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ABSTRACT

Noncollinear discrete domain walls in the Heisenberg anisotropic ferromagnetic chain under applied magnetic field and their small excita-
tion spectra are studied analytically and numerically in the framework of the Takeno-Homma equation. The intersecting frequency depen-
dences of localized excitations and continuous spectrum oscillations and the removal of the degeneracy by the magnetic field are revealed.
The variational approach is proposed to describe the domain walls and to investigate their stability. It is shown that the obtained analytical
expressions fit very well the numerical solutions. The total energy of static discrete domain walls and the Peierls energy barrier between
them are found explicitly. The stability diagram for noncollinear domain walls on the plane of parameters of the exchange and the magnetic
field is calculated, and it looks like the alternating stripes structure of stability regions of the bond-centered and site-centered discrete
domain walls. This diagram feature is explained by the oscillating dependence of the Peierls energy barrier on the exchange and the mag-
netic field parameters.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/10.0007073

1. INTRODUCTION

Spin nanoclusters in the quasi-one-dimensional Ising fer-
romagnets and resonant phenomena caused by their presence are
the subject of experimental studies for а long time beginning for
Ref. 1. Such a nanodomain consists of a few spins oriented oppo-
sitely to all others and separated from them by two Ising domain
walls. The interaction of the cluster spins with the microwave field
leads to the spin-cluster resonance, which has become a powerful
research tool of magnetic properties of low-dimensional crystals.2 It
has also been shown theoretically3–5 that the Ising domain walls
can be stable in the quasi-one-dimensional Heisenberg ferromag-
nets with the single-ion easy-axis anisotropy of the order of the
exchange. In this case the description of domain walls and their
small excitations as well as stability properties has been performed
in the framework of the Landau–Lifshitz equation.6 The Ising
domain wall stability makes it possible the existence of spin nano-
clusters in the strongly anisotropic Heisenberg ferromagnetic
chains, as predicted in Refs. 7–9.

Typical examples of quasi-one-dimensional Heisenberg ferro-
magnets are CsNiF3,

10 possessing the excharge interaction that is
significantly larger than the easy-plane anisotropy, the organome-
tallic compounds TMNC and TMNB with the high easy-plane
anisotropy that is twice more than the exchange,11,12 and biaxial
TMANC13 and FeTAC14 with the predominant easy-axis anisot-
ropy. In magnetic crystals of the first type with the very weak addi-
tional easy-axis anisotropy in the easy plane the spin nanoclusters
are unstable, and under applying the magnetic field they are trans-
formed in the 360° domain walls. These spin structures can be
described as solitons of the sine-Gordon (SG) equation,15 to which
the Landau-Lifshitz equation is reduced in the long-wavelength
limit.16 Instead the second type and especially the third type of fer-
romagnets with the biaxial anisotropy can be described by the dis-
crete Takeno-Homma (TH) equation.17–21 The Takeno-Homma
model is formulated in terms of the azimuthal angles of spins
under assumption of their small deviations from the anisotropic
easy plane, and in the general case it fully takes into account the
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exchange interaction between neighboring spins, the in-plane
anisotropy and the applied magnetic field.9,21

In the framework of their equation and its simpler reductions,
Takeno and Homma studied numerically dynamical properties of
discrete solitons and breathers, and the proximity of these nonlin-
ear excitations to solitons of the integrable sine-Gordon equation.
As a rule, in numerical simulations the exchange parameter of the
Takeno-Homma reduced equations18–20 has been chosen as the
largest in comparison with the anisotropy constant and the mag-
netic field to make the equations close to the SG equation. In Ref.
22 the TH equation was studied numerically for one fixed value of
the ratio of comparable exchange and anisotropy constants, and
the noncollinear 360° domain wall and its linear oscillation modes
for several values of the magnetic field parameter were found.

First, the TH equation was deduced to describe the DNA non-
linear dynamics.17,18 Then the model was applied to magnetic
systems, crystalline polyethylene, and other plane-rotator models.19,23

Later, on the base of the model, Homma undertook the construction
of DNA thermodynamics.24 The majority of recent applications of
the TH equation is related again to low-dimensional magnets. This is
due to the appearance of new spin nano-objects, such as molecular
magnetic clusters or “magnetic molecules”.25–27 Typically, these
objects are the closed ferrimagnetic and antiferromagnetic spin
“wheels”, which weakly interact with each other in molecular crystals.
In a strong magnetic field, spins of the magnetic molecule tend to be
oriented along with the magnetic field. It means that in the case of
closed chains the magnetic field can change stepwise the total
moment of magnetic molecules. The prospects of using these nano-
objects to develop magneto-optical devices and quantum computers
are associated with this property.25 Progress in the synthesis of these
magnetic molecules has led to their great diversity in size and shape:
from large closed to small open chains. All this makes relevant the
application of the concept of spin nanoclusters to the disordered state
of the finite-size magnetic molecules and further study of their behav-
ior in a magnetic field.

In Refs. 8 and 9, authors investigated the stability and linear
excitation spectra of spin nanoclusters with the Ising domain walls
and found their stability boundaries as functions of a cluster size, the
exchange constant and the magnetic field, as well as the explicit form
of the internal oscillation modes and their local frequencies. In the
present study, we concentrate on noncollinear spin structures, namely
360° discrete domain walls, in which nanoclusters are transformed
after loss of stability. We have found numerically and analytically dis-
crete soliton solutions of the TH equation, corresponding to the equi-
librium domain walls with a mass center on a site and between sites,
respectively, and their small excitations spectra, in particular, frequen-
cies of internal oscillation modes. In result, we construct the stability
diagram on the plane of parameters of the exchange and the magnetic
field for 360° discrete domain walls and reveal its stripe structure. We
find the Peierls barrier for discrete domain walls, and from it, we
explain this specific feature of the stability diagram.

2. DOMAIN WALLS AND SPIN NANOCLUSTERS IN THE
TAKENO-HOMMA MODEL

The Hamiltonian of the Heisenberg ferromagnetic chain with
the biaxial single-ion anisotropy and the magnetic field directed

along the easy-axis has the form

H ¼ �J
X
n

SnSnþ1 þ 1
2

X
n

(D(Szn)
2 � A(Sxn)

2)� gμBH
X
n

Sxn: (1)

Here S n = S0 (sin θn cos wn, sin θn sin wn, cos θn) is the classi-
cal spin with the value S0 at the nth site, wn and θn are the
azimuthal and polar angles of the spin vector, respectively, J is the
exchange interaction constant, A and D are the easy-axis and easy-
plane anisotropy constants, respectively, H is the constant magnetic
field, g is the gyromagnetic ratio, and μB is the Bohr magneton.

In the case of the strong easy-plane anisotropy D >> J, A, and
small enough magnetic field with the assumption that only a weak
deviation of the spin vector from the easy plane is allowed,9,28 we
reduce approximately the Hamiltonian (1) to the Hamiltonian of
the Takeno-Homma model:18

H ¼ �h2

2DS20

XN
n¼1

_w2
n � J

XN
n¼1

cos(wn � wn�1)

� 1
2
A
XN
n¼1

cos2(wn)�
gμ0H
S0

XN
n¼1

cos(wn): (2)

The model is formulated in terms of only one scalar variable
wn, and the point in the expression (2) means the differentiation
with respect to time, and N is the total number of spins in the
chain. The dynamics of the infinite model with the Hamiltonian
(2) is described by the Takeno-Homma equation:

d2wn

dt2
þ λ(sin(wn � wn-1)� sin(wnþ1 � wn))

þ coswn sinwn þ h sin wn ¼ 0: (3)

The equation is presented in dimensionless form by introduc-
ing dimensionless parameters of the exchange λ = J / A and mag-
netic field h = gμBH/(AS0), as well as a unit of measurement of
time t0 ¼ �h/ S0

ffiffiffiffiffiffiffi
DA

p� �
. In the limit, when J >> A, the Hamiltonian

(2) is transformed into the Hamiltonian of the discrete double
sine-Gordon (DDSG) model.29 The corresponding dimensionless
DDSG equation looks like

d2wn

dt2
þ λ(2wn � wn�1 � wnþ1)þ coswn sin wn þ h sin wn ¼ 0:

(4)

In the long-wavelength continuum limit, when
λ(wn-1 + wn+1− 2wn) ≈ ∂2w/∂x2 ≡ wxx and x ¼ n/

ffiffiffi
λ

p
, from Eq. (4)

the dimensionless double sine-Gordon equation follows30

wtt � wxx þ sin w cos wþ h sin w ¼ 0: (5)

In the case of the absence of magnetic field, h = 0, Eq. (5) is
reduced to the integrable SG equation for the variable u = 2w:

utt � uxx þ sin u ¼ 0: (6)
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Therefore, in terms of the azimuthal angle w there are the
π-kink and π-antikink solutions of the SG equation, which corre-
spond to 180° domain walls of opposite signs:

w+(x) ¼ 2 arctan exp(+(x � x0)), (7)

where x0 is a coordinate of the mass center of the domain wall.
In the nonzero magnetic field h, two identical domain walls

form the static bound state, the wobbler,30 which is exact solution
of Eq. (5):

wW(x) ¼ 2 arctan exp(κW (x � x0)� RW)

þ 2 arctan exp(κW (x � x0)þ RW): (8)

Parameters of the wobbler are the following functions of the
magnetic field parameter:

κW(h) ¼
ffiffiffiffiffiffiffiffiffiffiffi
1þ h

p
, RW(h) ¼ ln

ffiffiffiffiffiffiffiffiffiffiffi
1þ h

p
� 1

� �
/
ffiffiffi
h

p� �
, (9)

where κW is the reverse effective length of the 180° domain wall
and RW / κW is a half of the wobbler width. The wobbler configura-
tion (8) corresponds to the equilibrium 360° domain wall, which
width is determined by the balance between mutual repulsion of
the identical 180° domain walls and the compression effect of the
magnetic field.

Noncollinear domain walls (7) and (8) arise as a consequence
of the large exchange interaction. In contrast to continuous
Eqs. (4)–(6), the TH equation possesses the Ising domain walls and
nanocluster solutions. The spin distribution in the Ising domain
wall is trivial:

w0
n ¼ 0, n , l; w0

n ¼ π, n � l, (10)

where l denotes an arbitrary site. This solution is natural in the
case of the absence of magnetic field, when the TH equation is
reduced to the π-lattice sine-Gordon equation:20

d2wn

dt2
þ λ(sin(wn � wn�1)� sin(wnþ1 � wn))þ coswn sin wn ¼ 0,

(11)

when both spin directions along the easy axis correspond to the
ground state of the ferromagnet. The stability problem of the
domain wall (10) and the spectral problem for its linear excitations
were solved in Ref. 7. Moreover, the problem of transformation of
the Ising domain wall into a noncollinear structure with increasing
the exchange parameter λ was solved completely for the chain con-
sisting of four spins. In the case of large parameter λ, the internal
mode frequency, which is close to the lowest edge of the continu-
ous wave spectrum, was calculated in Ref. 31. The problem of
transformation of the complete linear excitation spectrum during
the transition from collinear to noncollinear domain walls with
increasing the exchange for an arbitrary chain dimension has
stayed open.

In Refs. 8 and 9, authors considered the collinear structure with
the spin nanocluster as the following solution of the TH equation:

w0
n ¼ 0, n , l1; w0

n ¼ π, � l1 � n � l2; w0
n ¼ 2π, n . l2:

(12)

Spins in the nanocluster are oriented oppositely to the
magnetic field direction. Evidently, the cluster width is equal to
m = l2− l1 + 1, where integers l2 > l1.

The stability and spectral problems for the spin nanocluster
were solved analytically and numerically, and, finally, the stability
diagram for spin clusters of an arbitrary size on the plane of
parameters of the exchange and the magnetic field was found.9 It is
presented in Fig. 1.

As seen from Fig. 1, in the zero field (h = 0), when the ratio of
the exchange constant to the easy-axis anisotropy λ reaches a criti-
cal value λ0 = 3/4, the Ising domain wall and in general the spin
nanocluster lose stability, which signifies the transition to the non-
collinear phase. The spin nanocluster formed by two such walls,
depending on its size and the magnetic parameters of the chain,
can either transform into a 360° domain wall, or completely fall
apart into nonlinear excitations such as discrete breathers and spin
waves. With increasing the parameter h the critical value of λ
decreases, and for the magnetic field close to unity the spin cluster
abruptly decays.

In general, in order to solve the stability problem for any static
solution w0

n of the TH equation, it is necessary to find a spectrum
of its small excitations, i.e., to solve the linearized equation for the
small addition Δwn (t) to the solution:

Δwn(t) ¼ wn(t)� w0
n ,, 1, Δwn(t) ¼ ψnexp(iωt), (13)

FIG. 1. A stability diagram of nanoclusters with the number of spins between 1
and 8.
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which is reduced to the eigenvalue problem with the squared fre-
quency spectral parameter ω2:

λ((ψn �ψn�1)cos(w
0
n �w0

n�1))� ((ψnþ1 �ψn)cos(w
0
nþ1 �w0

n))

þ (cos 2w0
n þ h cosw0

n)ψn ¼ ω2ψn: (14)

In the next sections, we presented numerical and analytical
results of the calculation of noncollinear spin structures, which
described by the TH equation, and their oscillatory and stability
properties.

3. SMALL OSCILLATIONS OF NONCOLLINEAR DOMAIN
WALLS IN WEAK MAGNETIC FIELDS

We start from the above-mentioned spectral problem for the
180° domain wall in the case of the absence of a magnetic field,
which is described by the π-lattice sine-Gordon equation (10). The
critical value of the exchange parameter λ0 of the transition from
collinear to noncol-linear domain wall in the infinite chain coin-
cides for both the Landau-Lifshitz and TH equations. For the
4-spins chain, such a value is smaller: λ*¼1/

ffiffiffi
2

p � 0:707,7 but for
the number of spins N more than 7, it already reaches practically
the limit value λ0. Therefore, we consider the finite-size chain of 8
spins with open edges and, after direct substitution of the spin dis-
tribution (10) into Eq. (14), easily find numerically eigenvalues of
the spectral problem for parameter λ less than λ0. The first six
squared frequencies are shown in Fig. 2. The behavior of the inter-
nal modes of the Ising domain wall was analyzed in Refs. 7 and 8.
The homogeneous in-phase oscillation determines the lowest fre-
quency edge ω0 of continuum spectrum, which number of modes
increases with increasing the number of spins. The antiphase mode
dependence begins from the edge frequency ω0 and tends to zero
at λ0.

In order to obtain a noncollinear domain wall as a static solu-
tion of Eq. (11), we use the usual relaxation method consisting in
solving the modified equation after the formal change of the
second-order temporal derivative in Eq. (11) by the first-order
derivative, which means introducing the effective dissipation. We
use the Ising domain wall spin configuration as the initial condi-
tion, and after dozen of iterations, we obtain the equilibrium non-
collinear spin distribution with very high accuracy. This method
has been employed throughout our research. After substitution of
the noncollinear solution into Eq. (14), we calculate the depen-
dences of the squared frequencies on the parameter λ for values
more than λ0. They are also shown in Fig. 2. After transformation
of the domain wall into the noncollinear structure, we reveal that
in the finite-size open chain, the frequencies of pairs of internal
modes and continuum spectrum oscillations have the unified inter-
section point. In other words, the “crossing situation” takes place.32

This point is equal to λcr ≈ 0.95 and practically does not change
with increasing the chain dimension more than 8 spins, while for
the 4-spins system it equals 0.838.

The oscillatory properties of the spin nanoclusters at a small
magnetic field we discussed in detail in Ref. 9. Now we concen-
trate on changing the small excitations spectrum after transforma-
tion of the cluster into the 360° domain wall. In order to find the
noncollinear structure for the static TH equation (3), in the relax-
ation scheme we choose the initial condition in the form (12)
with the cluster size m = 8 and the total number of spins in the
open chain N = 24. As an example, the resulting spin configura-
tion is shown in Fig. 3 for the case when the exchange and mag-
netic field parameters are chosen as λ = 1 and h = 0.01,
respectively. As seen in Fig. 3, the spin structure is similar to the
wobbler configuration (8) with the well-separated 180° discrete
domain walls. Its center of mass is located between sites, so that
the domain wall is bond-centered.

FIG. 2. The intersecting frequency dependences of internal and continuum
spectrum modes of the 180° noncollinear domain wall.

FIG. 3. The discrete 360° domain wall with a center of mass between sites at
λ = 1 and h = 0.01.
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For this fixed value of the magnetic parameter we calculated
noncollinear spin configurations for a wide range of the parameter
λ and then solved the eigenvalue problem (14). The squared fre-
quency dependences of the internal modes and continuum oscilla-
tion spectrum of the spin cluster and the 360° domain wall on the
exchange parameter are shown in Fig. 4. As seen in Fig. 4, the pres-
ence of two 180° domain walls, composing the nanocluster, leads
to splitting the dependences of the internal mode frequencies.
However, the main effect is the removal of the crossing situation,32

i.e., the removal of the frequency degeneracy at the point λcr by the
hybridization of internal oscillations and the formation of the fre-
quency gap. In the vicinity of the critical point the character of
every mode changes drastically. In result, with increasing the
exchange parameter after the critical point λcr four frequency
dependences of the internal modes behave as the following: the
lowest tends to zero and leads to the domain wall instability, the
second and the third exist in the gap, and highest tends to the con-
tinuum spectrum. This result is in agreement with numerical calcu-
lations of the internal mode frequencies of the wobbler-like
structure in the DDSG equation29 and explains the origin of local-
ized oscillation modes of the DDSG wobbler.

For the comparison, we also present analogous figures for the
chain with the odd number of spins, namely N = 25, and for the
larger field parameter h = 0.025. The localized excitation spectrum
of the nanocluster in this chain has been discussed in detail in
Ref. 9. The spin distribution of the 360° domain wall with a mass
center on the node is shown in Fig. 5.

The internal modes and continuum oscillation spectrum are
presented in Fig. 6. Comparing Figs. 4 and 6, we see that the more
the magnetic field, the more the gap between internal mode fre-
quencies after the removal of their degeneracy.

The above results suggest that the wobbler expression (8)
would be a good variational approximation of the discrete 360°
domain wall after returning from the continuous coordinate x to
discrete node’s numbers. Such a variational ansatz can be chosen in

the form

wV (n) ¼ 2 arctan exp(κ(n-n0)-R)þ 2 arctan exp(κ(n-n0)þ R),

(15)

where κ and R are variational parameters, and n0 = 0 or n0 = 1/2 if a
center of mass the 360° domain wall is located on site or between sites,
respectively. The equivalent form of the ansatz (15) looks like

wV (n) ¼ π þ 2 arctan
sinh κ(n� n0)

cosh R

� �
: (16)

FIG. 4. The internal modes and continuum oscillation spectrum of the spin
cluster and the bond-centered 360° domain wall at h = 0.01.

FIG. 5. The discrete 360° domain wall with center of mass on site at λ = 1 and
h = 0.025.

FIG. 6. The internal modes and continuum oscillation spectrum of the spin
cluster and the center-on-site 360° domain wall at h = 0.025.
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The expression (15) or (16) would be an approximate solution of
the TH equation if the parameter values κ and R correspond to the
minimum of the potential energy written in the dimensionless form:

E ¼ λ
X1
n¼�1

(1� cos(wn � wn�1))

þ 1
2

X1
n¼�1

(1� cos 2wn)þ h
X1
n¼�1

(1� coswn): (17)

Thus, the proposed variation procedure consists in the substi-
tution of the ansatz into Eq. (17) and finding the explicit expres-
sion E(κ, R) and seeking for local minima of this function for the
static spin configurations with n0 = 0 or n0 = 1/2. Before application
of the variation procedure, in the next section we study analytically
and numerically the case of high magnetic fields.

4. NONCOLLINEAR DOMAIN WALLS AT HIGH
MAGNETIC FIELDS

The TH equation in the case of magnetic fields much exceed-
ing the anisotropy, i.e., h >> 1, is reduced to the following equa-
tion:

d2wn

dt2
þ λ(sin(wn � wn�1)� sin(wnþ1 � wn))þ h sin wn ¼ 0: (18)

As easily seen, the static solutions of this equation depend
only on a single parameter a2 ≡ h / λ. Assuming that the exchange
is much more than a magnetic field, a << 1, we go to the long-
wavelength limit and can substitute in Eq. (18) instead the
exchange terms the following expression:

sin(wn � wn�1)þ sin(wn � wnþ1)

) �a2wxx �
a4

12
wxxxx þ

a4

2
w2
xwxx , (19)

where x = an is the continuous coordinate. In result, we deduce the
ordinary nonlinear differential equation

wxx � sinw ¼ a2 w2
xwxx �

1
6
wxxxx

� �
: (20)

The approximate solution of Eq. (20) is obtained, using the
smallness of the parameter a2 and the perturbation theory of
Ref. 33, in the form of the compressed 4π-kink:

w(x) ¼ 4 arctan exp(x)� a2

4
1
3

x
cosh x

� 5
sinh x

cosh2x

� �
: (21)

In Ref. 33, it has been shown that the solution like Eq. (21) can
be considered as the small parameter expansion of the expression

w ¼ 2 arctan exp(κ0x � iδ0)þ 2 arctan exp(κ0x þ iδ0) (22)

with the specific values of its parameters: κ0 = 1− a2 /24 and
δ0 ¼

ffiffiffi
5

p
a/2. Although κ0 < 1 means that the π-kink width increases

but the larger parameter δ0 leads to steepening the 360° domain
wall.33 The expression (22) prompts the following variational ansatz
for the discrete 360° domain wall in high magnetic fields:

wV (n) ¼ 2 arctan exp(κ(n-n0)-iδ)

þ 2 arctan exp(κ(n-n0)þ iδ), (23)

or its equivalent form:

wV (n) ¼ π þ 2 arctan
sinh κ(n� n0)

cos δ

� �
: (24)

Comparing Eq. (24) with Eq. (16), we can joint these two
expression in the unified ansatz:

wV (n) ¼ π þ 2 arctan
sinh κ(n� n0)

A

� �
(25)

with the variational parameter A, which changes from small values
to unity A = cos δ≤ 1, describing the compressed discrete 360°
domain wall, and from unity to large values A = cosh R≥ 1,
describing the wobbler-like structure of two discrete 180° domain
walls. In the next section we apply the variational procedure to find
approximate noncollinear discrete domain wall solutions and to
study analytically their stability properties.

5. THE PEIERLS BARRIER AND STABILITY DIAGRAM OF
DOMAIN WALLS IN THE TH EQUATION

First, we show that the variational approach leads to satisfac-
tory approximate solutions of the TH equation for the discrete 360°
domain walls. Introducing a discrete variable zn = κ(n− n0) after
substitution of the ansatz (25) into the energy expression (17), we
obtain the expression

E ¼ 2A λ
X
n

(sinh zn � sinh zn�1)
2

(sinh2 zn þ A)(sinh2 zn�1 þ A)

 

þ
X
n

sinh2zn

(sinh2 zn þ A)
2 þ h

X
n

1

sinh2 zn þ A

!
: (26)

It is appeared that the energy dependence can be calculated
analytically by the use of the Poisson’s formula:32

X1
n¼�1

f (n) ¼
X1

m¼�1

ð1
�1

f (k) exp (2πimk) dk: (27)

All the integrals are found exactly, and the energy can be pre-
sented as the sum of four contributions:

E ¼ E0 þ Eex
P þ Ean

P þ EZ
P : (28)

The term E0 is the part that is independent of n0. The results
of the integration are different for the parameters A = cosh R≥ 1
and A = cos δ≤ 1. We obtain the following expression for the
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wobbler-like configuration:

E0(κ, R) ¼ 2
κ

 
4λ

2R
sinh 2R

þ κ

sinh κ

coth2
κ

2
� tanh2 R

:þ 2hR coth R

þ coth R coth R� R

sinh2 R

� �!
, (29)

and for the compressed 360° domain wall, respectively:

E0(κ, δ) ¼ 2
κ

 
4λ

2δ
sin 2δ

þ κ

sinh κ

coth2
κ

2
� tan2 δ

:þ 2hδ cot δ

þ cot δ
δ

sin2 δ
� cot δ

� �!
: (30)

Now we are able to demonstrate the next step of the varia-
tional approach. Possessing the explicit expression E0 (κ, R), it is
easy to reveal a local minimum of this function and to determine
corresponding minimum “coordinates” κmin and Amin. In Fig. 7,
we show the surface E (κ, R) and sections near its local minimum.
The sought-for point is contained inside the elliptic contour.

There are a lot of algorithms to find the minimum point.
We use a simple iteration scheme: starting from the initial R0, we
calculate E (κ, R0), and after finding the derivative analytically,
we solve the equation ∂E(κ, R0)/∂κ = 0 to obtain κ1. Further
we calculate E(κ1, R), and after finding the derivative, we solve
the equation ∂E(κ1, R)/∂R = 0 to obtain R1, etc. Thus, due to the
rapidly converging scheme, we find the sought-for values of
the minimum “coordinates” κmin and Rmin for the fixed values of

the parameters λ and h. As examples, we present in Fig. 8 the
exact numerical domain wall solutions, which have been found by
the relaxation method, starting from the wobbler initial condition,
and the variational expressions with the calculated parameters. As
seen, the numerical and variational solutions are indistinguishable
by eye in contrast to the initial condition profile.

Returning to Eqs. (27) and (28), we recall that from a whole
set of harmonics with m ≠ 0 in the Poisson’s formula the first is
much larger than others,32 therefore we write out only this one in
contributions given by the exchange interaction, the anisotropy and
the Zeeman energy: Eex

P , E
an
P andEZ

P , respectively. Below these con-
tributions are presented for the case A > 1:

EexP ¼ 16π
κ

λ

coth2
κ

2
� tanh2R

� � 1
sinh 2R

sin
2π
κ
R

� �

sinh
π2

κ

cos(2πn0),

(31)

Ean
P ¼ 2π

κ
coth R

2π
κ
cothR cos

2π
κ
R

� �
�
sin

2π
κ
R

� �
sinh2R

0
BB@

1
CCA

� cos(2πn0)

sinh
π2

κ

, (32)

EZP ¼ 4π
κ
h coth R

sin
2π
κ
R

� �

sinh
π2

κ

cos(2πn0): (33)

The small additions (31)–(33) to the energy E do not practically
influence on the functional form of the solutions, but they define the
stability properties of noncollinear discrete domain walls. As seen
from the formulas, two equilibrium spin configurations with n0 = 0 or
n0 = -1/2 are separated by the Peierls energy barrier:

EB ¼ 4π

κ sinh
π2

κ

2h coth Rþ 8λ
sinh2R

1

coth2
κ

2
� tanh2R

� �
0
B@

1
CA

0
B@

� sin
2π
κ
R

� �
þ coth R

2π
κ
cothR cos

2π
κ
R

� �
�
sin

2π
κ
R

� �
sinh2R

0
BB@

1
CCA
1
CCA

(34)

For the wobbler-like solutions of the TH equation, the func-
tion EB (κ, R) is shown in Fig. 9. We see that for not small values
of the parameter κ≤ 1 and R > 1 the function oscillates and
changes sign.

In order to make sure that the Peierls barrier, separating
domain walls, can change sign, we have calculated the parameters

FIG. 7. The energy dependence E0 (κ, R) for the case λ = 6 and h = 1.
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κmin and Rmin as a function of the exchange parameter λ for the
fixed value of the parameter h = 0.15. Then we have found the
energy difference ΔE between the obtained variational solutions as
a function of λ. This oscillating dependence is shown in Fig. 10. As
seen in figure, the function ΔE(λ) equals zero in a sequence of
points: 1.59, 2.36, 3.4, 4.6, etc. These points define the boundaries
of stability and instability of domain walls with different positions
of a center of mass. In the region of parameter λ between 1.59 and
2.36, the domain wall with a center of mass between sites is stable,
and the domain wall with a center of mass on site is unstable, and
in the next interval vice versa, etc.

These analytical results are confirmed by direct numerical cal-
culations of solutions of the TH equation within the relaxation
method, starting from the wobbler-like ansatz, and finding the
spectrum of linear excitations of the domain walls to establish the
instability modes and the parameter values of their “smoothing”,
i.e., the frequency vanishing. Thus, we have constructed the stabil-
ity diagram of the noncollinear discrete domain walls on the plane
of parameters λ and h, which is shown in Fig. 11. The diagram has
a stripe structure where the yellow regions denote the stability
zones of the center-on-bond domain walls and the blue regions to
the stability zones of the center-on-site domain walls, respectively.
The left edge of the diagram is chosen to be equal to h = 0.15, and
we see that boundary points on the ordinate axis coincide well with

FIG. 8. The profiles of the initial wobbler configuration (Wob), variational (Var) and numerical (Cal) solutions for 360° discrete domain walls with a center of mass on site
(a) and between sites (b) for the parameters λ = 4 and h = 1.

FIG. 9. The dependence of the energy barrier EB between of two equilibrium
wobbler-like configurations with n0 = 0 or n0 =−1/2 on the parameters κ and R.

FIG. 10. The oscillating energy barrier between discrete domain walls as the
function of the parameter λ for the parameter h = 0.15.
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the sequence of zeros of the function ΔE(λ) from Fig. 10. It is inter-
esting to note that the solutions presented in Fig. 9 lie on the stabil-
ity boundary on the diagram and their energies are equal. The
region of the stability of spin nanoclusters, presented in detail in
Fig. 1, is denoted in the diagram by white colour. The green colour
denotes the region where no static domain structures exist. In the
relaxation scheme they disappear, i.e., ferromagnet falls down in
the ground state, but in the nondissipative TH equation they decay
into discrete breathers and spin waves. The general form of the
limit boundaries of the instability of spin clusters and noncollinear
domain walls, including small and large magnetic fields, has

already been presented in Fig. 7 of Ref. 9 on a logarithmic scale.
The region of the exchange parameter λ of the order of unity above
the nanocluster instability boundary at small fields contains a
variety of inhomogeneous solutions including domain walls with
different numbers of spins in their central parts, soliton-antisoliton
structures, etc. They are obtained from different initial conditions
and turn out to be stable, leading to the wedge-shaped stability
boundaries like that in Fig. 11 for 360° domain walls. Therefore,
obtainment of the complete pattern of the stability of all inhomoge-
neous solutions needs more detailed research.

On the other hand, if the initial spin distributions would be
well and lead to the ansatz-like structures for large λ and h, but
they can work worse for small values of the parameters and differ
significantly from the final states. In this case, the calculated
energy and the domain wall contribution to the magnetization

M ¼ P1
n¼�1

(1� cos wn) look like dependences shown in Fig. 12.

While for the relatively large λ the energy dependences are smooth
and monotonic and the magnetization curves have only small
steps, then for the smaller exchange all the dependences become
stepwise and reflect the jumping transition between metastable spin
configurations.

At last, note that we do not regard in general extremely small
values of the exchange parameter λ, when one has to keep in mind
the problem of the anticontinuum limit,34 i.e., the limit of weakly
coupled spins, when the parameter λ vanishes. In the anti-
integrable limit, there are chaotic trajectories in the mappings to
which the TH equations are reduced in the static case.18 The relax-
ation method allows to get these metastable spin states, correspond-
ing to the local energy minima, but the final results crucially
depend on the initial spin configurations. They correspond to the
spin distributions with the random spatial sequence of the spin
directions along and opposite to the easy axis and cannot be
obtained within the analytical approach.

FIG. 11. The stability diagram of the noncollinear discrete domain walls on the
plane of the parameters λ and h.

FIG. 12. The dependences of the energy (a) and the domain wall contribution to the magnetization (b) on the magnetic field for different values of the exchange
parameter.
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6. CONCLUSION

The static topological spin structures in the quasi-one-dimen-
sional anisotropic Heisenberg ferromagnets under magnetic fields
have been studied analytically and numerically in the framework of
the Taken-Homma equation under applied magnetic fields. This
model describes well the known easy-plane and biaxial ferromagnets
such as CsNiF3 TMNC, FeTAC and their modifications. The impor-
tance of the stable static spin configurations is defined by their con-
tributions to the configurational partition function, and hence to
thermodynamic properties, which manifest themselves in the low-
temperature experiments with the quasi-one-dimensional magnets
and crystals with magnetic molecular nanoclusters, so-called mag-
netic molecules. We have investigated the structural conversion of
the spin nanodomain bounded by the Ising domain walls into the
noncollinear discrete 360° domain wall and traced the transforma-
tion of spectra of localized and propagated excitations of these spin
configurations under the action of a magnetic field applied along the
easy axis.

We have found the intersecting frequency dependences of
internal modes and continuum spectrum excitations of noncollin-
ear 180° and 360° domain walls and established the removal of the
degeneracy by the magnetic field. We have proposed the variational
ansatz for the discrete 360° domain wall solutions of the
Takeno-Homma equation and used the variation procedure to
obtain approximate solutions which are indistinguishable from
exact numerical solutions for a wide range of the exchange and
magnetic field parameters. It has allowed to calculate the analytical
expression for the total energy of the domain structure and found
the Peierls energy barrier between discrete 360° domain walls with
the spin configuration center on site and between sites. This energy
difference turns out to be the oscillating and changing sign func-
tion of the exchange and the magnetic field. This property of the
Peierls barrier prompts the alternation of the stability regions of
two kinds of the equilibrium domain walls. We have calculated by
the relaxation method the exact solutions for the domain walls and
found their instability modes and points of their frequency vanish-
ing. In result, we have built the stability diagram for noncollinear
domain walls on the plane of parameters of the exchange and the
magnetic field and revealed the predicted alternating stripes struc-
ture of the stability regions of two types of the equilibrium discrete
360° domain walls with the configuration center on site and
between sites. The obtained results concerning the behavior of the
internal mode frequencies of the 180° and 360° discrete domain
walls of the Takeno-Homma equation explain the origin and spe-
cific features of spectra of internal modes of discrete solitons in the
sine-Gordon equation and the double sine-Gordon equation,
which are regarded as the limit cases of the Takeno-Homma
equation.
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