\(/)ggggn'lth;unpr:)et!:%alble;\évgs:aptzea T\;lem?ecg?/serek()jee%umts themselves, yvhigh depend on the state of the.qubit;

' i . . ) field creep in the shielding; captured fluxes; magnetic impu-
from measurements on a C'&SS'C""! 3-ju.nct|.on Igoyth C rities. Moreover, the circuitry which produces and tunes the
too large to allow tunnelin Rabi oscillations were ob- bias fields is an additional source of decoherence in the sys-

serv?d b;{}?“ (tll]ndlrgctly, dudsmg t_the fq;argum .”n?'setem.(Similar problems arise in charge qubits, where the gate
spectrosco e observed decay time of Rabi oscillation voltages must be accurately turied.

observed in these experimentga,=2.51s), and directly, These problems are avoided if the qubitirgrinsically

. . - 105 —
n t'r_lr_f dol‘;nalﬁ I.(T.Féb'/Elsi lns). b d. Then th bistable The most straightforward way to achieve this is to
€ above IMitk,/tq can be reversed. Then e ¢ hstitute the external flux by a static phase shifter, a Joseph-

design must include a Mesoscopic |s_Iand separated fr_om trEeon junction with unconventional superconductors with non-
rest of the system by two tunnel junctiof@superconducting zero equilibrium phase shifs,. From (25), one sees that

single electron transistor, SSETThe Hamiltonian becomes e.g., a three-junction qubit would require an extunction

) , (o= ).1*3n the same way ar-junction can be added to a
" _(Q=Q7 ICCI)OCOS 26) multiterminal phase qubit* The only difference compared
4 @ to the case of external magnetic field bias is in the decoher-

(29

2C 2m
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ence time: instead of noise from field generating circuits weand would allow the realization of a universal set of quantum
will have to take into account decoherence from nodal quagates-'®
siparticles(see below. A more advanced design was fabricated and tested in the
A more interesting possibility is opened up if the bistableclassical regime in Ref. 117. Here two bistablevave grain-
d-wave system is employed dynamically, that is, if its phaséoundary junctions with a small superconducting island be-
is allowed to tunnel between the degenerate values. In a sé~een them are set in a SQUID loofThe junctions them-
called “quiet” qubit***an SD$ junction (effectively two SD selves are also small, so that the total capacitance of the
junctions in the(110) direction is put in a low-inductance System allows phase tunnelingn the case when the two
SQUID loop in parallel with a conventional Josephson juncJunctions have the same symmetry but different critical cur-
tion and large capacitor. One of the SD junctions plays thd€nts, In the absence of external magnetic field there is no
role of am/2-phase shifter. The other junction’s capacitanceCUrrent passing through the big loop, and therefore the qubit
C is small enough to make possible tunneling betwegn 'S decoupled from the electromagnetic environméfsi-
and — /2 states due to the charging tef3/2C. Two con- lent”). The_ second—orcjer degeneracy of the potential profile
secutive SD junctions are effectively a single junction withat the minimum drastically reduces the decoherence due to

equilibrium phases 0 and (which are chosen as working coupling to the external circuits.
states of the qubit The control mechanisms suggested in

Ref. 113 are based on switchesaands. Switch c connects

the small 3D junction to a large capacitor, thus suppressing4.4. Decoherence in d-wave qubits

the tunne_ling. Connecting for the durationAt creatgs an Decoherence is the major concern for any qubit imple-
energy differenceAE between|0) and [1), because in the mentation, especially for solid-state qubits, due to the abun-
latter case we have a frustrated SQUID with 0- andyance of low-energy degrees of freedom. In superconductors,
m-junctions, which generates a spontaneous @2. This  this problem is mitigated by the exclusion of quasiparticle
is a generalization of applying the operationto the qubit.  excitations due to the superconducting gap. This also ex-
Finally, if switch c is open, the phase of the small junction plains why the very fact of existence of gapless excitations in
can tunnel between 0 and Entanglement between qubits is high-T. superconductors long served as a deterrent against
realized by connecting them through another Josephson jungerious search for macroscopic quantum coherence in these
tion in a bigger SQUID loop. The suggested implementatiorsystems. An additional source of trouble may be zero-energy
for switches is based on a low-inductance dc-SQUID desigstates(ZES) in DD junctions.
with a conventional and ar-junction in parallel, withl Nevertheless, recent theoretical analysis of DD
=1, . In the absence of external magnetic field the Josephunctions;*®**® all using quasiclassical Eilenberger equa-
son current through it is zero, while at external fipg/2 it tions, shows that the detrimental role of nodal quasiparticles
equals 2. Instead of external flux, another SDfinction, — and ZES could be exaggerated.
which can be switched by a voltage pulse between the 0 Before turning to these results, let us first do a simple
(closed and 7 (open states, is put in series with the estimate of dissipation due to nodal quasiparticles in bulk
m-junction. d-wave superconductot$’

The above design is very interesting. Due to the absence  Consider, for example, a three-juncti¢tDelft” ) qubit
of currents through the loop during tunneling betwden ~ With d-wave phase shifters. The) and|1) states support,
and |1) the authors called it “quiet,” though, as we have respectively, clockwise and counterclockwise persistent cur-

seen, small currents and fluxes are still generated near the §8Nts around the loop, with superfluid velocity. Tunneling

boundaries. between these states leads to nonzero ave«hz@eln the
Another design based on the same bistaBittgnly re-  Pulk Of the superconducting loop. _

quires one SD or DD boundary. Here a small island contacts The Flme-dependent superfluid velocity produces a local

a massive superconductor, and the angle between the orie?ﬁl—eCtrIC field

tation of d-wave order parameter and the direction of the 1. m,

boundary can be arbitrarfas long as it is compatible with E=—cA=g Vs (27)

bistability). The advantage of such a design is that the poten-

tial barrier can to a certain extent be controlled and sup@nd quasiparticle currepg,= oE. The resulting average en-

pressed: moreover, in general there are two “working” €9y dissipation rate per unit volume is

minima — ¢q,¢q; the phase of the bulk superconductor = gE2~mr (Ao )i)2> 28)

across the boundary is zero will be separated from each other AP\ R ESTES

by a smaller barrier than from the equivalent states differingiere 7y, is the quasiparticle lifetime, and

by 27n. This allows us to disregard the “leakage” of the "

qubit state from the working space spanned (i),/1)), W(vs)zf deN(e)[Ne(e—prvs) +Ne(e+prug)] (29)

which cannot be done in a “quiet” design with exact 0

m-periodicity of the potential profile. A convenient way of is the effective quasiparticle density. The angle-averaged

fabricating such qubits is to use grain-boundary DD junc-density of states inside ttbwave gap i¥*!
tions, where a two-well potential profile has indeed been

observed® Operations of such qubits are based on the tun- N(e)~N(0) 2e (30)
able coupling of the islands to a large superconducting “bus” HA
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whereu=A,*d|A(6)|/d6, andA, is the maximal value of the critical Josephson currety and spacing between An-
the superconducting order parameter. Substituti®® in dreev levels in the normal part of the systesss v /2L, via
(29), we obtain

lo=N, €. (37)
2 . .
v ~N(0) —— (= T)[Li,(—exp(— pros/T)) We require thaty/ wg<1, wherewy= /32N, Eqe/ 7 is
#Ao the frequency of small phase oscillations about a local mini-
+ Lio(—exp(pevs/T)], (32) mum. This means that
where Li(2) is the dilogarithm. Expanding for smabli-v E
) N, <—. (38
<T, we obtain Eo
o N(0) ([ w°T? ) The above condition allows a straightforward physical inter-
N(vs)~ _MAo 3 +(Prvs)”|. (32 pretation. In the absence of thermal excitations, the only dis-

) _ sipation mechanism in the normal part of the system is
The two terms in parentheses correspond to thermal activanrough transitions between Andreev levels, induced by fluc-
tion of quasiparticles and their generation by a currentyation voltage. These transitions become possiblée if

carrying state. Note that a.fin.ite quasiparticle density by it'<2eV~ \/?w o, Which brings us back t638). Another
selfldois not Iea_d thJ_ any d|SS|pat|on.| h d _ interpretation of this criterion arises if we rewrite it ag *
ot treem‘;ﬁ’rﬁ’sos'te imit T<prus) only the second contri- 7/} )=1 (Ref. 115. On the right-hand side we see the
' time for a quasiparticle to traverse the normal part of the
_ N(0) ) junction. If it exceeds the period of phase oscillatigos the
N(vg)~ m(vas) : (33 left-hand side Andreev levels simply do not have time to
form. Since they provide the only mechanism for coherent
The energy dissipation rate gives the upper limitfor  transport through the system, the latter is impossible, unless
the decoherence tinfsince dissipation is a sufficient but not oyr “no dissipation” criterion holds.
necessary condition for decoherencBenoting byl the For a normal-layer thicknesd ~1000 A and v
amplitude of the persistent current in the loop, Ibyhe in- 107 cm/s this criterion limitswy<10"12s™%, which is a
ductance of the loop, and Wy the effective volume of the  comfortable two orders of magnitude above the tunneling
d-wave superconductor in which persistent current flows, W&plitting usually obtained in such qubits-(L GHz) and can

can write be accommodated in the above designs. Nevertheless, while

7272 , s presenting a useful qualitative p?cture, the_ DND modgl @s not

220 2mrg N(0)Q) 3 (V5 +pr(vivs adequate for Fhe2t3ask_ of extracting quantltatl_ve predpuons.

l=—s~ > ] A calculatiort?® using the model of a DD junction inter-
LIg mAQLIE acting with a bosonic thermal bath gave an optimistic esti-
(34 mate for the quality of the tricrystal qubi> 1CP.

Note that the thermal contribution tq, * is independent of The role of size quantization of quasiparticles in small

the absolute value of the supercurrent in the loowd), DD and SND structures was suggested in Refs. 113 and 115.

while the other term scales d¢. Both contributions are The importance of this effect is that it would exponentially
proportional toQ) and (via v4) to w,, the characteristic fre- suppress the quasiparticle density and therefore the dissipa-
quency of current oscillationé.e., the tunneling rate be- tion below the temperature of the quantization gap, estimated
tween clockwise and counterclockwise current sjates as 1-10 K. Recently this problem was investigated for a
It follows from the above analysis that the intrinsic de- finite-width DD junction. Contrary to expectations, the size
coherence in al-wave superconductor due to nodal quasi-quantization as such turned out to be effectively absent on a
particles can be minimized by decreasing the amplitude oscale exceeding, (that is, practically irrelevant From the
the supercurrent through it, and the volume of the materiaPractical point of view this is a moot point, since the deco-
wheretime-dependergupercurrents flow. herence time due to the quasiparticles in the junction, esti-
Now let us estimate the dissipation in a DD junction. mated in Ref. 119, already corresponds to a quality factor
First, following Refs. 115 and 122, consider a DND model 7,/ 74~ 10°, which exceeds by two orders of magnitude the
with ideally transmissive ND boundaries. Due to tunneling,theoretical threshold allowing a quantum computer to run
the phase will fluctuate, creating a finite voltage on the juncindefinitely.

tion, V=(1/2e) ¥, and a normal currert,=GV. The corre- The expression for the decoherence time obtained in
sponding dissipative function and decay decrement are ~ Ref. 119,
1. 1 Gy%[1\2 de
= — f=— 2:— ] T o 17 Asl 0 39
Fep =56Vl (35 = Syl (Atle) (39
2 9F G 4N, Eq where ¢ is the difference between equilibrium phases in

(36)  degenerate minima of the junctidne., S¢=2y in other
notatior), contains the expression for the quasiparticle cur-
Here Eq=€?/2C, Mo=C/16e’=1/3%E,, andN, are the rent in the junction at finite voltage\,/e (whereA, is the
Coulomb energy, effective “mass,” and number of quantumtunneling rate between the minimarhis agrees with our
channels in the junction, respectively. The last is related tdack-of-the-envelope analysis: phase tunneling leads to finite

" Mox dx  4€Mq  w
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voltage in the system through the second Josephson relationeous currents in unconventional Josephson weak links. The
and with finite voltage comes quasiparticle current and decomixing of the unconventional order parameters from the
herence. The quality factor is defined@s- 7,A/2%, thatis,  junction banks leads to the formation offébreaking state in
we compare the decoherence time with the tunneling timethe weak link. A consequence of the time-reversal symmetry
Strictly speaking, it is the quality factor with respect to the breaking is the appearance of a phase difference across the
fastest quantum operation realized by the natural tunnelingosephson junction in the absence of current through the con-
between the minima at the degeneracy point. For the Raliact. This phenomenon, not present in conventional junctions
transitions between the states of the qubit this number ibetween standard superconductors, radically changes the
much lower(10-20 versus 8000; Ref. 108n account of the physics of weakly coupled superconductors. The current—
relatively low Rabi frequency. phase relations for unconventional Josephson weak links,
A much bigger threat is posed by the contribution fromwhich we have discussed f&%—S@ and S{tPle)_g(tipley
zero-energy bound states, which can be at least two orders pfnctions, are quite different from the conventional one. De-
magnitude larger. We can see this qualitatively fr@8): a  pending on the angle of misorientation of tevave order
large density of quasiparticle states close to zero engrgy  parameters in the banks, the current—phase relagigp) is
at the Fermi level means that even small voltages createchanged from a si)-like curve to a—sin(2p) dependence
large quasiparticle currents, which sit in the denominator of Fig. 5. Clearly, it determines new features in the behavior
the expression for,. Fortunately, this contribution is sup- of such a Josephson junction in applied voltage or magnetic
pressed in the case of ZES splitting, and such splitting idield. We have discussed the simple case of an ideal interface
always present due, e.g., to the finite equilibrium phase difbetween clean superconductors in which the spontaneous
ference across the junction. current generation effect is the most pronounced. Remaining
A similar picture follows from the analysis presented in beyond the scope of this review are a number of factors
Ref. 124. A specific question addressed there is especiallwhich complicate the simple models. They are the influence
important: it is known that th&® C constant measured in DD on the spontaneous current states of the interface roughness,
junctions is consistently 1 ps over a wide range of junctionpotential barriergdielectric layey, and scattering on impuri-
sizest?® and it is tempting to accept this value as the dissi-ties and defects in the banks. For the case of a diffusive
pation rate in the system. It would be a death knell for anyjunction see the article of Tanala al. in this issue. For the
quantum computing application of highs- structures, and detailed theory of spontaneous currents in DD junctions see
nearly that for any hope to see some quantum effects ther®ef. 16. The spatial distribution of spontaneous current, in
Nevertheless, it is not quite that bad. Indeed, we saw that thearticular, the effect of superscreening, is considered in Refs.
ZES play a major role in dissipation in a DD junction but are12 and 16. An important and interesting question concerns
sensitive to phase differences across it. Measurements of thiiee possible induction of a subdominant order parameter near
R C constant are made in the resistive regime, when a finit¢he junction interface and its influence on the value of spon-
voltage exists across the junction, so that the phase diffetaneous current. It was shown in Ref. 17 that the spontaneous
ence grows monotonically in time, forcing the ZES to ap-currents decrease when there is interaction in the subdomi-
proach the Fermi surface repeatedly. Therefege reflects  nant channel. This statement, which may seem paradoxical,
some averaged dissipation rate. On the other hand, in a fremn be explained in the language of current-carrying Andreev
junction with not too high a tunneling rate the phase differ-states(see Fig. 5 in Ref. 17 As a whole, the theory of
ence obviously tends to oscillate aroupglor — x, its equi-  unconventional Josephson weak links with breakingZof
librium values, and does not spend much time near zero ymmetry, in particular, the self-consistent consideration and
m; therefore the ZES are usually shifted from the Ferminonstationary behavior, needs further development. The
level, and their contribution to dissipation is suppressed. spontaneous bistable states in Joseph$avave junctions
This qualitative picture is confirmed by a detailed calcu-attract considerable interest also from the standpoint of
lation. The decoherence time is related to the phaseimplementation of qubits, the basic units of quantum com-

dependent conductance via puters. In Sec. 4 we analyzed the applicatiordefiave su-
1 SE perconductors to qubits. Unlike the Josephson charge and
To=———7=tanh;—. (40) flux qubits based on conventional superconductors, the
aF(xo)“oE 2T d-wave qubits have not yet been realized experimentally.

Here « is the dissipation coefficientSE is the interlevel ~Nevertheless, the important advantagesdefvave qubits,
spacing in the well, and e.g., from the point of view of scalability, not to mention the

5 2 fundamental significance of tiEbreaking phenomenon, de-
G(x)=4e%ald,F(X)]". 4D mand future experimental investigations of unconventional
For a realistic choice of parameters E40) gives a weak links and devices based on them.
conservative estimate,=1-100 ns, and quality facta®
~1-100. This is, of course, too little for quantum comput-
ing, but quite enough for observation of quantum tunneling

and coherence in such junctions.
APPENDIX |. TEMPERATURE DEPENDENCE OF THE

5. CONCLUSION ORDER PARAMETER IN A d-WAVE SUPERCONDUCTOR
We have reviewed one of the most intriguing aspects of  In a bulk homogeneous-wave superconductor the BCS
unconventional superconductivity, the generation of spontaequation for the order paramet&(vg) takes the form
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FIG. 16. Temperature dependence of the order paramg(dr) in ad-wave
superconductor.
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(A1)

Or, writing V(Vg,Vi)=V4cos ¥cosd', Ng=N(0)Vy4,
A=Ay(T)cos ¥, we have forAy(T)

Ag(T)=ha2 T§ 2rdf  Ay(T)cos 26
ol M=ha2mT 2 | " 57 JaZ+ Ay(T)Zcod 26

(A2)

(w=(2n+1)7T, wherew, is the cutoff frequency
At zero temperaturd =0, in the weak coupling limit
Ag<<1, for Ax(T=0)=A(0) it follows from (A2) that
Ag(0)=2w.B8exp(—2/\y), InB=In2-1/2~1.21.

The critical temperaturé . is
2
TCZ;wC‘y exp(—2/M\y), Iny=C=0.577, y~1.78.

Thus,Ao(0)/T.= 7Bl y~2.14.
In terms of T., EQ.(A2) can be presented in the form

LI Ti Zfzwda cog 20 1)
N—=2m 5= -—].
Te >0 0 27 Jw?+Ay(T)?cos20 @

(A3)

In the limiting cases, the solution of equatioA3) has the
form

T 2
AO(O){].—SQ(?))(—) } T<T,.

Ay(0)
Ao(T)= 3052 | 112 T2
el _ T~T,.
(21s<3> T°<1 Tc) ’ ©

For arbitrary temperaturessOT< T, the numerical solu-
tion of equation(A3) is shown in Fig. 16.

Kolesnichenko et al.

APPENDIX II. QUASICLASSICAL THEORY OF COHERENT
CURRENT STATES IN MESOSCOPIC BALLISTIC
JUNCTIONS

II.1. Basic equations

To describe the coherent current states in a supercon-
ducting ballistic microstructure we use the Eilenberger
equation®’ for the &integrated Green'’s functions

J . ~ A
Vg- EGM(VF )+ [T+ A(VE,r),G,(VE,I)]=0,
(A4)
where

. J9o fo
Ga)(VFir): f+ -9

is the matrix Green’s function, which depends on the Mat-
subara frequencw, the electron velocity on the Fermi sur-
facevg, and the coordinate; here

R 0 A
A=lar o
is the superconducting order parameter. In the general case it

depends on the direction of the vectgr and is determined
by the self-consistent equation

A(Vg,r)=27N(0)T ZO (Ve VP T u(VE D)y (AB)

Solution of the matrix equatiofA4) together with the self-
consistent order parameték5) determines the current den-
sity j(r) in the system:

i(r)=—4meN(O)T 2, (Veg,(Ve )y (A6)

In the following we will consider the two-dimensional
case; N(0)=m/27 is the 2D density of states and..)
=[27d@/2m... is the averaging over directions of the 2D
VeCctorveg .

Supposing the symmetnA(—vg)=A(vg), from the
equation of motior{fA4) and equatiofA5) we have the fol-
lowing symmetry relations:

f*(—w)=f"(w); g*(—w)=—9g(w);
*(0,—Ve)=1"(0,Vp); 9" (0, ~VE)=0(w,Vf);
f(—o,~Ve)=f(0,VF); 9(—o,~Ve)=—g(w,VF);
AT=A*,

On the phenomenological level the different types of
symmetry of the superconducting pairing are determined by
the symmetry of the pairing interactiod(vg,vg) in Eqg.
(A5). For conventional g-wave pairing, the function
V(vg,Vvg) is constantV,, and the corresponding BCS inter-
action constant ia =N(0)Vs. In the case ofl-wave pairing
V(Vg,Vp)=Vgcos Hcos V', \yq=N(0)V4. The anglesd
and ¢’ determine the directions of vectovs andvg in the
a—b plane.
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I1.2. Analytical solutions of Eilenberger equations in the . 0 idoo,

model with non-self-consistent order parameter distribution A=l.. . (A17)
i0,d* o 0

The solutions of equatiofA5) for the Green’s function

G,(v,r) can be easily obtained for model distributi¢i®)
of A(r). Forx=<0:

Below we consider so-called unitary states, for whith
xd*=0.

The gap vectod has to be determined from the self-

Aje o2 griel2 consistency equation:
— _ _ XQ]_/\UZ| .
f(Xla) Ql + Al (an w)ez Cla i o X
(A7) d(k,n)=7TN(0) X (V(kK)Go(K' T em),  (A18)
e+i<p/2 e+i<p/2 "
f(x,0)= A VAL w)ehllvdc,; whereV(k,k’) is the pairing interaction potential..) stands
! ! (A8) for averaging over directions of the electron momentum on
the Fermi surfacelN(0) is the electron density of states.

_ 9 o, Solutions of Eqs(Al14), (A18) must satisfy the condi-
9(x.0)= Q, +eriiliaC,, (A9) tions for the Greens's functions and the vealan the banks
For x>0 of superconductors far from the orifice:

: . ie r A
Aze+|qo/2 gtief2 o lemTs 12
— _ — e 2ol §(F )= ———=5, (AL19)
f(Xla) Qz + AZ ( 7702 (l))e 2 CZ: A\ 82m+ |d112|2
(A10) |
e igl2  aiel2 d(Iw)=d112(I2)exr{ 17"0 , (A20)
Fr(x.0)= —q—+ 5 (10— w)e Z%2/l4C,;
2 2 (A1) where ¢ is the external phase difference. EquatigAd4)
and (A18) have to be supplemented by the boundary conti-

o 220, /lo, nuity conditions at the contact plane and conditions of reflec-
9(z,0)= Q_2+e “Ca. (A12) " tion at the interface between superconductors. Below we as-

] ) ) sume that this interface is smooth and the electron scattering
Matching the solutions at=0, we obtain is negligible. In a ballistic case the system of 16 equations

Ay w(A;—A,cosp)+inA,Q, sing for the functionsg; andg; can be decomposed into indepen-
159 2 ) dent blocks of equations. The set of equations which enables
Q 0105+ 0w +AA, cos
1 (allpto 142c05¢) us to find the Green'’s functiog, is
Az O)(AZ_AlCOS(p)+|77Alﬂzs|n(P ) ~ % .
Z_Q_z (Qlﬂz+w2+A1A2COS§D) (A13) IkaVg1+(g3d_92d )_0! (AZ]—)
Here Q; ,= Jw?+[A1 %, 7=sign@,). ivgkVg-+2i(dXgs+d* Xgy)=0; (A22)
ivpkVgs—2iengs—2g,d* —id* X g_=0; (A23)
I.3. Quasiclassical Eilenberger equations for triplet ivFRVg2+ 2ie0,+2g,d—idxXg_=0, (A24)

superconductors )
whereg_=g;—g,. For the non-self-consistent modei { ,

does not depend on the coordinates up to the intexf&xgs.
(A21)—(A24) can be solved by integrating over ballistic tra-

The “transport-like” equations for theé-integrated
Green’s functiongj(k,r,e,;) can be obtained for triplet su-

perconductors: jectories of electrons in the right and left half-spaces. The
L < e general solution satisfying the boundary conditioA49) at

[iemms—A,g]+ivgkVg=0. (A14) infinity is

The functiong satisfies the normalization condition ie
(n__~“m_ . _ .

§6=—1. (A15) 03 Q, +iC, exp(—2sQ,t); (A25)
Hereeg,=7T(2m+1) are discrete Matsubara energies, gW=C, exp —2sQ,t); (A26)
is the Fermi velocity, and is a unit vector along the electron
velocity, andr;= r;®1, and#; (i=1,2,3) are Pauli matrices g _ ~2Cn =0 XCo o) o G o
in a particle—hole space. —2s7Q,+2ey Q,

f Tgwse Matsubara propagatagy can be written in the " 2C,d% +dE X C, o
orm. 03 =—F—F~—F5—exp—2sQ,t)— =, (A28)
—2s9Q,—2¢e Qn

911010 (9ot Q0)io : : , , .
“lis (Qat-Ga5)  Qu— GoGu5) " whgret is the tlm.e of flight along the trajectory, s@)(
2093198 4 Teuath2 =sign(z)=s; 7=sign@,); Q,=e2+|dy|?. By matching
as can be done for an arbitrary Nambu matrix. The matrixhe solutions(A25)—(A28) at the orifice planetE0), we
structure of the off-diagonal self-enerdyin Nambu space is find the constant€,, andC,. The indexn numbers the left

(A16)
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(n=1) and right 6=2) half-spaces. The functiog,(0)
=g{"(—0)=g{?(+0), which determines the current den-
sity in the contact, is

0 iem(Q+Q,)coss+ (&2 +Q,0,)sins
9:(0)= AA,+(e2+Q10,)c08s —iemn(Q1+Q5y)sing
(A29)
In formula (A29) we have taken into account that for
unitary states the vector , can be written as

dn=A, expiyy, (A30)

whereA, , are real vectors.
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