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ABSTRACT

The harmonic oscillations of a spring-ball model of benzene-like nanosystems with Hooke’s law interactions between nearest, second, and
third neighbors are explored. We show that in the cylindrical coordinates the dynamics of this cyclic hexagonal system is described by the
Lagrange equations similar to those of the one-dimensional two-component crystal model. We demonstrate that the vibration frequencies of
the hexagonal model lie on the branches of the dispersion law of the associated lattice model, and their positions are determined by the
cyclic Born-Von Karman condition. The hexagonal model is generalized to one describing the benzene molecule and the fully deuterated
and halogenated benzenes. The effect of hybridization of vibration modes and pushing apart of spectral branches in the crossover situation
is revealed. All the discrete frequency spectrum and normal modes of oscillations and their explicit dependencies on all the constants of
elastic interactions are exactly found.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/10.0022370

INTRODUCTION

Dynamical and thermodynamical properties of carbon-based
compounds are subjects of frontline research in low-temperature
physics. Academician V. G. Manzhelii was a creator of the scientific
school of investigations of thermal properties of cryogenic crystals.
At present, following novel trends, his scholars study thermocon-
ductive and spectroscopic properties of complex molecular com-
pounds, which include now modern nanostructures such as carbon
nanotubes, one-dimensional atomic chains in the grooves of
carbon nanotube bundles, fullerites and fullerenes, and other
carbon-based molecules as impurities in polyatomic lattices.
Remembering with deep respect V. G. Manzhelii as a prominent
scientist and a great teacher in life, we dedicate this paper to his
memory on the 90th anniversary of his birth.

The investigation of the structure and spectral properties of poly-
atomic molecules is one of the central tasks of molecular physics.1

The vibrational spectra of such molecules contain significant informa-
tion about their structural and dynamic properties. Since the discov-
ery and subsequent development of the methods of infrared and
Raman spectroscopy,2 the analysis of the vibration spectra of poly-
atomic molecules has been one of the main methods of determining

the physical and chemical properties of matter. The study of the fea-
tures of the spectrum of vibration frequencies of a single simple mole-
cule or a group of atoms in a complex molecule makes it possible to
identify trends in the chemical structure of compounds and to serve
in the future for the development of technologies for the synthesis of
new materials with predetermined properties.

The basis for understanding the dynamic behavior of mole-
cules is classical and quantum mechanics. In the approximation of
harmonic oscillations, the dynamics of a finite system of interacting
atoms is reduced on the basis of normal modes to the dynamics of
an ensemble of independent oscillators.3 As a result of solving the
classical equations, the determined discrete spectrum of frequencies
ωi is the main dynamic characteristic of such a set of oscillators.
Quantum theory gives for each ith oscillator an equidistant spec-
trum of energy levels with the energy quantum �hωi. This makes it
possible to build a theory of the molecule interaction with electro-
magnetic waves as the basis of spectroscopy methods, as well as to
calculate the contribution of internal vibrations of molecules to
their thermodynamics.

As is known,3 the foundations of the classical theory of molec-
ular oscillations were established in the 1930s, in particular in the
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works of E. Bright Wilson.4,5 Although the problem of the dynam-
ics of a system of interacting oscillators is reduced, from the mathe-
matical point of view, to a spectral problem of finding eigenvectors
and eigenvalues, the characteristic equations for the oscillation fre-
quencies, except for a few cases of the simplest molecules, cannot
be solved explicitly. Because of this, Wilson’s approach was based
on taking into account the possible elements of symmetry of mole-
cules and the group theory, which would allow to identify of the
main types of normal modes of oscillations and to obtain for them
simplified expressions of the characteristic equation for the simplest
models of interatomic interaction.

Due to the lack of explicit dependences of vibration frequencies
on the parameters of molecular models, the results of dynamic experi-
ments with mechanical models, which are built from metallic balls
connected by springs, were used for the analysis of infrared and
Raman spectroscopy data.6,7 It has been interesting that such mechan-
ical models turned out to be effective not only for the qualitative but
also for the quantitative description of the spectra of molecules.

Further progress in the classical description of molecular
dynamics consisted in improving the choice of variables as
so-called internal collective coordinates of atoms in molecules,
taking into account their symmetry.8 But with the development of
computing capabilities, from simple computers to supercomputers,
spectral problems of mechanical vibrations began to be solved
numerically for each individual molecule with a given set of its
parameters. Finally, quantum mechanical methods were invented
and developed, in particular, the method of density functional
theory (DFT),9 within which the electron density distribution, the
interaction of atoms, and, ultimately, the electronic and vibrational
spectra of molecules are calculated from first principles.

However, the general classification of the types of molecular
vibrations is based rather on the determination of their normal
modes. Among them, one distinguishes the valence modes caused
by a change in bond lengths, the deformation modes of orienta-
tional vibrations, and active and inactive modes with respect to the
change in the dipole moment. The frequencies are divided into two
groups of the infrared and Raman bands. In addition, the vibration
frequencies of individual atoms or groups of atoms are also distin-
guished. In any case, finally, the classification of frequencies is
characterized by their quantitative values.

The main difficulty of the theory of vibrations of most mole-
cules is related to the fact that the spectral problem for them has
free boundary conditions due to the free ends of molecules, which
makes it impossible to find an exact general analytical form of fre-
quencies and normal modes of vibrations.

In the present work, we show that the spectral problem on
normal vibration modes and eigenfrequencies is solved exactly for
cyclic molecular structures, such as benzene-like molecules. Due to
the structure periodicity, the theory of the crystal lattice can be applied
to such systems.10 The main theoretical calculation idea of the paper
is the use of cylindrical (polar) coordinates as a new approach to the
analytical description of the dynamics of cyclic molecules. The pro-
posed approach is demonstrated on a mechanical model of six balls,
all of which are connected to each other by springs with different stiff-
ness coefficients depending on the particle spacing. We found the
explicit form of normal modes and all vibration frequencies for such a
hexagonal elastic system. We showed that they belong to the two

branches of the dispersion law of the associated one-dimensional two-
component lattice model. Bearing in mind the closeness of the model
to the benzene molecule and its related molecules, we demonstrated
how the presence of hydrogen in the benzene molecule can be taken
into account in the framework of the mechanical model and how the
discrete frequency spectrum is related to branches of the dispersion
law of the associated complex lattice. Finally, the discrete frequencies
are found analytically for model parameters corresponding to the fully
deuterated benzene molecule and the benzene with substitution of
hydrogen by fluorine, chlorine, bromine, and iodine, respectively. At
the end, it is shown how the proposed approach can be generalized to
other cyclic finite particle structures of elastic origin.

THE SPRING-BALL MODEL OF A CARBON HEXAGON

Current models of the benzene molecule are built on the basis of
results obtained using quantum mechanical methods such as a
method of DFT.9 These studies proved that the chemical bonds and
interactions between the nearest carbons in the molecule are the same
throughout the ring. Thereby, they refined the previously adopted
Kekule model with alternating single and double bonds.3 Moreover,
since the carbon bonds form a homogeneous ring, in addition to the
interaction of the nearest neighbors, the interaction of each carbon
with the second and third neighbors should be taken into account. As
mentioned above, in addition to molecules derived from benzene,
carbon hexagons are the main element of carbon nanotubes and two-
dimensional graphene crystals. The standard set of interactions in the
hexagon in the latter case consists of pair interactions between all the
atoms with a strength hierarchy from the strong nearest neighbors
interaction to smaller ones with the second and third neighbors11.

Note that these interactions have a central character, i.e.,
depend only on the distance between atoms.3,10 In the harmonic
approximation, when the atoms in the hexagon oscillate with small
amplitudes, forces between them arise in accordance with Hooke’s
law. Therefore, regardless of the origin of the central interaction,
whether it is covalent bonds, van der Waals forces, or a set of
complex interactions, the potential energy will quadratically
depend on the small displacements of atoms with respect to each
other. That is the same as the potential energy of a spring connec-
ting two balls in a mechanical model.

However, in the case of central forces, the mechanical model
with the interaction of only nearest neighbors with a stiffness coef-
ficient κ1 is unstable since such a system of balls can be folded into
a linear structure without stretching the springs with an increase in
the distance between two opposite atoms and the pairwise
approach of the remaining four atoms. In order to stabilize the
hexagon, it is necessary to introduce for each atom an interaction
with its second neighbors through additional springs with stiffness
coefficient κ2 or immediately with third ones with stiffness coeffi-
cient κ3, as was done in the first mechanical experiments.6,7

Therefore, for the carbon hexagon of the benzene molecule, it is
natural to propose a mechanical model of balls with the same mass
m, which are connected to the nearest, second, and third neighbors
by springs with the stiffness coefficients κ1, κ2, and κ3, respectively,
as shown in Fig. 1. Thus in present work we consider the mechani-
cal model with Hooke’s law pair interactions of all the particles and
do not include any special noncentral interactions.
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The benzene molecule surely contains hydrogen atoms, each
of which interacts with one carbon to form a pair (see Fig. 2). The
corresponding more complex elastic model, which describes the
features of the dynamic behavior of benzene C6H6, fully deuterated
benzene C6D6 and fully substituted benzene with fluorine, chloride,
bromine, and iodine, will be formulated and considered in detail in
the second part of the paper.

In order to describe analytically the hexagonal model of parti-
cles lying in the plane (Fig. 1), we introduce cylindrical coordinates
with the origin in the center of mass of the system and denote the
radius vector of every particle as rn. Then the nth particle has its
cylindrical coordinates as the radius rn and the azimuth angle fn in
the plane and the projection zn on the axis perpendicular to the
plane. In the state of rest, the particles have the following equilib-
rium values of the coordinates:

r(0)n ¼ r0, f(0)
n ;

π

3
� (n� 1), z(0)n ¼ 0, (1)

where n = 1,…, 6 as indicated in Fig. 1. Thus, in equilibrium, each
atom is at the same distance r0 from each other and from the
center and is deflected from each other by the angle π/3.

When particles oscillate with small amplitudes, their polar
coordinates get the displacements un � r0 and θn � 1, as shown
in Fig. 3:

rn ¼ r0 þ un, fn ¼
π

3
(n� 1)þ θn (2)

and, in general, the projection zn could be non-zero.
It is easy to find the Lagrangian L = T − U of the system in

the harmonic approximation. The kinetic energy of the system is
written as follows:

T ¼ m
2

X6
n¼1

dun
dt

� �2

þ dzn
dt

� �2
" #

þ I
2

X6
n¼1

dθn
dt

� �2

, (3)

where the first term is the contribution of the deviation of the
length of the radius vector of the particle from r0, the second is
the contribution of the deviation from the plane, and the third is the
contribution of the deviation of the particle azimuthal angle from
the equilibrium value. The moment of inertia is equal to I ¼ mr20 .

The potential energy U is the sum of quadratic functions of
small changes in the lengths of all springs during displacements of
each oscillating atom from its equilibrium position. Since there are
three types of springs in the system, the potential energy has three
components:

U ¼ U1 þ U2 þ U3 ¼ κ1
2

X6
n¼1

ξ2n þ
κ2
2

X6
n¼1

ζ2n þ
κ3
2

X3
n¼1

η2n, (4)

where U1 is the potential energy of the interaction of the particles
with the nearest neighbors and ξn is a small change in the length of
the first-type spring between the balls with the numbers n and
n + 1, U2 is the potential energy of the interaction of the balls with
the second neighbors (through one) and ζn is the change in the

length of the second-type spring between the balls with the
numbers n and n + 2, and U3 is the potential energy of the interac-
tion of atoms with third neighbors (located opposite) and ηn is the
change in the length of the spring of the third type between the

FIG. 1. The chart of the hexagonal mechanical model of balls connected by
springs. The springs connecting the nearest neighbors are marked as the black
lines, the second neighbors’ springs are shown as the red lines, and the third
as the blue lines. Each atom interacts with all others like it is shown for the first
atom.

FIG. 2. The chart of the mechanical benzene-like model with the colored dash
lines showing four types of spring bonds between particles.
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balls with the numbers n and n + 3. Note that there are only three
springs of the third type. However, further, it is convenient to use
the third sum with six terms and to divide the result of summing
by two. Surely, the length changes ηnþ3 ; ηn.

The method of calculating the change in the spring length in
a linear chain of atoms with central and noncentral interactions in
3D space was specified in Ref. 10. This suggests a way to calculate
the change in the spring length for the present hexagonal model.
As seen in Fig. 3, the length of the spring, at the ends of which
there are balls with the numbers n and n + 1, is equal to the vector
modulus of the difference of the radius vectors of these particles.
From geometric consideration, by using Pythagoras’ theorem, it is
easy to find that the z-projections of the radius vectors on the z
axis give a nonlinear (quadratic) contribution to the length of the
spring. The matter of the fact is the zero equilibrium value of this
variable in contrast to the non-zero equilibrium values of the radial
and angle coordinates rn and fn. As a result, the contributions of
displacements along the radius and deviations from the azimuthal
angle to the spring length are linear. In fact, according to the law of
cosines, if two sides of a triangle are equal to rn and rn + 1, and the
angle between them is fn + 1− fn, then its third side (the red
dashed line in Fig. 3) is determined by the formula

ln,nþ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2nþ1 þ r2n � 2rnþ1rncos(fnþ1 � fn)

q
: (5)

At equilibrium values rn ¼ rnþ1 ¼ r0 and fnþ1 � fn ¼ π/3 the
equilibrium length of the spring or the distance between the balls is
naturally l(0)n,nþ1 ¼ r0. Now substituting the polar coordinates of the

balls with displacements (2) into formula (5), we obtain

ln,nþ1¼

r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1þνnþ1)

2þ(1þνn)
2�2(1þνnþ1)(1þνn)cos

π

3
þθnþ1�θn

� �r
,

(6)

where a dimensionless displacement variable vn ; un/r0 � 1 is
introduced. Using the smallness of vn and θn, we find approxi-
mately

cos
π

3
þ θnþ1 � θn

� �
� cos

π

3
� sin

π

3
:(θnþ1 � θn) ¼ 1

2
1� ffiffiffi

3
p

(θnþ1 � θn)
h i

, (7)

and finally, we have the change of the spring length as follows

ξn ¼ ln,nþ1 � r0 ¼ r0
2

�
νnþ1 þ νn þ

ffiffiffi
3

p
θnþ1 þ

ffiffiffi
3

p
θn

�
: (8)

Thus, the change in the length of the spring is determined by
the linear terms of the dimensionless displacements of the radial
and angular coordinates of the particles at the edges of the spring.

It is easy to notice that a general formula for the change of the
jth spring length between nth and (n + j)th particles in the
mechanical hexagon is as follows:

ln,nþj�l(0)n,nþj¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2nþjþr2n�2rnþ1rncos

jπ
3
þθnþj�θn

� �s
�l(0)n,nþj,

j¼1,2,3: (9)

Therefore the changes of the lengths of springs of the second and
third types are calculated similarly to the first case. In particular,
we find the following change in the second-type string length

ζn¼ln,nþ2�
ffiffiffi
3

p
r0�r0

2

ffiffiffi
3

p
(νnþ2þνn)þθnþ2�θn

h i
, (10)

and the corresponding expression for the third-type string length

ηn�ln,nþ3�2r0¼r0(νnþ3þνn): (11)

By substituting the Eqs. (8), (9), and (11) in the formula (4), we
finally obtain the total potential energy.

We note that the dynamic problem is solved in the flat geome-
try because the deviation from the plane of the molecule is a non-
linear effect on the variable zn, and in order to study the dynamics
with taking into account the contribution of this variable to the
kinetic energy, it will be necessary to go beyond the harmonic
approximation.

Now we are able to write the Lagrangian for the hexagonal
model of particles interacting according to Hooke’s law between
the first, second, and third neighbors in the harmonic

FIG. 3. Displacements of neighbor particles from their equilibrium positions in
polar coordinates during small vibrations.
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approximation:

L ¼ I
2

X6
n¼1

dνn
dt

� �2

þ dθn
dt

� �2
" #

� κ1r20
8

X6
n¼1

�
vnþ1 þ vn þ

ffiffiffi
3

p
θnþ1 �

ffiffiffi
3

p
θn
�2

� κ2r20
24

X6
n¼1

3vnþ2 þ 3vn þ
ffiffiffi
3

p
θnþ2 �

ffiffiffi
3

p
θn

� �2

� κ3r20
4

X6
n¼1

(νnþ3 þ νn)
2:

(12)

It is possible to simplify the Lagrangian form by introducing the
characteristic frequency and energy, and the dimensionless time
and the dimensionless stiffness parameters as follows:

ω2
0 ¼

κ1
4m

, E0 ¼ mr20ω
2
0: τ ¼ ω0t, Λ ¼ κ2

3κ1
, S ¼ 2κ3

κ1
: (13)

Then the Lagrangian of the system takes the final form:

L¼ E0
2

X6
n¼1

dνn
dτ

� �2

þ
X6
n¼1

dθn
dτ

� �2
 

�
X6
n¼1

νnþ1 þ νn þ
ffiffiffi
3

p
θnþ1 �

ffiffiffi
3

p
θn

� �2

�Λ
X6
n¼1

3νnþ2 þ 3νn þ
ffiffiffi
3

p
θnþ2 �

ffiffiffi
3

p
θn

� �2
�S
X6
n¼1

(νnþ3 þ νn)
2

!
:

(14)

The Lagrangian (14) corresponds to the one-dimensional two-
component model, which has six particles and evident rotational sym-
metry. If the radial positions of particles do not change, the system
degenerates to the scalar model of the one-dimensional crystal with dis-
placements obeying the cyclic Born-Von Karman boundary condition.10

If azimuth angles of particles do not change, then the Lagrangian
dynamics reduces to radially symmetric oscillation motion of particles
of the ring system. However, as seen from Eq. (14), the interaction
between these two subsystems is strong, and the total system dynamics
are expected to be rather complex. Nevertheless, the dynamical problem
of the hexagonal model is solved completely in the next section.

EQUATIONS OF MOTION AND VIBRATION SPECTRUM
OF HEXAGONAL MODEL

The application of the methods of the crystal lattice theory10

makes it possible to exactly solve the problem of the dynamics of
the system with Lagrangian (14). The Lagrange equations for gen-
eralized coordinates qi are derived from the Lagrangian by taking
the corresponding derivatives:

d
dτ

@L
@ _qi

� �
� d
dqi

¼ 0: (15)

For the hexagonal model, the set of generalized coordinates is as
follows:

q(τ) ¼ (q1, . . . , q12) ; (ν1, . . . ν6, θ1, . . . θ6), (16)

where the column vector q(τ), for convenience, is written as a row.
Since the kinetic energy of the system is the diagonal quadratic

form of the velocities, the Lagrange equations are reduced to the
following:

� d2νn
dτ2

¼ 1
E0

@U
@νn

, � d2θn
dτ2

¼ 1
E0

@U
@θn

: (17)

Taking the derivatives of the potential energy with respect to the
variables vn and θn, we find the explicit expressions of the twelve
linear differential Lagrange equations. We seek for stationary solu-
tions of these equations in the form of harmonic oscillations of the
system:

νn(τ) ¼ νne
�iΩτ, θn(τ) ¼ ϑne

�iΩτ, (18)

where the parameter Ω is the dimensionless frequency. After the
substitution (18) in the Lagrange equations, we reduce the dynami-
cal problem to the spectral problem of finding the eigenvalues Ω2

of a system of homogeneous algebraic equations with constant
coefficients:

Ω2νn ¼ 2νn þ νnþ1 þ νn�1 þ
ffiffiffi
3

p
(ϑnþ1 � ϑn�1)

þ 3Λ
�
6νn þ 3νnþ2 þ 3νn�2 þ

ffiffiffi
3

p
(ϑnþ2 � ϑn�2)

�
þ S(2νn þ νnþ3 þ νn�3),

Ω2ϑn ¼ 6ϑn � 3ϑnþ1 � 3ϑn�1 þ
ffiffiffi
3

p
(νn�1 � νnþ1)

þ 3Λ
�
2ϑn � ϑnþ2 � ϑn�2 þ

ffiffiffi
3

p
(νn�2 � νnþ2)

�
: (19)

The system of Eq. (19) can be written as the eigenvalue problem of
the Hermitian operator Âq ¼ Ω2q with a matrix 12 × 12, whose
elements are coefficients of Eq. (19). Besides, the cyclic Born-Von
Karman boundary condition is imposed on the solutions of the
system of Eq. (19). As a result, the components of the constant
eigenvector q are found in the explicit form:10

νn ¼ ν0 exp (iKr0n) ; ν0 exp (ikn),

ϑn ¼ ϑ0 exp (iKr0n) ; ϑ0 exp (ikn),
(20)

where the dimensional and dimensionless quasi-wave numbers K
and k are introduced. Note that because of the Born-Von Karman
condition, the equality exp(ikN) = 1 holds with N = 6 for the hexag-
onal model. Substituting solutions (20) into the system (19), we
obtain a system of two equations for amplitudes ν0 and ϑ0 :

Ω2ν0 ¼ a(k)ν0 þ ic(k)ϑ0,

Ω2ϑ0 ¼ �ic(k)ϑ0 þ b(k)ν0,
(21)
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where functions a(k), b(k), and c(k) are as follows:

a(k) ¼ 2[1þ cos(k)þ 9Λ(1þ cos(2k))þ S(1þ cos(3k))], (22)

b(k) ¼ 6[1� cos(k)þ Λ(1� cos(2k))], (23)

c(k) ¼ 2
ffiffiffi
3

p
(sin(k)þ 3Λsin(2k)): (24)

The system of Eq. (21) is equivalent to the eigenvalue problem
for the Hermitian operator D̂ :

D̂
ν0
ϑ0

� �
; a(k)

�ic(k)
ic(k)
b(k)

� �
ν0
ϑ0

� �
¼ Ω2 ν0

ϑ0

� �
: (25)

The condition for the existence of nontrivial solutions of Eq. (25) is
the equality of the determinant of the matrix to zero:

det jjD̂� Ω2�̂Ijj, where Î is the identity matrix. This condition
leads to the characteristic equation:

(Ω2 � a(k))(Ω2 � b(k))� c2(k) ¼ 0: (26)

This quadratic equation with respect to Ω2 has two obvious roots:

Ω2
+(k) ¼ a(k)þ b(k)

2
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a(k)� b(k)

2

� �2

þ c2(k):

s
(27)

As is known from crystal lattice theory,10 the “minus” sign in
formula (27) corresponds to the acoustic branch of oscillations and
the “plus” sign to the optical branch, respectively. Their forms
depend on the ratios of stiffness coefficients, i.e., on the values of
the parameters Λ and S. In Fig. 4, we show the dependences of the
acoustic branch Ω1 (k) and the optical branch Ω2 (k) of the disper-
sion law on the quasi-wave number k for the fixed values of

Λ = 0.05 and S = 0.116. The definite choice of the stiffness parame-
ters Λ and S is conditioned by their correspondence to the set of
model parameters of the graphene hexagon found as a result of the
data analysis of crystallographic and spectral experiments in Ref. 11.
According to these data, the values and ratios of the force constants
of the interactions between the first, second, and third neighbors,
measured in units of newton/meter, correspond to the above chosen
values Λ and S, and they are as the following:

κ1:κ2 : κ3 ¼ 338:50:5:19:6:

As seen in Fig. 4, there are two frequency ranges where dis-
crete oscillation frequencies can exist and a frequency gap where
the existence of discrete frequencies is prohibited. Exact values of
discrete eigenfrequencies are easily found if we use the cyclic
Born-Von Karman condition, which determines the discrete spec-
trum of allowed values of the quasi-wave number. For a system of
six particles, we have

k ¼ kp ¼ π

3
p, p ¼ 0, 1, 2, . . . 5: (28)

This condition means that the elementary cell in the reciprocal lattice
is divided by the allowed values of the quasiwave number into six
equal intervals. Using the branches of the dispersion law, it is easy to
identify the discrete frequencies. It is necessary to draw perpendiculars
from the points of allowed values of the quasi-wave number, multiples
of π/3, to the intersection with the branches of the dispersion law.

In Fig. 4, the intersection points of branches of the dispersion
law and perpendiculars are denoted by the gray balls. Their ordi-
nates, marked with red triangles on the vertical axis, are equals to
the discrete frequencies of the hexagon oscillations.

The eigenvectors qΩ ¼ (ν1, . . . ν6, ϑ1, . . .ϑ6), corresponding
to the eigenfrequencies Ω, are given by formulas (20), where
instead of the quasi-wave number k its value determined by the
Born-Von Karman condition should be substituted: νn = v0 exp (ikpn)
and ϑn ¼ ϑ0exp(ikpn). This means that there are two orthogonal
eigenfunctions cos(kpn) and sin(kpn), a linear combination of which
gives the real solutions of the system of Eq. (19).

Note that this approach for the determination of the discrete
spectra allows us to introduce a new classification of frequencies in
the molecular spectra based on the found branches of the disper-
sion law and the known features of oscillations that belong to them.
Such an analysis can be effectively applied to more complex cyclic
models, while for the model studied in this paper, the expressions
for the total spectrum of discrete frequencies are found in an
explicit form. Now we focus on qualitative analysis of the frequency
spectrum behavior using the evolution of dispersion curves with
changing the stiffness parameters.

There are twelve degrees of freedom and twelve eigenfrequen-
cies for six particles in 2D space. We start from zero frequency
Ω2 ¼ w2

0 ; 0. When there is only the first type of springs, i.e., in
the approximation of the nearest neighbors, then the acoustic
branch degenerates to the zero line and all six frequencies become
zero. The mode softening is said to occur, which usually precedes
the system instability. We have already discussed what kind of
drastic deformation is possible in this case without changing the

FIG. 4. The graphic scheme of finding the discrete frequencies on the acoustic
(red) and optical (blue) branches of the dispersion law at Λ = 0.05, S = 0.116.
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energy. The situation is interesting if there are the first and third
types of springs, but the second is absent. This choice of parame-
ters corresponds to the setting of experiments with mechanical
string models.6,7 The dispersion curves’ behavior is presented in
Fig. 5, depending on the parameter Λ.

As seen in Fig. 5, at Λ = 0 the degeneration of the zero fre-
quency is removed at points k2,4 = 2π/3, 4π/3, but it remains at
k3 = π. The further evolution of the curves shows that the zero fre-
quency exists always at three points, k0 = 0 and k1,5 =π/3, 5π/3.
Below we show the normal modes that are responsible for such a
frequency behavior. As seen in Fig. 5, the optical frequency range
decreases significantly when the parameter Λ grows. On the other
hand, with growing the parameter S at the fixed Λ the qualitative
character of the optical branch is the same, but the acoustic curve
acquires minimum instead of maximum at the edge of the
Brillouin zone, as shown in Fig. 6.

Saying about a frequency degeneration in the experimental
spring model, we reveal that two high frequencies can coincide in
the experimental case when the springs with the same stiffness coef-
ficient are used to connect the nearest, second, and third pair of
balls. In Fig. 7, we present the dispersion curves at parameters
Λ = 0.3 and S = 1.7, which are close to values Λ0 = 1/3 and S0 = 2 cor-
responding the equality of the stiffness coefficients κ1 = κ2 = κ3. The
typical situation of the crossover and hybridization of vibrations is
observed in this case.10 The real degeneration of frequencies occurs
at the critical values Λ0 and S0 in three points k = 2π/3, π, 4π/3.

The interval of the parameter values in Figs. 5 and 6 are
chosen especially so that the pair Λ = 0.05 and S = 0.116 corre-
sponds to the graphene hexagon parameters, while the pair Λ = 1/6
and S = 2/3 may be suitable for estimating the benzene parameters.
Indeed, as follows from the data of Ref. 3 the parameter κ1 for “one
and a half’ bond between carbons can be taken as 735 N/m. We
choose a possible value of κ2 as half of κ1, and the parameter κ3 as

a third part of κ1. One order of magnitude of the decreasing coeffi-
cients is argued by the equality of all six main bonds in the
benzene ring. In Fig. 8, we show the dispersion curves and discrete
frequencies for this set of the benzene hexagon parameters.

Now we present the exact squared frequencies and corre-
sponding solutions of the system (19) as normal modes of the hex-
agonal model. For this, we substitute the allowed values of the
quasi-wave number (28) into dependencies (27) of the dispersion
law, substituting kp into formulas (22)–(24) beforehand. As a
result, we obtain explicit dependencies of the oscillation frequencies
on the parameters of the model λ = 9Λ and σ = 2S.

The zero frequency Ω2 ¼ w2
0 ; 0 corresponds to the normal

mode with p = 0, k0 = 0, which q1 = (0, 0, 0, 0, 0, 0; 1, 1, 1, 1, 1, 1)

FIG. 5. Evolution of the dispersion law branches depending on the parameter
Λ at S = 0.116.

FIG. 6. Evolution of the dispersion law branches depending on the parameter S
at Λ = 0.05.

FIG. 7. The dispersion curves and the discrete frequencies near the dispersion
crossover at Λ = 0.3, S = 1.7.
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and it describes the free angle rotation of the hexagon as a whole
around the axis passing through the center of mass. The superposi-
tion of two other modes with zero frequency can describe the free
angle rotation of the hexagon around the axis passing through any
of its particles. These modes are as follows:

p ¼ 1, k1 ¼ π

3
,

q2 ¼ 0, � 1, �1, 0, 1, 1;
1ffiffiffi
3

p (�1, 0, 2, 3, 2, 0)

� �
,

p ¼ 5, k5 ¼ 5π
3
,

q3 ¼ �1, �1, 0, 1, 1, 0;
1ffiffiffi
3

p (�2, 0, 1, 0, �2, �3)

� �
:

The squared frequency Ω2 ¼ w2
1 ; 4 þ 4λþ 2σ corre-

sponds to p = 0, k0 = 0, and its normal mode
q4 = (1,1,1,1,1,1;0,0,0,0,0,0) describes the breathing of the hexagon,
i.e., particles oscillate radially and do not change their angles.

The squared frequency Ω2 ¼ w2
2 ; 6 þ 2λ corresponds to

the normal modes of oppositely moving waves with wavelengths
that equal to the length of the hexagon ring:

p ¼ 1, k1 ¼ π

3
,

q5 ¼ 1, 1, 0, �1, � 1, 0;
1ffiffiffi
3

p (�1, 1, 2, 1, �1, �2)

� �
,

p ¼ 5, k5 ¼ 5π
3
,

q6 ¼ 2, 1, �1, �2, �1, �1, 1;
ffiffiffi
3

p
(0, 1, 1, 0, �1, �1)

� �
:

The squared frequency Ω2 ¼ w2
3 ; 4λ depends only on the stiff-

ness of the second-type spring. Its normal mode describes anti-
phase nearest neighbor oscillations along radii, which do not
change the potential energies of springs of the first and third types,
but only the second type. It is very important to reveal the fre-
quency of this mode in the spectral experiments with benzene in
order to estimate the strength of second neighbor interactions in
the molecule. The mode is the following:

p ¼ 3, k3 ¼ π, q7 ¼ (�1, 1, �1, 1; 0, 0, 0, 0, 0, 0):

The squared frequency Ω2 ¼ w2
4 ; 12 depends only on the

stiffness of the first-type spring. Its normal mode describes anti-
phase nearest neighbor oscillations along angle and does not
change the lengths of springs of the second and third types. The
revealing of this mode in the spectral experiment directly gives the
estimate for the strength of the main carbon-carbon interaction.
The mode looks like

p ¼ 3, k3 ¼ π, q8 ¼ (0, 0, 0, 0, 0, 0; 1, �1, 1, �1, 1, �1):

It is remarkable that the ratio of amplitudes ν0/ϑ0 for all the
above modes does not depend on the stiffness parameters of the
hexagon. For the last four eigenfrequencies, we need to calculate
special coefficients depending on them. We introduce the following
coefficients

C1 ¼
ffiffiffi
3

p 4� σþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(3� λ)2 þ (4� σ)2

p
3� λ

,

C2 ¼ � ffiffiffi
3

p 4� σ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(3� λ)2 þ (4� σ)2

p
3� λ

:

We note that the inequalities λ < 3 and h < 4, which mean that
κ1 > κ2 and κ1 > κ3 ensure that coefficients C1 > 0, C2 > 0.

The squared frequency

Ω2 ¼ w2
5 ; 5þ λþ σ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(3� λ)2 þ (4� σ)2

q

corresponds to the normal modes with the wavelength as half of
the hexagon ring length and relates to the acoustic dispersion curve

p ¼ 2, k2 ¼ 2π
3
,

q9 ¼ (C1(�1, 1, 0, �1, 1, 0); 1, 1, �2, 1, 1, �2),

p ¼ 4, k4 ¼ 4π
3
,

q10 ¼ (�2, 1, 1, �2, 1, 1; C2(0, 1, �1, 0, 1�1)):

The squared frequency

Ω2 ¼ w2
6 ; 5þ λþ σþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(3� λ)2 þ (4� σ)2

q

corresponds to the normal modes with the wavelength as half of

FIG. 8. The acoustic and optical branches of the dispersion law at Λ = 1/6,
S = 2/3.
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the hexagon ring length and relates to the optical dispersion curve

p ¼ 2, k2 ¼ 2π
3
,

q11 ¼ (C2(1, �1, 0, 1, �1, 0); 1, 1, �2, 1, 1, �2),

p ¼ 4, k4 ¼ 4π
3
,

q12 ¼ (�2, 1, 1, �2, 1, 1; C1(0, �1, 1, 0, �1, 1)):

Concluding this section, we note that the values of the param-
eters Λ and S, which are characteristics of graphene hexagons,
chosen for plotting the graphs, are relatively small, while for the
benzene molecule, deuterated benzene, and substituted benzenes
with halogens, these parameters are much larger. The behavior of
vibration frequencies in this range of parameters will be discussed
in the next section. But for comparison with benzene-like mole-
cules, one should, first of all, take into account the presence of
hydrogen, deuterium, or halogens in the molecule and, accordingly,
their influence on the dynamics of the hexagonal model, which is
done in the next section.

VIBRATION SPECTRA OF BENZENE-LIKE MODELS
ACCOUNTING MOTION OF HYDROGEN, DEUTERIUM,
AND HALOGENS

The mechanical string model of a benzene-like molecule
includes, in addition to six particles with mass m1 as carbon ana-
logues, six new balls with mass m2 as hydrogen analogues, each of
which forms a pair with one carbon, as shown in Fig. 2. The cou-
pling between the balls is provided by springs of three types as dis-
cussed in previous sections. We denote the stiffness coefficient of
the new springs as κ4.

The positions of new particles are described by cylindrical
coordinates bn, χn, and zHn . At rest, hydrogen is at a distance a0
from carbon and at a distance b(0)n = r0 + a0 from the origin. It lies
on the same line as carbon, so the equilibrium angle is χ(0)n ¼ f(0)

n ,
and its coordinate is zHn ¼ 0. We number hydrogen atoms by
analogy with carbon atoms. The chart showing the mutual devia-
tion of carbon and hydrogen atoms is shown in Fig. 9.

During small oscillations, particles m1 are displaced according
to formulas (2), i.e., rn = r0 + un and un � r0, and their angle

deviations θn are small. The contribution of the coordinate zn to
the spring length change is a nonlinear effect. We denote the dis-
placement of particle m2 along the radius by hn, and the deviation
angle from the equilibrium position as βn ¼ χn � χ(0)n . Then the
radius bn and angle difference δn in Fig. 9 are expressed as the fol-
lowing

bn ¼ r0 þ a0 þ hn, δn ¼ θn � βn: (30)

Using the scheme presented in Fig. 9, we calculate the change
in the length of the new spring (the magenta dashed line) during
the oscillations of the benzene-like model. According to the law of
cosines, the new distance between the particles m1 and m2 is equal

ln ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2n þ b2n � 2bnrncos(δn)

q
: (31)

At small angles θn and βn their difference δn is also small and
cos(δn) � 1� δ2n/2 . Thus, in the harmonic approximation, the
cosine value is taken equal to unity, hence, ln ¼ bn � rn
Substituting rn ¼ r0 � un and bn ¼ r0 þ a0 þ hn into formula (31),
we obtain a simple expression for the spring length and its change

ψn ¼ ln � a0 ¼ hn � un ; r0(gn � νn), (32)

where the dimensionless displacement gn of the particle m2 is intro-
duced. The potential energy of Hooke’s law interaction between
two particles is a quadratic function of ψn:

U4 ¼ κ4
2

X6
n¼1

ψ2
n ¼

κ4r20
2

X6
n¼1

(gn � νn)
2: (33)

Note that the present spring model actually takes into account the
angle interaction, usually interpreted as non-central, through the
cosine function in formula (31), which ensures the equilibrium
position of the particle m2 exactly on the same line as the particle
m1. However, as seen in Fig. 9, the particle oscillations measured by
the angle δn, as well as by the coordinates zHn are the anharmonic
effects in this model, as it takes place in the case of zn-coordinate in
the hexagon model. The kinetic energy of particles with mass m2 is
the following:

TH ¼ m2

2

X6
n¼1

dhn
dt

� �2

þ Iβ
2

X6
n¼1

dβn
dt

� �2

þm2

2

X6
n¼1

dzHn
dt

� �2

, (34)

where Iβ ¼ m2(r0 þ a)2 is the moment of inertia of atoms.
However, the last two terms, which determine the dynamics of
coordinates βn and zHn should be considered outside the harmonic
approximation, namely, within the framework of nonlinear equa-
tion. Thus, only the first term in the form

Th ¼ m2r20
2

X6
n¼1

dgn
dt

� �2

(35)

should be added to the kinetic energy of the carbon hexagon and
the term U4, given by Eq. (33), to the hexagon potential energy U.

FIG. 9. Scheme for calculating the length change in the spring with stiffness
coefficient κ4 during particle oscillations.
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Finally, for the mechanical spring model of a benzene-like mole-
cule, we obtain the total Lagrangian of the following form:

~L ¼ E0
2

X6
n¼1

dνn
dτ

� �2

þ
X6
n¼1

dθn
dτ

� �2

þ γ
X6
n¼1

dgn
dτ

� �2
 

�
X6
n¼1

�
νnþ1 þ νn þ

ffiffiffi
3

p
θnþ1 �

ffiffiffi
3

p
θn
�2

�Λ
X6
n¼1

�
3νnþ2 þ 3νn þ

ffiffiffi
3

p
θnþ2 �

ffiffiffi
3

p
θn
�2

�S
X6
n¼1

(νnþ3 þ νn)
2 � Q

X6
n¼1

(gn � νn)
2

!
, (36)

where the following parameters for the ratio of masses and the new
stiffness coefficient ratio are introduced as follows

γ ;
1
ρ
¼ m2

m1
, Q ¼ 4κ4

κ1
: (37)

Now we derive the Lagrange equations for the generalized
model, described by the Lagrangian (36), and find their solutions.
After appropriate differentiation of the Lagrangian (36) with
respect to the generalized coordinates and their velocities, we
obtain three equations:

d2νn
dτ2

� 1
E0

@~L
@νn

¼ 0,
d2θn
dτ2

� 1
E0

@~L
@θn

¼ 0,

d2gn
dτ2

� 1
E0

@~L
@gn

¼ 0:

(38)

We seek for solutions of system (38), as before, in the form of sta-
tionary oscillations

νn(τ) ¼ vne
�iΩτ, θn(τ) ¼ ϑne

�iΩτ, gn(τ) ¼ μne
�iΩτ: (39)

Substituting (39) into (38), we obtain a system of homoge-
neous algebraic equations with constant coefficients:

Ω2νn ¼ 2νn þ νnþ1 þ νn�1 þ
ffiffiffi
3

p
(ϑnþ1 � ϑn�1)

þ 3Λ
�
6νn þ 3νnþ2 þ 3νn�2 þ

ffiffiffi
3

p
(ϑnþ2 � ϑn�2)

�
þ S(2νn þ νnþ3 þ νn�3)þQ(νn � gn),

Ω2ϑn ¼ 6ϑn � 3ϑnþ1 � 3ϑn�1 þ
ffiffiffi
3

p
(νn�1 � νnþ1)

þ 3Λ
�
2ϑn þ ϑnþ2 � ϑn�2 þ

ffiffiffi
3

p
(νn�2 � νnþ2)

�
γΩ2μn ¼ Q(μn � νn): (40)

Due to the cyclic conditions, the solutions of the system of Eq. (40)
are found in the explicit form:10

νn ¼ ν0 exp (ikn), ϑn ¼ ϑ0 exp (ikn), μn ¼ μ0 exp (ikn): (41)

Substituting solutions (41) into the system (40), we obtain a system
of three equation for the amplitudes ν0, ϑ0 and μ0, which we write

in such a sequence:

γΩ2g0 ¼ Qg0 �Qv0,

Ω2θ0 ¼ b(k)θ0 � ic(k)ν0,

Ω2ν0 ¼ ic(k)θ0 þ ~a(k)ν0 �Qg0:

(42)

When writing the Eq. (42), we have used the functions b(k)
and c(k) from Eqs. (23) and (24) and introduced the function
~a(k) ¼ a(k)þ Q, where the function a(k) is defined by formula
(22). The condition for the existence of nontrivial solutions of the
system of Eq. (42) is the equality of the determinant of the follow-
ing matrix to zero:

det
Q� γΩ2 0 �Q

0 b(k)�Ω2 �ic(k)
�Q ic(k) ~a(k)� Ω2

������
������ ¼ 0: (43)

Expanding the determinant, we get the following cubic equation
for the squared frequency Ω2:

(Q� γΩ2){(b(k)� Ω2)(~a(k)�Ω2)� c2(k)}� Q2(b(k)� Ω2) ¼ 0:

(44)

It is easy to see that this equation is equivalent to the condition
that the determinant of some Hermitian matrix is equal to zero

det

Q
γ
�Ω2 0 � Qffiffiffi

γ
p

0 b(k)�Ω2 �ic(k)

� Qffiffiffi
γ

p ic(k) ~a(k)�Ω2

����������

����������
; detkL̂�Ω2Îk ¼ 0: (45)

Thus, the characteristic Eq. (45) is equivalent to the eigenvalue
problem for the Hermitian operator L̂ and the squared frequencies
are nothing but its eigenvalues, which are necessarily real quanti-
ties. This means that the cubic Eq. (44) has all three real roots.
Thus, there exist necessarily three branches of the dispersion law,
i.e., three dependencies Ω2

1,2,3(k).
The characteristic cubic Eq. (44) can be rewritten in the stan-

dard form:

Ω6 þ ~A(k)Ω4 þ ~B(k)Ω2 þ ~C(k) ¼ 0, (46)

where the coefficients are the following functions:

~A(k) ¼ �(~a(k)þ b(k)þ ρQ),

~B(k) ¼ ~a(k)b(k)� c2(k)þ ρQ(~a(k)þ b(k)� Q),

~C(k) ¼ ρQ(b(k)(Q� ~a(k))þ c2(k)):

(47)

Here and further, it is convenient to use the denotation ρ
instead 1/γ.

Now we present three real roots of this Eq. (46) as cumber-
some but explicit functions of the quasi-wave number using
Cardano’s formulas.12 First, as usual, we need to reduce the
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Eq. (46) to the depressed cubic

y3 þ p(k)y þ g(k) ¼ 0 (48)

by replacing y ¼ Ω2 þ
~A(k)
3

and introducing the coefficients as
follows:

p(k) ¼ �
~A
2
(k)
3

� ~B(k)

 !
, 0, (49)

g(k) ¼ 2
~A(k)
3

� �3

�
~A(k)~B(k)

3
þ ~C(k): (50)

Whereupon, the squared frequencies Ω2, as the roots of the
cubic Eq. (46), are written explicitly presenting three branches of
the dispersion law:

Ω2
1(k) ¼ �

~A(k)
3

þ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
j p(k)j
3

r
cos

α(k)
3

� �
, (51)

Ω2
2,3(k) ¼ �

~A(k)
3

� 2

ffiffiffiffiffiffiffiffiffiffiffiffi
j p(k)j
3

r
cos

α(k)
3

+
π

3

� �
, (52)

where the dependence of the function α(k) is as follows:

α(k) ¼ arccos � g(k)
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

j p(k)j
� �3

s0
@

1
A: (53)

Below we demonstrate graphically the obtained branches for
specific parameter values Λ, S, Q. The studied benzene-like model
is believed to be applicable to the description of the benzene mol-
ecule as well as fully deuterated and halogenated benzenes. In Ref. 3,
the values of the parameters of interactions between carbon and
hydrogen, deuterium, fluorine, chlorine, bromine, and iodine are
presented. In Fig. 10, we use corresponding the mass ratio γ and
the stiffness ratio Q, and parameters Λ and S of the hexagon
model (Fig. 8) to plot graphs for pairs (a) C–H, (b) C–D, (c) C–F,
(d) C–Cl, (e) C–Br, and (f ) C–I. From (a) to (f ), the parameters γ
and κ4 in units N/m change respectively as follows: γ = 1/12, 1/6,
1.58, 2.96, 6.58, 10.58 and κ4 = 490, 490, 596, 364, 313, 265. We
see that in the case of benzene [Fig. 10(a)], the acoustic and
optical branches are practically the same as in the hexagon model
in Fig. 8 because the hydrogen branch is much above and does
not affect them. Thus, the dispersion curves indicate the well-
known separation of the benzene frequency spectrum into three
groups. The isotope effect with deuterium is presented in Fig. 10(b).
The interaction between the branches begins already from fluo-
rine and strengthens with increasing γ. The typical crossover sit-
uation occurs between a previously acoustic branch and the
practically local frequency of the carbon-halogen oscillation,
which is seen as the red flat band portion in the case of
bromine and especially iodine [Figs. 10(e) and 10(f )]. Thus, the

degeneration of frequencies is always removed, and the oscillation
hybridization takes place.

It is remarkable that the discrete frequency spectrum,
marked by the grey balls in Fig. 10, can be found exactly as the
explicit functions of the benzene-like model parameters. The
branch dependences of the dispersion law allows us to deter-
mine a discrete set of vibration frequencies of a benzene-like
molecule by substitution in them the values of the quasi-wave
number, satisfying the Born-Von Karman conditions (28).
When p = 0 and the quasi-wave number k0 = 0, then the func-
tions in the cubic Eq. (44) are significantly simplified and take
the form:

~a(0) ¼ w2
1 þ Q, b(0) ¼ c(0) ¼ 0, (54)

In this case, the characteristic Eq. (46) has one zero root Ω2

¼ Ω2
1(0) ¼ 0 and actually degenerates to the quadratic:

Ω2(Ω4 � �B(0)Ω2 þ �C(0)) ¼ 0, (55)

where the coefficients are equal as

�B(0) ; ~A(0) ¼ w2
1 þ (1þ ρ)Q, �C(0) ; ~B(0) ¼ ρQw2

1: (56)

Then, we solve the quadratic equation for Ω2 in parentheses of
Eq. (55), and after elementary transformations of its roots, we
find squared frequencies in the explicit form:

Ω2
2,3(0) ¼

1
2

w2
1 þ (1þ ρ)Q+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(w2

1 � (1þ ρ)Q)2 þ 4Qw2
1

q� 	
:

(57)

Both frequencies are placed on the ordinate axis in Fig. 10.
When p = 1 and the quasi-wave number k = π/3, then the

functions in the cubic Eq. (44) are expressed directly through half
of the squared frequency w2

2 ¼ 2(3þ λ):

~a
π

3

� �
¼ 1

2
w2
2 þ Q, b

π

3

� �
¼ c

π

3

� �
¼ 1

2
w2
2: (58)

The characteristic Eq. (46) again has one zero root Ω2 ¼ Ω2
1
π

3

� �
¼ 0 and after its exclusion, degenerates to the quadratic:

Ω4 � �B
π

3

� �
Ω2 þ �C

π

3

� �
¼ 0, (59)

where the coefficients are equal to

�B
π

3

� �
¼ �~A

π

3

� �
¼ w2

2 þ (1þ ρ)Q, �C
π

3

� �
¼ ρþ 1

2

� �
Qw2

2: (60)

The two roots of a quadratic equation are as follows:

Ω2
2,3

π

3

� �
¼ 1

2
w2
2 þ (1þ ρ)Q+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(w2

2 � (1þ ρ)Q)2 þ 2Qw2
2

q� 	
:

(61)
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FIG. 10. The dispersion law branches and the discrete frequency spectra of benzene with (a) hydrogen and (b) deuterium, and fully substituted benzenes with (c) fluorine,
(d) chlorine, (e) bromine, (f ) iodine, respectively. The dependencies Ω1(k) (the black upper lines) are given by Eq. (51), and Ω2(k) (the blue middle lines) and Ω3(k) (the
red lower lines) are given by formulas (52) with signs “plus” and “minus”, respectively.
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When p = 3 and k = π the functions in the cubic equation (44)
become as follows:

~a(π) ¼ w2
3 þ Q, b(π) ¼ 12, c(π) ¼ 0: (62)

Since the last coefficient in (62) is zero, Eq. (44) is rewritten as

(Ω2 � b(π)){(γΩ2 � Q)(Ω2 � ~a(π))� Q2} ¼ 0: (63)

From Eq. (63), it follows that the root Ω2
1(π) ¼ 12 is indepen-

dent of stiffness coefficient ratios and remains unchanged even
when we add hydrogen, deuterium, or halogens to the hexagon
model. It can be simply explained because the normal mode does
not change any radial distance between particles. The quadratic
equation for the remaining two roots can be rewritten as

(Ω2 � ρQ)(Ω2 � ~a(π))� ρQ2 ¼ 0: (64)

The quadratic Eq. (64) has two standard roots:

Ω2
2,3(π) ¼

1
2

w2
3 þ (1þ ρ)Q+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(w2

3 þ (1� ρ)Q)2 þ 4ρQ2

q� 	
:

(65)

And only in the cases, when k = k2 = 2π/3 and k = k4 = 4π/3, Eqs. (44)
and (46) still remain truly cubic, and their roots have to be determined
by general Cardano’s formulas with the substitution of the values k2
and k4 into all three branches of the dispersion law (51)–(53).

Thus, we have found explicitly the vibration spectrum of the
mechanical benzene-like model with Hooke’s law spring interac-
tion. Its dynamics in the harmonic approximation maintains the
specific features of oscillation motion of carbon-based cyclic hexag-
onal systems, in particular, deuterated and halogenated benzene
molecules. As a theoretical perspective, it seems interesting to study
the dynamics of stable flat cyclic models with an arbitrary finite
number of particles coupled by various kinds of springs in the
framework of the approach proposed in the present work. The
principal formula (9) for jth spring length change is easy to gener-
alize to the case of arbitrary particle number N:

ln,nþj�l(0)n,nþj¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2nþjþr2n�2rnþ1rncos

2πj
N

þθnþj�θn

� �s
�l(0)n,nþj,

j¼1,2,3... (66)

Evidently, after linearization near the equilibrium values of the
polar coordinates of particles, the length spring changes can be used
to derive the Lagrangian and the Lagrange equations and eventually
to find the discrete frequency spectrum of harmonic oscillations.

CONCLUSION

The main findings of this study are as follows:

(1) The oscillatory dynamics of the hexagonal spring-ball model of
benzene-like nanosystems has been analytically investigated in
the harmonic approximation. The model captures the main

vibrational properties of cyclic nanostructures which include
the graphene and carbon nanotube hexagons, and the benzene
molecule itself and fully deuterated and halogenated benzenes.
This mechanical hexagon is built from balls connected by
springs, which ensure interactions with the nearest, second and
third neighbors, according to Hooke’s law, and stabilize the
system in a flat configuration. The geometrical approach has
been used to find the spring length change during oscillations,
which has been the key point for constructing the Lagrangian
of the hexagonal system.

(2) The second clue moment has been a choice of cylindrical coordi-
nates for the description of oscillations of a benzene-like ring,
whose Lagrange equations with the cyclic Born-Von Karman con-
dition turned out to be similar to those of one-dimensional two-
component (scalar) lattice model. The acoustic and optical
branches of the dispersion law of such a lattice model have been
found analytically. The imposition of the cyclic Born-Von
Karman boundary condition on the stationary solutions of the
Lagrange equations establishes the discrete frequency positions on
the found branches of the dispersion law. Thus, discrete frequen-
cies can be classified according to their belonging to the branches
of the dispersion law. At the same time, the shape of the branches
determines the existence area of groups of discrete frequencies. As
a result, the vibration spectrum of hexagon harmonic oscillations
and its normal modes have been exactly found in the form of
their explicit dependencies on all model stiffness parameters.

(3) The generalized benzene-like model has been studied, which
takes into account the presence of hydrogen, deuterium, and
halogens in the benzene molecule itself and the substituted ben-
zenes, respectively. The analytical description of the associated
lattice model has been carried out, resulting in finding the
acoustic and two optical branches of the dispersion law. The
effect of the hybridization of vibration modes and pushing of
spectral branches in a crossover situation is revealed. The
branches are hybridized with forming the forbidden frequency
gap, while one of the branches behaves like the flat band of the
attached impurity.13 For the generalized model, the discrete fre-
quency dependences on all interaction parameters and the mass
ratio of carbon and attached hydrogen, deuterium, and halogens
have been found. We also shortly discussed how the obtained
results could be used for the analysis of experiments in molecu-
lar spectroscopy and generalized for the theoretical description
of cyclic systems with an arbitrary finite number of particles.
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