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ABSTRACT

Strong driving of quantum systems opens opportunities for both controlling and characterizing their states. For theoretical studying of these
systems properties we use the rate-equation formalism. The advantage of such approach is its relative simplicity. We used the formalism for
description of a two-level system with further expanding it on a case of a multi-level system. Obtained theoretical results have good agree-
ment with experiments. The presented approach can also be considered as one more way to explore properties of quantum systems and
underlying physical processes such as, for instance, Landau–Zener–Stückelberg–Majorana transitions and interference.
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1. INTRODUCTION

Any problems related to quantum computers are very actual
in modern physics.1,2 Superconducting qubits can be considered as
very good candidates for being building blocks of these devices,3–5

since they have the following advantages:6 it is possible to control
superconducting qubits by microwaves; such systems show good
performance during operations at nanosecond scales; supercon-
ducting qubits are scalable what opens opportunities to use them in
lithography.

As a result, we can conclude that any studying of supercon-
ducting qubits properties is very important for further growth and
development of quantum computers. For example, such investiga-
tions could give useful insights for improvement of quantum logic
gate operations8 and enhancement of quantum algorithms perfor-
mance in general.9

The presented research is also important because it gives one
more approach for studying of the Landau–Zener–Stückelberg–
Majorana (LZSM) transitions and LZSM interferometry.10–13

LZSM transitions occur when a two-level system (TLS) is irradiated
by a signal with the frequency which is much smaller than distance
between energy levels.14 Such a phenomenon is reflected in various
scientific fields, such as nuclear physics,15 quantum optics,16 chem-
ical physics,17 solid-state physics,18 quantum information science.19

Especially, it is possible to use such transitions for increasing tun-
neling rate,20,21 controlling qubit gate operations,22 preparing
quantum states,23,24 multi-signal spectroscopy.25

The repetition of LZSM transitions leads to LZSM interfer-
ence.26,27 The LZSM interferometry can be used for a system
description and control, what was underlined in Refs. 27–29.
LZSM interferometry allows to understand better the results of
experiments which studied photon-assisted transport, conducted
by periodic waves, in superconducting systems30,31 and in
quantum dots.32,33 The result of interaction of a quantum system
with environment is decoherence. Such an effect is reflected in
behavior of interference picture.34–38 Thus, information about
decoherence processes can be deduced from the LZSM interfer-
ence picture.

The rest of the paper is organized as follows. In Sec. 2, the
rate-equation formalism for TLS is introduced with its expansion
on multi-level systems. Sec. 3 is devoted to application of a consid-
ered approach to study stationary regime of a persistent current
qubit, explored by authors of Ref. 34. The analysis of the persistent
current qubit dynamics was implemented in Sec. 4. In Sec. 5, we
adopt the rate-equation formalism for describing a multi-level
system, proposed in Ref. 7. It is noticeable to mention that theoreti-
cal and experimental results are in very good agreement. In Sec. 6,
we make conclusions.
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2. RATE-EQUATION APPROACH: FROM TWO-LEVEL
SYSTEMS TO MULTI-LEVEL SYSTEMS

The authors of Refs. 34, 39 successfully described their experi-
ment within the rate-equation formalism (see also Refs. 40–42). In
this section, we give a short description of theoretical aspects of
this method.

Let us firstly employ this method for a TLS with following
extension of obtained results on multi-level systems. The
Hamiltonian of a TLS, driven by external field, can be written in
the form

Ĥ(t) ¼ �Δ

2
σ̂x � h(t)

2
σ̂z , (1)

where σ̂x ¼ 0 1
1 0

� �
and σ̂z ¼ 1 0

0 �1

� �
are Pauli matrices, Δ is

the level splitting, h(t) is the external excitation which can be pre-
sented as follows:

h(t) ¼ εþ A sin 2πν*t þ δεnoise (t): (2)

Here ε is an energy detuning, ν and A are the frequency of the
excitation field and its amplitude, respectively, δεnoise(t) can be
treated as the classical noise. In paper Ref. 34, the authors used
white-noise model and for the LZSM transition rate they obtained
(see also Refs. 43–46)

Wðε;AÞ ¼ Δ2

2

X
n

Γ2J2nðA=vÞ
ðε� nvÞ2 þ Γ2

2

: (3)

Here Γ2 is the decoherence rate, Jn is the Bessel function, and the
reduced Planck constant is equal to unity (ℏ = 1). The diagram of
TLS energy levels is depicted in Fig. 1(a). Equation (3) characterizes
the transitions which happen when a system passes through a point
of maximum levels convergence.

In the case of a multi-level system, we should assign a corre-
sponding transition rate to each level quasicrossing point (point of
maximum levels convergence). The authors of Ref. 47 proposed to
extend the Eq. (3) on the transition between arbitrary states jii and
jji of a multi-level system by the formula

Wij εij;A
� � ¼ Δ2

ij

2

X
n

Γ2J2nðA=vÞ
εij � nv
� �2 þ Γ2

2

; (4)

where Δij is the energy splitting between states jii and jji, εij is the
corresponding energy detuning. Then the rate equation for the jii
state can be expressed,

dPi
dt

¼
X
j

Wij Pj � Pi
� �þX

i0
Γi0iPi0 �

X
i0

Γii0Pi: (5)

Here Pi is the probability that a system occupies jii state, Γii0 char-
acterize the relaxation from the state jii to the state ji0i.

Thus, writing equations (5) for each level, we can find occupa-
tion probabilities of the levels and then build corresponding inter-
ferograms. Usually, for simplicity, one considers only a stationary

case, dPi/dt = 0. The solution of such a system will not describe a
quantum object dynamics, but it is suitable for obtaining its main
properties. Also we can use the fact that the sum of all probabilities
is equal to unity.

3. QUBIT: INTERFEROGRAM

We start the studying of the rate-equation formalism from
applying it to a two-level system, proposed in Ref. 34. The consid-
ered system is a persistent-current qubit48 described by the
Hamiltonian from Eq. (1). The rate equation, Eq. (5), for the
system can be rewritten in the form

dP1
dt

¼ W10(P0 � P1)þ Γ0
1P0 � Γ1P1, (6)

where Γ1 is the relaxation rate from the state j1i to the state j0i, Γ10
characterizes the relaxation from the state j0i to the state j1i. Since
we are interested in the stationary regime, we can put dPi/dt = 0.
Supplementing Eq. (6) by the relation P0 + P1 = 1, we find

P0 ¼ W10 þ Γ1

2W10 þ Γ1 þ Γ0
1
, P1 ¼ W10 þ Γ0

1

2W10 þ Γ1 þ Γ0
1
: (7)

In Ref. 34, the occupation probability of an upper charge state
j1i P1 as a function of the flux detuning Δf (the energy detuning ε
in theory) and the source voltage Vrms (amplitude of the excitation
field A in theory) were experimentally studied for two values of the
excitation field frequency: (a) ν = 270 MHz and (b) ν = 90 MHz.
The corresponding plot is shown in Fig. 2 of Ref. 34. The parame-
ters of the experiment are Δ = 13 MHz, Γ1 = 50 kHz, Γ2 = 95 MHz,
Γ10 = Γ1 exp(−β ε), where β is a parameter which describes the
relaxation from the lower level to the upper one. For our theoretical
calculations, we assumed Γ10 = Γ1 × 10−3. The results of theoretical
computations are presented in Fig. 2. We can conclude that theo-
retical and experimental plots are in a good agreement.

4. QUBIT: DYNAMICS

In this section, a qubit dynamics is considered. For the analy-
sis, we compare two approaches: solving of the Lindblad equation
(the exact solution) and the system of rate equations (the approxi-
mate one). Let us firstly describe the exact approach (see, for
example, Refs. 49, 50). The Lindblad equation with the
Hamiltonian (1) can be written in the form

dρ
dt

¼ �i½Ĥ; ρ� þ
X
α

L
<

α½ρ�; (8)

where ρ ¼ ρ00 ρ01
ρ*01 1� ρ00

� �
is the density matrix, such that

P1 ¼ 1� ρ00, L
<

α is the Lindblad superoperator, which describes
the relaxation of the system caused by interaction with the envi-
ronment,

L
<

α½ρ� ¼ L̂αρL̂
þ
α � 1

2
{L̂þα L̂α, ρ}, (9)
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where {a, b} = ab + ba is the anticommutator. There are two
possible channels of relaxation for a qubit: dephasing
(described by L̂f) and energy relaxation (described by L̂relax).
The corresponding operators have the following form:

L̂relax ¼ ffiffiffiffiffi
Γ1

p
σ̂þ, L̂f ¼

ffiffiffiffiffiffi
Γf

2

r
σ̂z , (10)

where σ̂þ¼ 0 1
0 0

� �
, Γ1 is the qubit relaxation, Γf is the pure

dephasing rate, Γ2 = Γ1/2 + Γf is the decoherence rate.
On the one hand, by solving Eq. (8), one obtains P1 as a

function of time t, driving frequency and amplitude A, energy
detuning ε, the level splitting Δ. The occupation probability is the
function of all these parameters, P1 = P1(t, ν, A, ε, Δ). Obtained
dependence allows us to build, for instance, P1 = P1(ε, t) . On the
other hand, we can get the same relation by solving Eq. (5).
Figures 3(a) and 3(b) show the results of the theoretical

calculations of P1 as a function of time t and energy detuning ε
for A = 8 GHz and ν = 270 MHz, other parameters are the same
with Fig. 2. Figure 3(a) was calculated by the Lindblad equation
approach, while Fig. 3(b) is the result of solving the rate equa-
tions. One can conclude that considered approaches are in a good
qualitative correspondence. We also built the pictures for the ν
= 90 MHz, but since it did not give any additional insights, it was
decided not to include this case to the article. In Fig. 3(c), we can
see the line cut along Figs. 3(a) and 3(b) at ε = 5 GHz (blue line)
and ε = 7.5 GHz (black line). Solid lines correspond to the exact
solution, dashed lines are solutions of the rate equations. We can
see that both approaches are in a good agreement. The difference
between them can be seen if to zoom pictures (for example, con-
sider the first microseconds of the process). Figure 3(d) shows the
dynamics of the considered process during the first 400 ns. The
lines are marked in the same way as in Fig. 3(c). From the com-
parison, we can deduce that the rate-equation formalism averages
the oscillations, so the corresponding curve is a monotonous

FIG. 1. Energy levels as a function of the energy bias ε. Panel (a) shows graph for a TLS, (b) depicts energy levels of the four-level system studied in Ref. 7.

FIG. 2. Population P1 as a function of the excitation field amplitude A and the energy detuning ε. The computations were done for two different values of the excitation
field frequency: (a) ν = 270 MHz and (b) ν = 90 MHz, in agreement with Ref. 34. The used parameters are Δ = 13 MHz, Γ1 = 50 kHz, Γ2 = 95 MHz, Γ0

1 = Γ1 × 10
−3.
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curve, while the Lindblad equation approach reflects more sophis-
ticated system behavior.

5. MULTI-LEVEL SYSTEMS: DYNAMICS AND
INTERFEROGRAMS; THE CASE OF A SOLID-STATE
ARTIFICIAL ATOM

In this section, we theoretically study the solid-state artificial
atom in the layout of Ref. 7. An artificial atom is a structure where
electrons are trapped and can only have discrete energy states, like
in real atoms. The unperturbed part of the considered system
Hamiltonian has a form51

H ¼
X
n

Enjni njh � 1
2

X
m=n

Δmnjmi nh j; (11)

for case of our system unperturbed part of the Hamiltonian can be

written as

Ĥ ¼ � 1
2

�ε� B 0 Δ02 Δ03

0 ε Δ12 Δ13

Δ02 Δ12 �ε 0
Δ03 Δ13 0 ε� B

0
BB@

1
CCA: (12)

The value B = 2 × 8.4 GHz describes the position of quasi-
crossings Δ12 and Δ03 (see also further in the text). The correspond-
ing energy diagram can be seen in Fig. 1(b). The obtained energy
diagram is in a good agreement with ones in Refs. 7, 47. In the
region of our interest, the system contains 4 energy levels, placed in
double-well potential, detailed energy configuration can be found in
Ref. 45. In the considered case, states j0i and j1i are in the right
well, states j2i and j3i are in the left one. Moreover, accordingly to
Ref. 7, the relaxation inside a well is faster in this solid-state artificial

FIG. 3. Population P1 as a function of time t. Panels (a), (b) show P1 as a function of time t and energy detuning ε for A = 8 GHz and ν = 270 MHz. Panel (a) was calcu-
lated by the Lindblad equation approach, (b) is the result of solving the rate equations. Panel (c) is the line cut along (a), (b) at ε = 5 GHz (blue line, lower set of curves)
and ε = 7.5 GHz (black line, upper set of curves). Solid lines correspond to the exact solution, dashed are solutions of the rate equations. Panel (d) shows the dynamics
of the considered process during the first 400 ns, the lines are marked in the same way as in (c). Other parameters are the same with Fig. 2.
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atom than the relaxation between wells, so one can neglect relaxations
from state j1i to state j2i and vise versa. In the experiment, the popu-
lation in the left well PL = P2 + P3 was measured. Applying Eq. (5) to
the analyzed system, one obtains the system of rate equations:

_P0 ¼ �P0(W02 þW03 þ Γ20)þ P2(W20 þ Γ20)þ P1Γ10 þ P3W03,
_P1 ¼ �P1(W12 þW13 þ Γ10)þ P2W12 þ P3W13,
_P2 ¼ P0(W02 þ Γ02)� P2(W02 þW12 þ Γ20)þ P3Γ23 þ P1W12,
P0 þ P1 þ P2 þ P3 ¼ 1:

8>><
>>:

(13)

The corresponding relaxation rates of the system are Γ10 = 0.6 GHz,
Γ32 = 0.6 GHz, Γ20 = 0.05 MHz . The inverse relaxation rates (from a
lower state jmi to an upper one jni are Boltzmann suppressed, and
for simplicity we took Γmn = Γnm/100. The energy splittings are equal
to Δ02 = 0.09 GHz, Δ12 = 0.013 GHz, Δ13 = 0.5 GHz, Δ03 = 0.5 GHz,
and their positions are at ε = 0, 8.4, 0 and −8.4 GHz, respectively.
The decoherence rate Γ2 = 0.05 GHz.

To make the correspondence between the theory and the
experiment better, the authors of Ref. 47 proposed to take into
account the diabatic energy-level slope mi = dEi (ε)/dε of a level i
with energy Ei . The Eq. (2) can be rewritten in the form

hij(t) ¼ (jmij þ jmjj)(εþ A sin 2πνt)þ δεnoise (t): (14)

The system energy slopes7 equal jm0j, jm2j ¼ 1:44, jm1j,
jm3j ¼ 1:09:

The results of the theoretical calculations are presented in Fig. 4.
Panel (a) corresponds to the case of ν = 0.16 GHz, was built for
driving frequency ν = 0.85 GHz. The full picture consists of triangles
which can be very roughly interpreted as interactions within TLS. For
example, the system behaves like a qubit on the interval A < 4 GHz.

For the case (a) the picture on the interval A > 8.4 GHz is also
TLS-like, while for the case (b) the system behavior is more sophisti-
cated. We can also conclude that for the higher frequency resonances
become more distinguishable, as it was observed for a qubit.

To complete the research, let us study the system dynamics.
Figure 5 shows a dependence of population P2 + P3 on time and
energy detuning ε for A = 4 GHz and ν = 0.85 GHz. All parameters
are the same with Fig. 4.

FIG. 4. Artificial atom population PL = P2 + P3 as a function of the excitation field amplitude A and the energy detuning ε. For panel (a) the driving frequency ν = 0.16
GHz, for (b) ν = 0.85 GHz . The corresponding relaxation rates of the system are Γ10 = 0.6 GHz, Γ32 = 0.6 GHz, Γ20 = 0.05 MHz. The inverse relaxation rates (from a
lower state jmi to an upper one jni) are Boltzmann suppressed and for simplicity we took Γmn = Γnm/100. The energy splittings are equal Δ02 = 0.09 GHz, Δ12 = 0.013
GHz, Δ13 = 0.5 GHz, Δ03 = 0.5 GHz and their positions are at ε = 0, 8.4, 0 and −8.4 GHz, respectively. The decoherence rate Γ2 = 0.05 GHz. The system energy slopes7

equal |m0|, |m2| = 1.44, |m1|, |m3| = 1.09.

FIG. 5. Artificial atom population PL = P2 + P3 as a function of the energy
detuning ε and time t . The calculations were done for A = 4 GHz and ν = 0.85
GHz. Other parameters are the same with Fig. 4.
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6. CONCLUSIONS

Description of an N-level quantum system, if solving a Master
equation, requires solving N2−1 equations for the density-matrix
components. We consider an alternative approach consisting in
solving the rate equations, the number of which is N−1. We started
from a TLS for which we have only one equation instead of three
Bloch equations. Then we considered generalization for a multi-
level system and described a multi-level flux-qubit-based device.
The rate-equation approach involves relaxation and decoherence
and is demonstrated to be convenient for obtaining the stationary
states. Particularly, we have applied this method for the LZSM
interferometry, which is an important tool for quantum characteri-
zation and control.
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