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Weak localization and charge-carrier interaction effects in a two-dimensional hole gas
in a germanium quantum well in a SiGe/Ge/SiGe heterostructure
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The weak localization and interaction effects for charge carriers in a two-dimensional hole gas in
a pure germanium quantum well in a SiGe/Ge/SiGe heterostructure with a hole density of 5.68
�1011 cm−2 and mobility of 4.68�104 cm2 V−1 s−1 are investigated. The resistance measure-
ments were made at temperatures from 46 mK to 10 K and magnetic fields up to 15 T. The
magnetic-field dependence of the resistivity exhibits Shubnikov-de Haas oscillations and quantum
Hall effect steps. At very low magnetic fields �B�0.1 T� a weak localization effect for holes is
revealed, which makes for a negative magnetoresistance and growth of the resistance with de-
creasing temperature �at T�2 K�. The manifestation of the interaction effect is observed and
analyzed over a wide range of temperatures and magnetic fields. With increasing temperature the
manifestation of the interaction-induced quantum correction passes from the diffusive regime to
an intermediate and then to the ballistic regime. In all regions the behavior of the interaction
quantum correction is in good agreement with the modern theoretical predictions. © 2006 Ameri-
can Institute of Physics. �DOI: 10.1063/1.2216282�
I. INTRODUCTION

It is known that the electrical conductivity of a weakly
disordered two-dimensional electron gas is given by the clas-
sical value of the conductivity plus two types of quantum
corrections to the conductivity: a correction due to the weak
localization effect for electrons,1,2 and corrections due to
electron-electron interaction.3–5 In the low-temperature re-
gion these quantum corrections make for a peculiar variation
of the electrical resistance of a two-dimensional electron sys-
tem upon changes of the temperature and magnetic field. A
theory of these effects developed successfully two and a half
decades ago1–6 considered a diffusive regime of electron re-
laxation and interaction. That theory made it possible not
only to give an interpretation of the anomalous behavior of
the low-temperature resistance of two-dimensional electron
systems but also yielded information about the relaxation
times of the electron phase and spin and about the interaction
parameters. The main objects of study were thin films of
metals7,8 and later electrons in inversion layers, � layers, and
heterostructures in semiconductors.

For the last decade there has been interest in electronic
phenomena in Si-MOSFET structures and heterojunctions
with low carrier density and high mobility—in particular, the
presence of metallic behavior of the conductivity and a
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metal-insulator transition upon change of the carrier density.9

These phenomena require a deeper theoretical treatment of
the spin-orbit effects in such structures10 and also the con-
struction of a theory of the interaction effects in the ballistic
regime.11,12

The diffusive regime corresponds to the condition
kBT� /��1, which physically presupposes13 that the effec-
tive interaction time � /kBT is longer than the momentum
relaxation time � and, hence, two interacting electrons un-
dergo scattering on many impurities. The ballistic regime
corresponds to the condition kBT� /��1; in this case one is
considering the interaction of two electrons scattering on iso-
lated impurities. In the ballistic regime the temperature be-
havior of the interaction correction changes.

In the present study we investigated a heterostructure
based on SiGe with a quantum well of pure germanium with
hole-type conductivity. By varying the temperature in that
heterostructure we were able to study the transition from the
diffusive to the intermediate and then to the ballistic regime
of interaction of the charge carriers.

The heterostructure was fabricated by low-energy
plasma deposition.14 It had a quantum well width of 15 nm.
The Ge layer was bordered on both sides by layers of
Si Ge . The thickness of the spacer separating the well
0.3 0.7
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from the boron-doped Si0.3Ge0.7 layer was 10 nm. The den-
sity of carriers �holes� in the structure studied was 5.68
�1011 cm−2, and the mobility reached 4.68
�104 cm2 V−1 s−1. The hole effective mass obtained by
analysis of the Shubnikov-de Haas oscillations is m*

=0.112m0 �m0 is the free electron mass�. The transport scat-
tering time � reaches the value 3�10−12 s corresponding to
kBT� /�=1 at T=2.55 K.

Measurements of the diagonal Rxx and off-diagonal Rxy

components of the resistance as a function of magnetic field
were made at values up to 15 T in the temperature interval
46 mK–10 K. Figure 1 shows the form of the �xx�B� and
�xy�B� curves for different temperatures. �The symbol � de-
notes the resistance per square of the two-dimensional elec-
tron system.� The curves shown demonstrate pronounced
Shubnikov-de Haas oscillations �at B�1 T� and also the
quantum Hall effect �at B�2 T�. In the low-field region the
curves of the magnetoresistance for different temperatures
below �2.5K intersect at a single point at B�0.5 T and a
value �xx

0 �234.5 	 �Fig. 2�. That value of the magnetic field
essentially separates the low-field region from the region
where magnetic quantization is manifested. The condition

c�=1 �
c is the cyclotron frequency� is satisfied at B
=0.212 T, i.e., somewhat lower than 0.5 T. In the low-field
region �B�0.1 T� a manifestation of the weak localization
effect for holes is revealed; at fields below 0.3 T the interac-
tion effects are clearly present.

II. DIFFUSIVE REGIME OF MANIFESTATION OF QUANTUM
CORRECTIONS

In the region of very low magnetic fields B�0.1 T the
initial part of the curve of the resistance of our heterostruc-

FIG. 1. Magnetic-field curves of the resistivity �xx �a� and �xy �b� at different
temperatures: 52 mK �1�, 0.5 K �2�, 0.9 K �3�, 2 K �4�, 3 K �5�.
ture versus magnetic field demonstrates negative magnetore-
sistance �see Fig. 2�, which is evidence of a weak localiza-
tion effect on �xx�B�.

In the diffusive regime the quantum correction due to the
weak localization for a two-dimensional system in a perpen-
dicular magnetic field has the form4

��xx
WL =

e2

2
2�
�3

2
f2�4eDB

�
��

*	 −
1

2
f2�4eDB

�
��	
 . �1�

where f2�x�=ln�x�+��1/x+1/2�, � is the logarithmic de-
rivative of the � function, �� is the phase relaxation time of
the electrons, ���

*�−1=��
−1+4/3�so

−1, �so is the spin-orbit inter-
action time for elastic scattering of electrons, and D is the
electron diffusion coefficient. This last can be estimated from
the Einstein formula D=1/2 · �vF

2��, where vF is the Fermi
velocity, which can be found from the formula vF= �h /m*�
��2
n�1/2 for a two-dimensional system �n is the carrier
density�. To go from the measured values of the resistance to
the quantum corrections to the conductivity one can use the
relation −��xx= ��xx�B�−�xx

0 �0�� /�xx�B��xx
0 .

The terms in expression �1� reflect the spin states of the
electrons on the conjugate trajectories forming the interfer-
ence contribution to the conductivity. The first term corre-
sponds to the triplet spin state �total spin j=1� and the sec-
ond, to the singlet state �j=0�. The triplet state is
characterized by three possible values of the projection of the
total moment �M =0, ±1�, which, as a result of the spin-orbit
scattering, varies in a random manner. The spin-orbit scatter-
ing suppresses the coherence of the electron states in the
triplet channel. The triplet term forms a negative magnetore-
sistance. The singlet term appears in expression �1� with a
minus sign, and in the case ����so �strong spin-orbit inter-
action�, when the singlet term is dominant in Eq. �1�, the
localization correction gives an anomalous positive magne-
toresistance.

The negative magnetoresistance of the heterostructure
studied gives way in a small field interval to growth of the

FIG. 2. Magnetic-field variation of the resistivity �xx�B� at temperatures of
46 mK �1�, 0.5 K �2�, 1.1 K �3�, and 2 K �4�. The inset shows an example of
separation of the Drude contribution to the conductivity at a temperature of
46 mK; the solid curve is a calculation according to Eq. �3�.
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resistance �see Fig. 2�, which is due to the influence of the
magnetic-field-induced change of the classical �Drude� resis-
tance,

�xx�B� = �xx
D �B� + ��xx

WL�B� + ��xx
EEI, �2�

where

�xx
D �B� =

�0

1 + �
c��2 . �3�

The superscript WL corresponds to the weak localization of
electrons, while EEI stands for the electron-electron interac-
tion; 
c=eB /m* is the cyclotron frequency. In expression �3�
instead of 
c� one can use the product �B �� is the mobility�
and match the corresponding curve with the experimental
dependence of �xx�B� in the logarithmic saturation region of
the function �1�. An example of the separating out of the
classical contribution to the magnetic-field-induced change
of the conductivity of the heterostructure is given in the inset
of Fig. 2.

With the goal of determining the values of the character-
istic relaxation times �� and �so the isolated localization cor-
rection to the conductivity can be analyzed in accordance
with Eq. �1�. However, as was mentioned in Ref. 15, in Si,
Ge, and III–V semiconductors and in heterostructures based
on them the valence band forms on account of a strong spin-
orbit interaction, and the total moment turns out to be
coupled to the quasimomentum of the particle. As a result,
the spin and momentum relaxation times turn out to be of the
same order. Furthermore, for heterostructures characterized
by the existence of an internal potential gradient, the spin-
orbit processes occur differently in the directions perpen-
dicular to and parallel to the heterojunction. For this reason,
in calculating the corrections due to the weak localization of
holes in the system under study, we employed the theoretical
model constructed in Ref. 15 to treat undeformed and de-
formed bulk p-type semiconductors and quantum-well struc-
tures based on them. According to that theoretical model, the
magnetic-field dependence of the localization correction to
the conductivity is described by the following expression:

��xx
WL�B� =

Dij
0

Da
0 G0� f2�4eDB

�

����

�� + ��
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−
1

2
f2�4eDB

�

���−

�� + ��

	 −
1

2
f2�4eDB

�
��	
 ,

�4�

where G0=e2 / �2
2��; �� and �� are, respectively, the longi-
tudinal and transverse spin relaxation times; the role of the
preferred axis here is played by the normal to the plane of the
quantum well; the ratio Dij

0 /Da
0 characterizes the relative val-

ues of the components of the diffusion coefficient; in the
calculations it was taken equal to 1. We carried out a numeri-
cal description of the experimental data using relation �4�,
taking ��, ��, and �� as fitting parameters. Examples of such
a description are presented in Fig. 3.

The value found for the phase relaxation time varies
smoothly from 1.1�10−11 s at a temperature of
52 mK to 3.5�10−12 s at 1.1 K. This temperature variation
of �� can be approximated by a dependence ���T−0.45,
analogous to that found16 for heterostructures with quantum
wells with the consituents Si0.2Ge0.8 and Si0.05Ge0.95. The rea-
son for a temperature dependence of the form ���T−1/2 in-
stead of the dependence ���T−1 expected17 for an electron-
electron interaction in a two-dimensional system is not clear.
The longitudinal and transverse spin relaxation times are in-
dependent of temperature and equal to �� =1.6�10−11 s and
��=3�10−11 s. The values of these times are somewhat
greater than the value of �� over the whole temperature in-
terval investigated, making for a negative magnetoresistance
due to the weak localization effect.

The temperature dependence of the resistance �xx in the
temperature region where the diffusive and intermediate re-
gimes of interaction take place depends substantially on the
value of the magnetic field �Fig. 4�. At B=0 T the resistivity
falls off with increasing temperature. In a magnetic field the
form of the dependence �xx�T� is transformed, and at B
�0.5 T the temperature coefficient of resistance changes
sign. Significantly, all of the curves cross in a single region at
T�2.0–2.5 K with a resistance value �xx

0 �234 	. The char-
acteristic temperature T=2.55 K corresponds to a transition
from the diffusive to the ballistic regime.

The dependence ��T� in the diffusive region in the ab-
sence of magnetic field is governed by the contribution of the
weak localization and interaction effects. The temperature

FIG. 3. Magnetic-field variation of the localization correction to the con-
ductivity ��xx

WL at temperatures of 52 mK �a�, 0.2 K �b�, and 1.1 K �c�.
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dependence of the localization correction to the conductivity
for a 2D electron system in the case of weak spin-orbit scat-
tering �����so� has the following form:2,4

��xx
WL�T� =

e2

2
2�
� ln� kBT�

�
	 , �5�

where p is the exponent in the temperature dependence of the
inelastic scattering time, ���T−p �in the case of strong spin-
orbit scattering an additional factor of −1/2 appears in ex-
pression �5��. Since kBT� /��1, the correction ��xx

WL is nega-
tive and increases in absolute value with decreasing
temperature.

The temperature dependence of the interaction correc-
tion for a 2D electron system in the diffusive regime
�kBT� /��1� has an analogous form:5

��xx
EEI�T� =

e2

2
2�
� ln� kBT�

�
	 , �6�

where � is the interaction constant.
For illustration of the contributions ��xx

WO and ��xx
EEI to

the dependence ��T� below T=2.5K, in the inset in Fig. 4 we
show the experimental values of the correction ��xx �dots�,
the temperature dependence of the localization correction
��xx

WO calculated according to Eq. �5� for the value p=1/2
�dashed line�, and the total correction ��xx

WL+��xx
EEI �solid

curve�. For calculation of the interaction correction we used
a dependence �= �1+3�1− �ln�1+F0

��� /F0
��
 �Ref. 11�, where

F0
� is the Fermi-liquid interaction constant in the triplet chan-

nel �see below�. We took the value F0
�=−0.228, which en-

sures agreement of the calculation and the experimental
points up to a temperature �2 K. It is seen for the inset in
Fig. 4 that in the temperature region corresponding to the
diffusive regime the weak localization effect plays a notice-
able role in addition to the interaction effect, but its contri-
bution to the behavior of the resistivity upon variation of the
temperature and magnetic field vanishes completely at T
�2.5 K �Fig. 4� and B�0.1 T �Fig. 2�.

FIG. 4. Temperature dependence of the resistivity �xx in magnetic fields �T�:
0 ���, 0.1 ���, 0.3 ���, 0.5 ���, 0.7 T ���, 1 ���. The inset shows the
temperature dependence of the quantum correction to the conductivity, ��xx,
at B=0 T. The dashed curve is a calculation of the localization correction
��xx

WL according to Eq. �5�, and the solid curve represents the sum

��xx
WL+��xx

EEI.
We note that in the calculation of all the conductivity
corrections shown in the inset in Fig. 4, as a point of refer-
ence we have taken the value of the conductivity correspond-
ing to a resistivity �xx

0 =234.5 	 at 2 K. In reality the inter-
action correction exists over a wide temperature range and,
remaining negative, decreases in absolute value with increas-
ing temperature; this makes for a decrease of the resistivity
to a minimum at �10 K. The reference point for determining
the interaction correction should most likely be a value of the
conductivity corresponding to a lower resistivity than the
minimum at �10 K, since with increasing magnetic field the
resistivity at the lowest experimental temperature is lower
than the resistivity at �10 K �see Fig. 4�. The choice of the
reference level for the correction does not affect its func-
tional dependence on the variable parameter �temperature,
magnetic field� but requires only a shift of the calculated
values of the correction by a certain amount for comparison
with the experimental data. It is also clearly seen in Fig. 2
that in the region where the interaction-induced correction is
manifested �at B�0.5 T� the resistivity decreases with in-
creasing magnetic field on account of the decrease of the
absolute value of the negative correction to the conductivity.
The magnetic field destroys the quantum interference in the
carrier interaction effect. This is responsible for the negative
magnetoresistance in the indicated field region.

III. TRANSITION TO THE BALLISTIC REGIME OF
MANIFESTATION OF THE INTERACTION CORRECTION

The interaction correction leads to magnetic-field depen-
dence of the resistance because in the conversion of the con-
ductivity tensor to the resistivity tensor the correction to the
resistance acquires a factor of −1�1− �
c��2�.18–20 In this
conversion we have taken into account the fact that in the
diffusive regime the correction to the Hall conductivity can
be neglected. Ultimately the resistance is described by the
expression

�xx�B,T� =
1

�0
−

1

�0
2 �1 − �
c��2���xx

EEI�T� . �7�

At 
c��1 the relation �7� takes the form

�xx�B,T� − �0

�0
=

1

�0
�2B2��xx

EEI�T� , �8�

from which it is seen that the magnetoresistance is deter-
mined by the value and sign of the interaction correction to
the conductivity. In the diffusive regime the correction to the
conductivity is negative, since the argument of the logarithm
is kBT� /��1. Relation �7� makes for a negative magnetore-
sistance that is quadratic in the field. This was first demon-
strated successfully by the authors of the experimental study
reported in Ref. 21 �see also Refs. 13, 19, and 20�.

In our heterostructure the negative quadratic magnetore-
sistance is observed in a wide interval of magnetic fields �see
the inset in Fig. 5� with the onset of Shubnikov-de Haas
oscillations this dependence describes the trend of the mono-
tonic component �the geometric locus of midpoints between
adjacent maxima and minima�. We note that the contribution
of the magnetic-induced change in the classical resistance is
absent in the magnetoquantum region. The negative qua-
dratic magnetoresistance is observed not only at T�2.5 K
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but also at higher temperatures �up to 10 K�. It would seem
that when relation �6� is used under conditions kBT� /��1,
the correction should become positive. This contradiction
was resolved recently by a new theory of the interaction
effects in the ballistic regime.11,12

The scattering on point impurities with a short-range po-
tential was considered in Ref. 11, and it was shown that in a
comparatively wide interval of variation of the inequality
kBT� /��1 the interaction correction gives a negative mag-
netoresistance, but the character of its temperature depen-
dence changes. The authors of Ref. 11 showed that in the
ballistic regime the interaction correction appears as a result
of the same physical causes as in the diffusive regime—the
interference of electron waves in the scattering on the impu-
rity and on the impurity-formed Friedel oscillations of the
electron density.

The theory of the interaction, as is well known, includes
the contributions of the exchange interaction �the Fock term�
and the direct interaction �the Hartree term�. The Fock con-
tribution forms a singlet interaction channel; together with
the singlet part of the Hartree contribution, it forms a
“charge” singlet channel. The Hartree contribution forms a
triplet interaction channel. In the theory of Ref. 11 it is
shown that because of the competition between the two types
of contributions, the magnitude and even the sign of the
variation of the correction with temperature can change. The
overall picture of the interaction can be reduced to a triplet
channel in which the interaction is characterized by a Fermi-
liquid constant F0

� that reflects the intensity of the spin-
exchange interaction. For F0

��0 the interaction tends to
align the spins in one direction, while at the value F0

�=−1 a
Stoner ferromagnetic instability is reached.

A general theory of the interaction correction, applicable
to the diffusive, intermediate, and ballistic regimes, is given
in Ref. 12. In that paper the authors consider the magnetore-
sistance of a two-dimensional electron system in a strong
�
c��1� transverse magnetic field. The theory is constructed
for the case of electron scattering on a point �short-range�
potential and for the case of Coulomb interaction with a
scatterer. In the first case the Fock exchange contribution to

FIG. 5. Variation of the interaction correction with increasing temperature
�up to 9 K�. The solid curve is the calculation according to the theory of
Ref. 12. The inset shows an example of separating out the interaction cor-
rection to the conductivity at temperatures of 52 mK �1� and 3 K �2�. The
solid curves were calculated according to Eq. �7�.
the interaction correction is determined by the function
G0�kBT� /��, which has the asymptotic forms G0�x��−ln x
−1.7 for x�1 and G0�x��0.276·x−1/2 for x�1. The correc-
tion due to this contribution is negative, and it would make
for a negative magnetoresistance, but when the Hartree con-
tribution is taken into account the situation changes. The
Hartree contribution is asymptotically analogous to G0 but
has the opposite sign and is twice as large in magnitude. In
the case of Coulomb interaction of electrons with scatterers
the Fock contribution to the interaction correction is de-
scribed by the function GF�kBT� /��, which has the
asymptotic forms GF�x��−ln x−1.6 at x�1 and GF�x�
�0.138x−1/2 at x�1, and it leads to negative magnetoresis-
tance. The Hartree contribution GH, the functional form of
which is determined by the constant F0

� and is similar to GF

but with the opposite sign in the case ��kF �� is the inverse
screening length�, can, in combination with the exchange
contribution, change the sign of the correction. The theory
predicts the appearance of positive magnetoresistance at T
�TH��kF /��2�� /kB��−1, the fact that at high temperatures
the interaction effectively corresponds to the case of scatter-
ing on a point potential, and in this case the Hartree contri-
bution exceeds the exchange contribution and gives a posi-
tive sign of the total correction and, accordingly, of the
magnetoresistance. If � /kF is not small, then the Hartree con-
tribution is subjected to a strong Fermi-liquid renormaliza-
tion, and in a simplified picture it is similar to GF but has a
coefficient of 3 and also an additional factor of F0

� / �1+F0
��

multiplying the Bessel functions appearing in GF.
In comparing the experimental data obtained here with

the theory of Ref. 12, one should apparently give preference
to the case of Coulomb interaction of the holes with scatter-
ing centers, since the quantum well in the heterostructure
does not contain impurity atoms, the boron acceptor atoms
being located in a layer separated from the quantum well by
an impurity-free spacer layer 10 nm thick. An estimate of the
ratio � /kF can be made on the basis of the fact that the
transition from negative to positive magnetoresistance occurs
in the 10 K region. This means that the value of kBT� /� is
approximately equal to 4 and, hence, kF /��2. Thus the ratio
� /kF�0.5 is not small. According to Ref. 12, the relative
change of the resistance in a magnetic field is described by
the relation

���B�
�0 = −

�
c��2


kFl
�GF�kBT�/�� − GH�kBT�/�:F0

��� . �9�

The analytical form of the functions GF�kBT� /�� and
GH�kBT� /� ,F0

�� is given in Ref. 12. We constructed the func-
tional form of the total interaction correction in accordance
with the aforementioned features of the use of the theory of
Ref. 12 in the different cases and made a comparison with
the experimental data �Fig. 5�. The experimental values of
the correction ��xx

EEI were obtained from relation �7�. We
note that when the temperature is raised from 52 mK to 9 K
the value of the resistance in zero magnetic field, �xx

0 , which
is the point of reference for the corresponding correction,
changes from 245 to 238 	. In fitting the theoretical depen-
dence ��th�T� with the temperature dependence of the cor-
rection ��xx found from the experimental data, the fitting
parameter used is the interaction constant in the triplet chan-
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nel, F0
�. A successful description of the experimental data

�see Fig. 5� was obtained at a value F0
�=−0.228, but with a

slight shift of the calculated curve by a constant amount
−0.045·e2 /h. This shift refines the resistance level from
which the correction is reckoned. An analogous comparison
of the experimental data for ��xx with the theory of Ref. 12
for GaAs/AlGaAs heterostructures with n-type conductivity
was carried out in Ref. 13, but only the exchange function
GF was used as the theoretical dependence. For coincidence
of the experimental and theoretical curves a shift of
−0.07e2 /h was necessary.

The value found for F0
� is close to the value obtained

from the formula F0
�=− 1

2rs / �rs+�2�.11 The parameter rs

characterizing the ratio of the Coulomb interaction energy to
the kinetic energy can be obtained from the formula rs

=1/ �
n�1/2aB, where aB= ��2�� / �me2� is the Bohr radius, �
is the dielectric constant �for germanium �=15.4�. For the
system investigated it turned out that aB=72.3 Å and rs

=1.024, and the theoretical value F0
�=−0.21.

IV. CONCLUSION

We have studied the manifestation of quantum interfer-
ence effects, weak localization and interaction of electrons,
in a two-dimensional hole gas in a quantum well of pure
germanium in a SiGe/Ge/SiGe heterostructure. This system
exhibits Shubnikov-de Haas oscillations and the quantum
Hall effect. Together with this, the monotonic component of
the change of the resistance in a magnetic field demonstrates
a manifestation of the weak localization effect in the region
of very low magnetic fields and the interaction effect over a
wide range of fields, including the region of pronounced
magnetic quantization.

Strictly speaking, for the weak localization effect due to
interference of electrons �or holes� on trajectories with self-
crossing, it is desirable to satisfy the condition LH� l, where
l is the mean free path with respect to inelastic scattering,
and LH= �� /2eB�1/2 is the magnetic length, which corre-
sponds to the value of the field at which an area equal to
2
LH

2 is penetrated by one quantum of magnetic flux, �0

=h /2e. It in fact turned out that the weak localization effect
is manifested over a much broader range of magnetic fields
than is implied by the condition given above; specifically, it
is manifested all the way up to fields at which magnetic
quantization effects begin to be manifested.

The interaction effects govern the trend of the monotonic
component of the resistance in the region of magnetic fields
both before and after the appearance of quantum oscillations.
The quantum corrections to the conductivity due to the inter-
action of carriers lead to a negative magnetoresistance which
is quadratic in the field. The behavior of the interaction-
induced quantum correction is in good agreement with the
predictions of the modern theory11,12 for the diffusive, inter-

mediate, and ballistic regimes; in particular, with increasing
temperature one observes a transition from a logarithmic to a
power-law dependence of the interaction correction on tem-
perature and also a transition from negative to positive mag-
netoresistance.
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