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The stationary Josephson effect is studied theoretically in the situation when
there is externally injected transport supercurrent which flows in the banks
parallel to the contact interface. Coexistence of this supercurrent with the
order parameter phase difference between the banks of the contact results in
the appearance of quasiparticles in the weak link, which create the current,
localized in the vicinity of the contact and counter-flowing to the transport
supercurrent. We review the results of our previous study of weak links be-
tween current-carrying conventional and unconventional (d-wave) supercon-
ductors. And further we study the weak link in the form of double point
contact between current-carrying superconductors. Current distribution pat-
terns containing vortex-like states are obtained.
PACS numbers: 74.50.+r, 74.76.Bz, 74.80.Fp.

1. INTRODUCTION: LOCAL AND NONLOCAL CURRENT
STATES

The Josephson current in mesoscopic superconducting weak links is es-
sentially nonlocal. It nonlocally depends on the spatial distribution of the
phase χ(r) of the superconducting order parameter and is determined by
the total phase difference φ across the weak link. This case is opposite to
the homogeneous current state in which the supercurrent density j(r) locally
depends on the superfluid velocity vs = (~/2m)Oχ(r). A similar situation
takes place in a normal metal ballistic point contact (a microconstriction
of size much smaller than the electron mean free path). In the latter case
the current density in the microconstriction is related to the total voltage
difference V on the contact, but not to the local value of the electric field
E(r); the total current through the contact I equals V/RSh (RSh is the
Sharvin resistance). The effects of nonlocality in Josephson microstructures
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were studied experimentally1 and theoretically.2–5 In particular, the effects
of phase dragging and magnetic flux transfer in Josephson multiterminals
were predicted4 and studied.5 The former effect is similar to the voltage
dragging in normal metal mesoscopic multiterminals.6

The question about the interplay between nonlocal and local coherent
superconducting states was raised recently.7 It was considered, probably, as
unique possibility for mixing of two current states of different nature, when
the mesoscopic superconducting weak link is simultaneously subjected to
the order parameter phase difference φ on the contact and to the tangen-
tial component of the superfluid velocity vs in the banks. We have studied
the Josephson junction between current-carrying superconductors (both con-
ventional and unconventional) in the papers;7–9 the results are reviewed in
Sec. 2.

In the present paper we proceed with the nonlocal mixing of supercur-
rents in a system more complicated than the single-point contact, namely,
in the double-point contact geometry with transport supercurrents in the
banks (see Fig. 1c and comments in the next section). The single-point
contact problem is a particular case of a double-point contact problem in
the limit when the distance between the two orifices 2L tends to 0. When
L is small, this corresponds to a point contact with a defect. When L is
comparable with the size of an orifice a, then our consideration can give an
idea of what happens in the case of the partition between banks with many
orifices (which can be, for example, the punctures in the insulating layer
between two superconductors). Also the double contact configuration can
be considered as the implementation of mesoscopic dc SQUID (section 4.3).
Josephson junctions between d -wave superconductors attract interest from
the standpoint of realization of qubits, basic units of quantum computers
(see e.g.10). The situation considered here,with preset transport currents in
the banks of the single- and double-point contacts, offers the possibility to
control the spontaneous bistable states in a system of d -wave qubits.8

2. “PARAMAGNETIC” RESPONSE OF A JOSEPHSON
JUNCTION TO THE TRANSPORT SUPERCURRENT

The system, which we study, is a weak link between two superconductors
with different phases of the order parameter, φ1 and φ2, and the transport
supercurrent flowing parallel to the contact plane. Let us consider a weak
link in the form of a small orifice in the partition between two supercon-
ductors, which is firstly subjected to the order parameter phase difference
φ = φ2 − φ1 (see Fig. 1a). The existence of the phase difference results
in the flowing of Josephson current, which was shown to be characterized
by non-sinusoidal current-phase dependence and by the suppression of the
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absolute value of the order parameter ∆ = ∆(x, y) in the vicinity of the
orifice.11 (The order parameter has a minimum at the orifice ∆ = ∆φ and
a maximum far from it ∆ = ∆0; ∆(x, y) ∈ [∆φ, ∆0]; ∆φ ∈ [0, ∆0].) The
current distribution is shown at Fig. 1 (how it is calculated is explained in
the next section). If there is no phase difference (φ = 0 ), but there is
homogeneous current flow in the superconductors along the boundary, the
existence of the orifice does not affect the flow (see Fig. 1b). Our approach is
to study the coexistence of the two factors: phase difference φ and transport
supercurrent (which is parameterized by the superfluid velocity vs). In this
situation the local suppression of the order parameter ∆(x, y) in the vicin-
ity of the orifice at certain relation between φ and vs (i.e. at vs > ∆φ/pF ,
where pF is the Fermi momentum) would result in the local violation of
the Landau criterion, which means the creation of unpaired quasiparticles;
these quasiparticles carry current in the direction opposite to the transport
supercurrent.9 This countercurrent, being a result of the interference in a
ballistic structure, is a dissipationless current. The mechanism of depairing
described here is non-thermal.

A phenomenon similar to the one described here, was studied for a
d -wave superconductor in an external magnetic field experimentally12 and
theoretically.13 Far from the boundary the conventional diamagnetic current
flows, induced by the magnetic field. But the anisotropy of the pairing poten-
tial results in the suppression of the order parameter close to the boundary
and the appearance of surface quasiparticle states follows. These quasipar-
ticle states carry a paramagnetic current counter-flowing to the diamagnetic
one. The density of the paramagnetic current can substantially exceed the
density of the diamagnetic one.

In our problem the transport supercurrent is analogous to the diamag-
netic supercurrent in the problem of the d -wave superconductor in an exter-
nal magnetic field; however the order parameter suppression is not due to the
anisotropy of the pairing potential, but is rather due to the non-zero phase
difference on the weak link. Hence the interface unpaired quasiparticle states
are realized even at the contact of two conventional superconductors (in the
absence of the order parameter anisotropy). In our problem the appearance
of the countercurrent can be considered as the paramagnetic response of a
Josephson junction to the transport supercurrent. In our previous articles7–9

we studied the countercurrent at a weak link of both conventional and un-
conventional (d -wave) superconductors. It was shown that when the density
of the countercurrent on a weak link exceeds the density of the transport
supercurrent far from it, then the vortex-like formations appear in the cur-
rent distribution. Here we continue this study in the geometry of the double
point contact, shown in Fig. 1c.
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Fig. 1. Models of a single point contact (a,b) and double point contact (c)
between two superconductors with different phases of the order parameter,
φ1 and φ2 (a) and with homogeneous transport supercurrent jT (vs) in the
banks. The current distributions are shown when either the phase difference
is present (in the absence of a transport supercurrent) (a,c) or when the
transport supercurrent is present (b).

3. DESCRIPTION OF THE SYSTEM AND BASIC
EQUATIONS

We consider two superconductors separated by an impenetrable thin
partition with two identical orifices (or slits in 2D case) transparent for
electrons (see Fig. 1c). The system is characterized by the ratio of the
distance between orifices to their size, L/a: when L = 0, we have a single
point contact (of size 4a); when L/a ¿ 1, then it is the model to describe a
single orifice with impurity; when L/a ∼ 1, there are two close orifices; and
when L/a À 1, the orifices do not influence each other and can be considered
as two single point contacts.

We describe the coherent current states in the system by solving the
Eilenberger equations for quasiclassical Green functions.14 The model of the
double point contact, shown at Fig. 1c, assumes that the contact radius a
is smaller than the coherence length. This allows us to treat the system
in the non-self-consistent approximation, which does not take into account
the space dependence of the order parameter in the first approximation.
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The current in each point (x, y) is calculated by integrating the contribution
from each quasiclassical electron trajectory. We consider a clean junction,
which means that each trajectory either goes trough one of the two orifices
(so-called, transit trajectories, denoted by ”1” in Fig. 1c) or is reflected
from the partition (non-transit trajectories, ”2”). In the non-self-consistent
approximation transit trajectories can be described by the matrix Green
function taken at the contact, Ĝω(0), while non-transit trajectories can be
described by the Green function taken far from the contact, Ĝω(∞). The
total current density in each point in the vicinity of the weak link is given
by the relations:8,15

j(x, y) = 4πeN0vF T
∑

ωn>0

〈v̂Imgω〉v̂, (1)

gω(∓∞) =
ω̃

ΩL,R
, (2)

gω(0) =
ω̃(ΩL + ΩR)− i · sgn(vx)∆L∆R sinφ

ΩLΩR + ω̃2 + ∆L∆R cosφ
, (3)

where N0 is the density of states at the Fermi level, 〈...〉v̂ denotes the in-
tegration (averaging) over the directions of Fermi velocity vF , v̂ = vF /vF

is the unit vector in the direction of vF , ωn = πT (2n + 1) are Matsubara
frequencies, ω̃ = ωn + ipFvs, ΩL,R =

√
ω̃2 + ∆2

L,R, and ∆L,R stands for the
order parameter in the left (right) bank. The current density j is defined
by (1, 1)-component of the matrix Green function: G11

ω ≡ gω. Depending on
the direction of the electron velocity v̂, as it is described above, the function
gω should be taken gω = gω(0) for transit trajectories or gω = gω(∓∞) for
non-transit trajectory coming from the left (right) bank.

In the case of the contact of two conventional superconductors analytical
expressions can be derived for the current density at the contact plane at
zero temperature,9 which is written below for pF vs < ∆0:

jx(0) = jc,0 sgn(cos
φ

2
) sin

φ

2

(
1−Θ(pF vs − ∆φ)f

(
∆φ

pF vs

))
, (4)

jy(0) = −2
3
|e|N0vF pF vs + Θ(pF vs − ∆φ)jc,0 sin

φ

2

(
1−

(
∆φ

pF vs

)2
)

. (5)

Here jc,0 = (π/2) |e|N0vF ∆0 is the critical Josephson current at T = 0 and
vs = 0; ∆φ = ∆0 |cos(φ/2)| stands for the phase-dependent value of the or-

der parameter at the contact; f(x) = (2/π)
(
arccosx− x

√
1− x2

)
> 0. The

theta function Θ(pF vs− ∆φ) means that at pF vs < ∆φ (i.e. at φ ∈ (φ1, φ2),
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where φ1 = 2 arccos pF vs

∆0
, φ2 = 2π−φ1) the Josephson current is the same as

in the absence of the transport supercurrent and the current density along
the contact is equal to the transport supercurrent density. At pF vs > ∆φ

for a fixed value of φ, the Josephson current jx is suppressed by the trans-
port supercurrent (compared to the Josephson current in the absence of the
transport supercurrent): jx(vs) < jx(vs = 0), and the countercurrent j̃ (the
second term in Eq. 5) appears so that the total tangential current density
at the contact jy(0) consists of the transport supercurrent jT , carried by the
condensate, and of the countercurrent j̃, carried by nonthermal interface-
induced quasiparticles. If there is a current at the contact which flows in
the direction opposite to the direction of the current far from the contact
(when j̃ > jT ), then the current distribution pattern contains vortex-like
formations.

We note that the current density at the plane of one orifice jx,y(0) is not
influenced by the presence of the other in the model considered here, since
it is calculated from the trajectories which do not go through the second
orifice. It follows that the current-phase dependence is identical for a single
point contact and for double point contacts, but the current distribution
pattern is not. We further note that the non-transit trajectories give non-
zero input in the current j(x, y) when vs 6= 0; this is in contrast to the case
in the absence of transport supercurrent (vs = 0), when Imgω(∞) = 0 and
only transit trajectories contribute to the current.15

Making use of Eqs. 1-3, we calculate and plot current distributions both
for the cases of the contact between conventional superconductors and of the
contact between d -wave superconductors.

4. THE CURRENT DISTRIBUTION PATTERNS

4.1. DOUBLE POINT CONTACT BETWEEN
CONVENTIONAL SUPERCONDUCTORS

In the absence of the transport supercurrent jT (vs) (i.e. at vs = 0) the
current distribution in the case of a single point contact is symmetric with
respect to the axis of the contact and is characterized by the concentration of
the current density in the vicinity of the contact (orifice), which is illustrated
at Fig. 1a. Piercing of the second orifice does not influence the current
distribution significantly (see Fig. 1c).

The current distribution is less trivial when the transport supercurrent
is present (vs 6= 0). As it is discussed in Sec. 2, at some relation between
the phase difference and the value of the transport current, the counter-
current at the contact appears. Because the current at a point contact is



253Vortex-like Current States in Josephson Ballistic Point Contacts

Fig. 2. Current distribution pattern in the vicinity of a double point contact
between two conventional superconductors in the presence of a transport
supercurrent (vs 6= 0) and at the phase difference φ = π.

counter-flowing to the current far from it, the current distribution contains
the vortices.7 In Fig. 2 we illustrate this for the case of a double point
contact.

4.2. DOUBLE POINT CONTACT BETWEEN D-WAVE
SUPERCONDUCTORS

The current distribution for the contact of two d -wave superconductors
can be more varied because of the anisotropy of the order parameter. Here
for concreteness we consider the following orientation of the cristallographic
axes: a-axis of the left superconductor is along the x -axis, and a-axis of the
right superconductor is rotated anti-clockwise relative to it by the angle of
π/4. In the absence of a transport supercurrent (vs = 0) at φ = π/2 there is
no Josephson current through the junction but there is spontaneous current
along the junction16–22 and the current distribution reflects the anisotropy
of the order parameter15 (see Fig. 3a). When there is a partition between
two orifices (L 6= 0) the anisotropy of the current distribution results in
the formation of vortex-like current formations close to this partition (see
Fig. 3b,c). We emphasize that this happens in the absence of a transport
supercurrent, only due to the coexistence of the anisotropy and of the phase
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Fig. 3. Current distribution pattern in the vicinity of a double point contact
between two d -wave superconductors in the absence of a transport super-
current (vs = 0) and at the phase difference φ = π/2.

difference at the contact, similar to how this happens in the case of restricted
geometry.23

In Fig. 4 we show the current distribution patterns when there is trans-
port supercurrent in the banks of the contact (vs 6= 0) at the phase differ-
ence, at which the effect of the appearance of the countercurrent is the most
pronounced, at φ = π.

4.3. ANALOGY WITH DC SQUID

So far we assumed that the order parameter phase difference is the same
for the two slits. However the situation, when the phase difference at one
junction φ

′
is not equal to the phase difference at another junction φ

′′
, can

also be realized. This happens, when there is a magnetic flux Φ, piercing the
partition between the slits, as it is shown at Fig. 5a. Such a development of
our model makes it analogous to the dc SQUID. At Fig. 5b,c we show the
current distribution for φ

′
= −φ

′′
= π/2. For the contact of conventional

superconductors the current circulates around the partition, which encloses
the magnetic flux (Fig. 5b). The phase differences φ = ±π/2 in the case
of two d -wave superconductors disoriented to each other by the angle π/4
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Fig. 4. Current distribution patterns in the vicinity of a double point con-
tact between two d -wave superconductors in the presence of a transport
supercurrent (vs 6= 0) and at the phase difference φ = π.

Fig. 5. Double point contact with the phase difference at one orifice φ
′
being

not equal to the phase difference at the other orifice φ
′′
: (a) scheme, (b) and

(c) current distribution pattern for the contact of conventional and d -wave
superconductors respectively, at φ

′
= −φ

′′
= π/2.
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correspond to the equilibrium state of the contact with no Josephson current
through the contact and with spontaneous current along it; the sign ”±”
corresponds here to the two possible directions of the current flow.16–22 Thus,
for the contact of d -wave superconductors (at φ

′
= −φ

′′
= π/2) the interface

currents at two junctions are in different directions. Changing the flux by
the value of half-quantum-flux would invert this currents: in this way the
system with interface currents can be controlled by the magnetic flux.
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