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Quantum interferometry and spin–orbit effects in a heterostructure with a 2D hole gas
in a Si 0.2Ge0.8 quantum well
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The magnetic-field dependence~up to 110 kOe! of the resistance of Si0.7Ge0.3/Si0.2Ge0.8/Si0.7Ge0.3

with a 2D hole gas in a Si0.2Ge0.8 quantum well is measured in the temperature range
0.335–10 K and in a range of variation of the currents from 100 nA to 50mA. Shubnikov–de
Haas oscillations are observed in the region of high magnetic fields, and in the low-field
region H<1 kOe a positive magnetoresistance is observed which gives way to a negative
magnetoresistance as the field is increased. This peculiarity is explained by effects of
weak localization of the 2D charge carriers under conditions when the spin–orbit scattering time
tso is close to the inelastic scattering timetw , and it is evidence of a splitting of the spin
states under the influence of a perturbing potential due to the formation of a two-dimensional
potential well~the Rashba mechanism!. Analysis of the weak localization effects gave the
values of the characteristic relaxation times astw57.2T21310212 s andtso51.36310212 s.
From these characteristics of the heterostructure studied, a value ofD52.97 meV was
obtained for the spin splitting. ©2003 American Institute of Physics.@DOI: 10.1063/1.1542476#
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INTRODUCTION

The study of quantum interference and quantum osc
tion effects in heterojunctions yields information about t
characteristics of the charge carriers in two-dimensio
electron systems. In some cases the behavior of the ma
toresistance of inversion layers in heterostructures in w
magnetic fields1–4 attests to the existence of appreciab
spin–orbit scattering, which has been linked to a lifting
the spin degeneracy in zero magnetic field in the absenc
inversion symmetry in the crystal5 or under the influence o
an asymmetric electric field which forms a two-dimension
structure.6 The lifting of the spin degeneracy in zero ma
netic field leads to the formation of two electronic su
systems with nearly the same characteristic parameters.
existence of spin splitting in such objects has been confirm
by the finding of two effective masses for the charge carr
by the cyclotron resonance technique,7 and also by the ob-
servation of beats of the Shubnikov–de Haas oscillation
different heterostructures.8–13 The concepts of spin splitting
have been used successfully to explain the positive ma
toresistance at low magnetic fields in the weak localizat
effect.2–4

In this paper we present the results of a study of we
localization effects and the interaction of charge carriers
Si0.7Ge0.3/Si0.2Ge0.8/Si0.7Ge0.3 heterostructure, which exhib
its spin–orbit effects~unlike the Si/Si12xGex /Si heterostruc-
tures withx50.13 and 0.36 studied previously,14,15for which
the spin–orbit effects could be neglected!. This study in-
cluded the investigation and analysis of the variation of
magnetoresistance at low and high magnetic fields~up to 110
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kOe! in the temperature range 0.335–10 K for transport c
rents varying from 100 nA to 50mA. The results made it
possible to determine the following:

— the values of the effective massm* and quantum
time tq of the charge carriers, on the basis of an analysis
the change in amplitude of the Shubnikov–de Haas osc
tions upon a change in magnetic field and temperature;

— the temperature dependence of the dephasing timtw

and the spin–orbit scattering timetso by extracting the quan-
tum corrections to the conduction, which are manifested
temperature and magnetic-field dependence of the condu
ity;

— the temperature dependence of the electron–pho
relaxation timeteph, with the use of the electron overheatin
effect;

— the splittingD of the spin states, on the basis of da
for the spin–orbit interaction time.

The simultaneous observation of Shubnikov–de H
oscillations ~which are ordinarily manifested only in pur
and perfect samples! and quantum interference effects~the
observation of which requires a rather high level of elas
scattering! in the same sample turns out to be entirely po
sible, as was noted in Refs. 14 and 15, since these effect
manifested at different values of the magnetic fields. T
weak localization effect and electron interaction effects
manifested at low magnetic fields, where the magnetic len
LH5(\c/2eH)1/2 should be larger than the mean free pathl .
~The lengthLH corresponds to the field value for which a
area 2pLH

2 is threaded by one magnetic flux quantumF0

5hc/2e.) As the magnetic field is increased, the inequal
LH, l comes to be satisfied, and magnetic quantization
© 2003 American Institute of Physics
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fects such as Shubnikov–de Haas oscillations can appea
estimate of the mean free path in the sample gives a v
l'300 Å. This value ofl and, accordingly, ofLH , corre-
sponds to a magnetic fieldH53.6 kOe. Analysis of weak
localization effects can be carried out at fields less than
value.

1. EXPERIMENTAL RESULTS

The object of study was a Si0.7Ge0.3/Si0.2Ge0.8/Si0.7Ge0.3

heterostructure obtained by molecular-beam epitaxy; a qu
tum well is formed in the Si0.2Ge0.8 region, which is 10 nm
wide.1!

The carriers~holes! appear in the quantum well from
boron-doped layer located a distance;10 nm from the well.
From a crystallographic standpoint such a structure i
stressed pseudomorphic heterostructure. The stressed s
due primarily to the 4% difference in the lattice constants
germanium and silicon~5.65 and 5.43 Å, respectively!. The
electronic properties of the heterostructure are determine
the two-dimensional electron gas filling the potential we
The conducting region had a ‘‘double cross’’ configuration
the form of a narrow strip;0.55 mm wide and;2.25 mm
long, with a distance of;1.22 mm between the two pairs o
narrow potential leads.

Figure 1 shows recordings of the magnetic-field-induc
variation of the diagonal component of the sheet resista
~resistance per square! of the sample at different tempera

FIG. 1. Magnetic-field curves of the resistanceRh at different temperatures
~a! and currents~b!. a — I 5100 nA, T @K#: 205, 1.738, 1.44, 0.754, 0.346
The inset shows the region of low magnetic fields for differentT @K#: 0.36
~1!, 0.754~2!, 1.44 ~3!, 1.738~4!. b — T'0.35 K, currents: 100 nA, 300
nA, 1 mA, 2 mA, 5 mA, 10 mA, 15 mA, 28 mA, 40 mA. In the inset
I 5100 nA ~1!, 300 nA~2!, 1 mA ~3!, 2 mA ~4!.
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tures~Fig. 1a! and current values~Fig. 1b!. The amplitude of
the Shubnikov–de Haas oscillations decreases with incr
ing temperature and current. In the low-field region posit
magnetoresistance is observed~see the inset to Fig. 1!, with
a characteristic initial segment of steep growth followed b
maximum and then a slow decline down to negative valu
This form of the magnetoresistance curves is character
for the weak localization effect16–20 under conditions such
that tw andtso are close in value. It is seen in the insets
Fig. 1 that the height of the maximum~above the zero-field
value of the resistance! decreases rapidly with increasin
temperature and current growth.

The temperature variation of the resistance of the sam
in zero magnetic field~Fig. 2! confirms the assumption tha
one is seeing a manifestation of effects of weak localizat
and quasiparticle interaction: the minimum and the incre
of the resistance with decreasing temperatureT are due to
the contribution of quantum corrections to the conductivi
which grow as the temperature is lowered.18,21

2. CALCULATION OF THE CHARACTERISTIC PARAMETERS
OF THE CHARGE CARRIERS

The heterostructure under study has a hole type of c
ductivity, and the structure of its valence band is theref
important. In pure silicon there are two degenerate max
in the valence band at the pointk50, where two bands with
different values of the curvature touch; the correspond
values of the effective massm* are 0.49m0 and 0.16m0 . The
valence bands in germanium have an analogous struc
with m* 50.28m0 and 0.04m0 .

The form of the Shubnikov–de Haas oscillations~Fig. 1!
attests to the fact that they are formed by a single domin
type of charge carrier. The proposed spin splitting of t
bands was not in any way reflected in the form of the os
lations. For this reason the analysis of the oscillatory cur
can be done in the standard way.

It is known that the Shubnikov–de Haas oscillations a
described by the relation

Drxx

rxx
0 }

c

sinhc
expS 2

pa

vct
D cosS 2p«F

\vc
2F D , ~1!

FIG. 2. Temperature dependence of the resistanceRh . The solid curve
shows the experimental data; the data points are the calculated values
quantum correction due to the weak localization effect for the values otw

and tso obtained from an analysis of the magnetoresistance curves.
dashed curve is the assumed temperature dependence of the ‘‘clas
resistance.
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wherec52p2kT/(\vc), vc5eH/m* c is the cyclotron fre-
quency,a5t/tq , t is the transport time,tq is the quantum
scattering time, andF is the phase. If the Fermi energy fo
the two-dimensional electron gas is written in the form«F

5p\2n/m* (n is the concentration of electrons~holes!!,
then, knowing the change in amplitude of the oscillatio
upon changes of the temperature and magnetic field, we
determine the unknown parametersm* , n, andtq . For ex-
ample, having constructed the dependence
ln(@Dr(T)/r(0)#@sinhc(T)/c(T)#) on (vCt)215(mH)21

~wherem is the mobility!, by fitting the experimental data t
a single straight line we can finda and then determinetq ,
and having constructed the dependence of ln(Dr(H)/r(0)) on
ln(c(H)/sinhc(H))2(pa/mH) and plotting all the experimen
tal data on a single straight line, we can findm* . The result-
ing value m* 50.16m0 apparently corresponds to heav
holes in the heterostructure under study. This value will
used in the calculations below.

The carrier concentrationpSdH found in an analysis of
the Shubnikov–de Haas oscillations equals 1
31012 cm22. It is close to the valuepH51.3631012 cm22

obtained from measurements of the Hall coefficient.
The valuesm* and pH can be used to find the elast

scattering time from the electrical conductivity of the cha
nel, which gives a valuet50.147310212 s, and the mean
free path of the holes,l 5310 Å, and also the Fermi velocit
vF , mobility m, diffusion coefficientD, and Fermi energy
«F , by making use of the relations for a two-dimension
system: vF5(\/m)(2pp2)1/2, D5vF

2t/2, «F5p\2p2 /m.
The following values are obtained:vF52.113107 cm/s,
m51590 cm2/(V•s), D532.7 cm2/s, and«F520.35 meV.

3. ANALYSIS OF THE QUANTUM CORRECTIONS

In a two-dimensional system the contribution of t
weak localization effect to the temperature dependence o
conductivity is described by the relation17,22

DsT52
e2

2p2\ F3

2
ln

tw*

t
2

1

2
ln

tw

t G , ~2!

wheret is the elastic relaxation time of the electrons,tw
21

5tw0
2112ts

21 , (tw* )215tw0
2114/3tso

2112/3ts
21 , tw0 is the

phase relaxation time due to inelastic scattering proces
tso is the spin–orbit scattering time, andts is the time for
spin–spin scattering on magnetic impurities~in the object
studied here there is no spin–spin scattering, so the timts

can be neglected, and in that casetw0[tw). One can go
from the resistance to the quantum corrections to the con
tivity with the aid of the relation 2DsT(T)
5@R(T)Rh(Tmin)#

21, whereRh is the resistance per squa
of the two-dimensional system, andTmin is the temperature
at which the minimum of the functionR(T) is observed and
the contribution of the corrections is negligible.

In a two-dimensional system in a perpendicular ma
netic field the change of conductivity due to the weak loc
ization effect is described by the relation23

DsH
L 5

e2

2p2\ F3

2
f 2S 4eHDtw*

\c D 2
1

2
f 2S 4eHDtw

\c D G , ~3!
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where f 2(x)5 ln(x)1c(1/211/x), c is the logarithmic de-
rivative of theG function, andD5(1/2)vF

2t is the electron
~hole! diffusion coefficient. The characteristic fieldH0

L

5\c/4eDtw corresponds to a change of the form of t
function f 2(x) from quadratic to logarithmic. For analysis o
the variation of the quantum correction in the magnetic fi
one can use the relation2DsH(H)5@R(H)2R(0)#
3@R(H)Rh(0)#21; here2DsH(H) reflects the change in
the magnetoresistance.

A computer fitting of the theoretical dependence~3!,
which contains two unknown fitting parameters,tw andtw* ,
to the experimental data for the magnetoresistance all
one to find the values oftw andtw* and thentso . This sort of
fitting has turned out to be the most successful when
additional term proportional toH2 is introduced. We assum
that this term reflects the contribution of a correction due
the hole–hole interaction in the Cooper channel and co
sponds to a repulsion between quasiparticles. Such a co
tion to the conductivity has been identified for Si0.64Ge0.36

heterostructures with a quantum channel.14 The expression
for the correction in the Cooper channel is given in Refs.
22, and 23:

DsH
C52

e2

2p2\
lH

Cw2~a!; a5
2eDH

pckT
, ~4!

wherelH
C is the coupling constant. The characteristic fie

H0
C5pckT/2eD corresponds to a change in the function

dependence ofw2(l) from quadratic to logarithmic. This
allows us to use the quadratic approximation forDsH

C at low
magnetic fields (H,H0

C).
Taking the Cooper correction into account at the low

temperatures and at low currents can explain the tempera
behavior of the maximum that arises on theDs(H) curve in
the weak localization effect under conditions when the el
tic scattering timetw is close to the spin–orbit scatterin
time tso . The magnetic fieldHmax corresponding to the
maximum is somewhat higher than the characteristic fi
H0

L and should increase weakly with increasing temperat
~as a consequence of the decrease oftw andtw* with increas-
ing T). The weak decrease ofHmax observed in this study
~see Fig. 1! is due to fact that the Cooper correction falls o
with increasing temperature as 1/T2. A rough estimate of the
coupling constantlH

C at the lowest temperature of the expe
ment and at low current is 0.023. It follows from the calc
lations that the temperature dependencetw(T) at T.3 K is
described by the relationtw.7.2T21310212 s. This is close
to the analogous temperature dependencetw56.6T21

310212 s for p-Si/Si12xGex /Si heterostructures with
x50.13 and 0.36.14 A dependence of the formtw}T21 cor-
responds to the manifestation of electron–electron~in the
present case hole–hole! scattering processes in disorder
two-dimensional systems.21,22 For the spin–orbit interaction
time an average value oftso51.36310212 s is obtained.

Figure 3 shows the values obtained fortw and tso as
functions of temperature. The deviation oftw from the rela-
tion tw57.2T21310212 s atT,3 K is apparently due to the
influence of spin effects. The positive magnetoresistance
the initial parts of theRh(H) curve ~Fig. 1! vanishes when
the inequalitytso,tw changes to the opposite,tso.tw . Us-
ing the values found for the diffusion coefficientD and for
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tw(T), we can estimate the characteristic fieldsH0
L andH0

C :
at a temperature of 1 K they are 0.05 and 0.34 kOe, respe
tively. At magnetic fields exceeding these values by one
two orders of magnitude, the quantum corrections practic
vanish, and the anomalous temperature dependence o
resistance vanishes accordingly.

We have satisfied ourselves that the values found
tw(T) andts0 give a completely realistic description of th
anomalous temperature dependence of the resistance o
sample~Fig. 2!. The values calculated according to Eq.~2!
for the localized correctionDsT

L are shown by the data point
in Fig. 2. The dashed curve reflects the assumed temper
variation of the ‘‘classical’’ resistance of the sample. It w
obtained by extrapolating the functional dependence of
resistance on temperature from the region considera
above the minimum of the resistance. It is seen in Fig. 2
a quantum correction due to the interaction in the Coo
channel is present in addition to the localization correctio

FIG. 3. Values of the dephasing timetw (d) and spin–orbit scattering time
tso (s) at different temperatures. The solid curve is a plot oftw57.2T21

310212 s.
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4. TEMPERATURE DEPENDENCE OF THE
ELECTRON–PHONON SCATTERING TIME OF THE CHARGE
CARRIERS

The electron–phonon interaction timeteph can be found
with the aid of the electron overheating effect.24 Under con-
ditions of overheating the electron temperatureTe is elevated
with respect to the phonon temperatureTph under the influ-
ence of an electric field~current!, and the transfer of exces
energy from the electron to the phonon system is gover
by the timeteph. A necessary condition for realization of th
electron overheating effect is the unimpeded escape
phonons from the conducting layer into the surround
crystal. This requirement is clearly met in the sample stud
here.

A comparison of the change in amplitude of th
Shubnikov–de Haas oscillations upon an increase in t
perature and an increase in current~Fig. 4! allows one to find
the value ofTe at each specified value of the current~the
arrows in Fig. 4!.

The timeteph can be calculated with the aid of the he
balance equation, which implies the relation25

~kTe!
25~kTph!

21
6

p2 ~eE!2Dteph. ~5!

The electric fieldE is easily found from the values of th
currentI and resistance per squareRh : E5IRh /a ~wherea
is the width of the conducting channel!. The temperature of
the crystal is used forTph. The values found forteph with the
use of Eq.~5! are referred to electron–phonon interacti
temperaturesTeph under conditions of electron overheatin
where to a first approximation the estimateTeph5(1/2)(Tph

1Te) is valid.15,26

The observed temperature dependence observed ofteph

has the formteph51.1T2
•1028 and is close to the analo

gous dependence for Si/Si0.7Ge0.3/Si heterostructures.15 A
dependenceteph

21}T2 is characteristic for two-dimensiona
electron systems27 and is realized at low temperatures und
conditions such that the wave momentum of the thermal p
non is sufficient to change the electron wave vector by
maximum amount 2kF .
FIG. 4. Variation of the amplitude of the Shubnikov–de Haas oscillations as a function of temperature~a! and current~b!.
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It should be noted that it remains unclear why the res
tance of the sample decreases so noticeably as the curre
increased at zero magnetic field~see Fig. 1b!: increasing the
current from 100 nA to 10mA leads to a decrease ofRh

from 3150V to 2850V. The resistance remains unchang
as the current is increased further. It is seen in Fig. 4 tha
a current of 10mA the value of the overheating of the ele
tron temperature is 3 K, which, according to Fig. 2, cor
sponds to a decrease of the resistance only to 3080V. A
probable cause of this disagreement might be the direc
fluence of the electric field on the quantum corrections.
note that the in-plane electric field in the two-dimension
structure was extremely small in these experiments, rang
from 0.066 V/cm at 100 nA to 0.65 V/cm at 10mA.

The influence of electric field on the quantum localiz
tion correction has been considered in a number of theo
cal papers.25,28–32 According to Refs. 25, 31, and 32,
change in the value of the localization correction under
influence of electric field occurs only as a result of a chan
in the electron temperature~or the electron drift velocity!.
The absence of a direct influence of the electric field on
localization correction has been established in experim
on films of gold33 and bismuth.34 However, as was shown in
Ref. 35, an electric field~with a strength of 10–30 V/cm!
decreases the quantum correction due to the electr
electron interaction considerably, as a result of a decreas
the coupling constantl. This decrease inl is caused by a
feature of the scattering in a two-dimensional electron s
tem. In this conceptual framework the observed decreas
the resistance of the sample with increasing current in z
field, which is greater than the expected decrease of the
sistance due to the electron overheating effect, is yet ano
indication of the presence of a contribution to the conduc
ity from the quantum correction due to the hole–hole int
action.

5. SPIN SPLITTING AND SPIN–ORBIT RELAXATION

Our analysis of the magnetoresistance curves of
Si0.2Ge0.8 quantum-well heterostructure has made it poss
to determine the value of the spin splittingD on the basis of
the value obtained for the spin–orbit scattering timetso .

The possibility of lifting the spin degeneracy in semico
ductor crystals was first shown by Dresselhaus.5 The cause of
the lifting of the spin degeneracy in crystals lacking a cen
of inversion~in structures of the zinc blende, wurtzite, et
types! is the asymmetric crystalline field. When the spin
orbit interaction is taken into account, the symmetry w
respect to time inversion is broken. The value of the s
splitting is proportional to the cube of the wave vector,k3

~the cubic Dresselhaus term!. In Refs. 36–38 it was shown
that the formation of a symmetric quantum well in such
crystal leads to additional lowering of its symmetry and to
additive contribution to the spin splitting which has a line
dependence onk ~the linear Dresselhaus term!. Another
cause of lifting of the spin degeneracy was pointed out
Rashba.6,39,40 In considering the properties of a two
dimensional electron gas, Rashba noticed that the appear
of an asymmetric quantum well in a crystal is due to t
presence of a perturbing potential that acts along the nor
to the plane of the two-dimensional gas and leads to lifting
-
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the spin degeneracy. Spin splitting of this nature has a lin
dependence on the magnitude of the wave vector~the linear
Rashba term!. We note that in the Si0.2Ge0.8 quantum-well
heterostructure under study the spin splitting is due to
Rashba mechanism, since germanium and silicon are
trosymmetric crystals.

The spin–orbit scattering of electrons on impurities
the main mechanism for relaxation of the spin state un
conditions where the spin degeneracy is lifted, for any ty
of spin splitting. Elliot41 considered the spin relaxatio
mechanism under conditions such that the spin splitting
greater than the elastic scattering energy (\/t,D) ~see also
Ref. 42!. There is a linear relation between the spin rela
ation rate and the elastic scattering rate. D’yakonov a
Perel’43 considered the case when the impurity scatter
energy is greater than the spin splitting (\/t.D). Scattering
leads to ‘‘randomization’’ of the spin states, and the sp
relaxation rate turns out to be proportional to the elastic s
tering time.

From the carrier kinetic characteristics found for the h
erostructure under study we can conclude that the m
mechanism of spin relaxation is the D’yakonov–Perel’ on
The value oft obtained by us means that the inequal
\/t.D holds up toD'4.8 meV. The spin–orbit relaxation
time tso can be used to determine the value of the spin sp
ting from the relation43

1

tso
'V0

2t, ~6!

where the precession frequencyV05D/2\. The value of the
spin splittingD calculated from Eq.~6! is 2.97 meV for the
heterostructure under study.

Our results show that heterostructures based on the
ovalent semiconductors Si and Ge can be of interest for
ating electronic devices with controllable spin transport.44

*E-mail: komnik@ilt.kharkov.ua
1!The sample was grown by the advanced Semiconductors Group, Un

sity of Warwick, Coventry, UK.
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Éksp. Teor. Fiz.81, 768 ~1981! @Sov. Phys. JETP54, 411 ~1981!#.

24V. A. Shklovskii, J. Low Temp. Phys.41, 375 ~1980!.
25S. Hershfield and V. Ambegaokar, Phys. Rev. B34, 2147~1986!.
26S. I. Dorozhkin, F. Lell, and W. Schoepe, Solid State Commun.60, 245

~1986!.
27V. Karpus, Fiz. Tekh. Poluprovodn.20, 12 ~1986! @Sov. Phys. Semicond

20, 6 ~1986!#.
28T. Tsuzuki, Physica B & C 107, 679 ~1981!.
tt.

29M. Kaveh and N. F. Mott, J. Phys. C14, L177 ~1981!.
30M. J. Uren, R. A. Davies, M. Kaveh, and M. Pepper, J. Phys. C14, L413

~1981!.
31G. V. Hu and R. F. O’Connel, Physica A153, 114 ~1988!.
32G. V. Hu and R. F. O’Connel, Solid-State Electron.32, 1253~1989!.
33G. Bergmann, Z. Phys.49, 133 ~1982!.
34V. Yu. Kashirin and Yu. F. Komnik, Fiz. Nizk. Temp.20, 1148 ~1994!

@Low Temp. Phys.20, 902 ~1994!#.
35Yu. F. Komnik and V. Yu. Kashirin, Fiz. Nizk. Temp.20, 1256 ~1994!

@Low Temp. Phys.20, 983 ~1994!#.
36S. V. Iordanskii, Yu. B. Lyanda-Geller, and G. E. Pikus, JETP Lett.60, 206

~1994!.
37F. G. Pikus and G. E. Pikus, Phys. Rev. B51, 16928~1995!.
38W. Knap, C. Skierbiszewski, A. Zduniak, E. Litwin-Staszewska, D. B

tho, F. Kobbi, J. L. Robert, G. E. Pikus, F. G. Pikus, S. V. Iordanskii,
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