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In the standard Landau-Zener-Stückelberg-Majorana (LZSM) problem, the bias sweep rate and gap are both
time independent and fully characterize the LZSM problem. We consider the nonlinear LZSM problem, in which
at least one of the two characteristic parameters varies as the system traverses the avoided-crossing region. This
situation results in what could be thought of as a more accurate description of any realistic situation as compared
with the idealized linear LZSM problem. We consider both the case of perturbative nonlinearities, where
the nonlinearity adds small corrections to the linear problem, and the case of essential nonlinearities, where the
sweep and/or minimum-gap functions are qualitatively different from those of the linear LZSM problem. In the
case of perturbative nonlinearities, we derive analytic expressions for the LZSM transition probability based on
the Dykhne-Davis-Pechukas (DDP) formula, taking into account the leading corrections to the standard LZSM
formula. We compare the derived approximate expressions with numerical simulation results and comment on
the validity of the approximations. In particular, if the nonlinear term is small in comparison to the linear term
throughout the finite duration of the avoided crossing traversal, the perturbative approximation is valid. Our
results also provide information about the validity of the DDP formula. In addition to reviewing cases of essential
nonlinearity treated previously in the literature, we analyze the case of an essentially nonlinear sweep function
that describes an almost square pulse.
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I. INTRODUCTION

The Landau-Zener-Stückelberg-Majorana (LZSM) prob-
lem [1–4] (see also the review [5]) deals with the quantum
dynamics of two quantum states when some system parameter
is varied such that the two corresponding energy levels ap-
proach each other, experience an avoided crossing, and move
apart as the variable parameter continues its variation. Despite
its simplicity, the LZSM problem applies to a remarkably
broad set of physical phenomena ranging from atomic col-
lisions and chemical reactions to the operation of quantum
computing machines. The dynamics of LZSM transitions can
also be used for the control of quantum systems [6–8]. Pa-
rameter variations can also lead to other effects in two-level
systems, such as motional narrowing and averaging [9].

The probability to make a transition between the two quan-
tum states in the LZSM problem was derived independently
by Landau, Zener, Stückelberg, and Majorana [1–4] (see also
Ref. [10]). In its basic formulation, a system parameter is
varied linearly from an infinitely large negative time to an
infinitely large positive time. This idealized assumption ren-
ders the problem exactly solvable, resulting in the well-known
LZSM formula.

If the problem deviates from the idealized scenario of a
linear sweep function and fixed gap, the problem is in general
not exactly solvable. There have been several studies over
the years on variants of the LZSM problems. In particular, a

number of special cases with specific sweep functions have
been shown to allow exact solutions. These exactly solvable
special cases, however, were generally obtained by identi-
fying functions that satisfy certain mathematical conditions
and hence allow analytical treatment. As a result, they do
not necessarily represent better approximations for realistic
physical systems in comparison with the original linear LZSM
problem.

In this work we calculate what can be considered the lead-
ing corrections to the LZSM formula arising from a weak
nonlinearity in the sweep function or a weak time dependence
of the gap. Quantum technologies have made remarkable
advances in recent years. Higher-order corrections to the ide-
alized LZSM transition probability, which might have been of
mostly academic interest in the past, could now be measured
and possibly utilized in future practical applications. This
situation makes it imperative to have more accurate approx-
imations for the LZSM probability in a nonlinear setting. In
addition to our analysis of the weak nonlinearity case, we
consider the power and error functions as sweep functions in
the limiting case when they are almost square pulses.

The paper is organized as follows: In Sec. II, we intro-
duce the idealized LZSM problem and how a nonlinearity is
added to the problem. In Sec. III, we describe the Dykhne-
Davis-Pechukas (DDP) formula, which can be applied to a
general LZSM problem. In Sec. IV, we review previous work
in the literature on the nonlinear LZSM problem. In Sec. V,
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we treat the case of a weak nonlinearity: We derive analytic
expressions for the corrections to the LZSM formula when
we include the leading-order nonlinear correction term to the
sweep function, and we test the limits of the perturbative
formulas with numerical calculations. In Sec. VI, we consider
a few additional interesting cases of the nonlinear LZSM
problem. Section VII gives results for an essentially nonlin-
ear sweep function that describes an almost square pulse. In
Sec. VIII, we consider the case of a time-dependent gap and
show that a general problem with a varying gap can be trans-
formed to one with a fixed gap but modified sweep function.
Section IX contains concluding remarks. In Appendix A, we
give a detailed calculation of the LZSM probability by the
DDP method for a sweep function with a weak quadratic
nonlinearity. Appendix B is devoted to the calculation of the
LZSM probability for a sinh function. Appendix C contains
the detailed calculation for eliminating the time dependence
of the gap, in addition to a perturbative formula for the case of
a time-dependent gap.

II. LINEAR AND NONLINEAR
LANDAU-ZENER-STÜCKELBERG-MAJORANA

PROBLEMS

The linear LZSM problem pertains to the dynamical evo-
lution of a two-level quantum system under a specific type
of temporal variation in the Hamiltonian. The dynamics of the
two-amplitude state vector |ψ〉 is governed by the Schrödinger
equation

i
d|ψ〉

dt
= H |ψ〉 (1)

(h̄ = 1), where the Hamiltonian is given by

H = 1

2

(
ε(t ) �

� −ε(t )

)
, (2)

and the sweep function

ε(t ) = vt, (3)

with v and � being the characteristic parameters of the LZSM
problem. Physically v is the sweep rate of the two diabatic
state energies relative to each other, and � is the gap (i.e.,
minimum separation) between the energies of the adiabatic
states. Both parameters can be taken positive without any
loss of generality. We shall refer to the t value at which the
adiabatic energy levels are closest to each other as the crossing
point.

It should be noted that any linear Hamiltonian, i.e., H (t ) =
A × t + B with Hermitian 2 × 2 matrices A and B, can be
transformed into the form given in Eq. (2), provided that A
is not proportional to the identity matrix. Working in a basis
that diagonalizes A makes the off-diagonal matrix elements
time independent. Any imaginary part in the off-diagonal
matrix elements can then be eliminated by multiplying the
basis states with appropriate phase factors. The crossing point
between the diagonal matrix elements can be set to t = 0 via
a shift in the time variable. Any nonantisymmetric component
in the diagonal matrix elements can then be ignored, since an
overall energy shift does not affect the LZSM dynamics.

The main quantity that is evaluated in the LZSM problem
is the transition probability between the two quantum states
as a result of traversing the avoided crossing region (i.e., the
region around t = 0). It is therefore usually assumed that
at the initial time t → −∞ the quantum state is given by
(ψ↑, ψ↓) = (1, 0), or alternatively (0,1), and the goal is to
determine the probabilities |ψ↑|2 and |ψ↓|2 at the final time
t → ∞, although some studies have considered the case of a
quantum superposition initial state [11]. These quantities rep-
resent the probabilities that the quantum system will stay in its
initial state or make a so-called nonadiabatic LZSM transition.
The probability PLZSM to remain in the same diabatic state,
i.e., (ψ↑, ψ↓) = (1, 0), is given by the well-known formula
(see, e.g., Ref. [5]):

PLZSM = |ψ↑(t → ∞)|2 = e−2πδ, (4)

where

δ = �2

4v
(5)

is the adiabaticity parameter.
The LZSM problem described above can, in some sense, be

considered the simplest model for a quantum system undergo-
ing nonadiabatic transitions by traversing an avoided-crossing
region. In particular, the LZSM problem has the appearance
of an idealized linear model in which the parameters v and
� remain constant from t → −∞ to t → ∞. In reality one
would expect these parameters to vary over time for any actual
physical setup, with v being defined as the instantaneous time
derivative of ε, i.e.,

v(t ) = ε̇(t ). (6)

Note that throughout the paper a time-dependent v will be
defined by Eq. (6), and not by Eq. (3). On the other hand,
approximating v and � by constants for an infinite amount
of time is not as bad as it might seem at first sight, because
the LZSM transition dynamics takes place only during the
traversal of the avoided crossing, as can be seen from a plot of
the state probabilities as functions of time (see, e.g., Fig. 3 in
Ref. [5]). The corresponding duration of the crossing process
can, as a rough estimate, be defined as

τLZSM = 1√
v

max

(
1,

�

2
√

v

)
. (7)

The values of v and � long before and long after the crossing
point are almost irrelevant. For this reason, using only the
values that v and � take at the avoided crossing point gives
a good approximation for the LZSM transition probability in
realistic problems. Nevertheless, it is natural to expect that v

and � will generally vary in time even during the traversal
period, and any such temporal variations of v and/or � can
be expected to affect the LZSM probability.

A simple picture of how the nonlinearity enters the prob-
lem is given by the case where an external parameter, e.g., an
externally applied field E , is varied linearly in time (E = vt)
but the bias function ε is a nonlinear function f (E ) of the field.
The bias function can then be expressed as

ε(t ) = f (vt ) = vt + χ2

2!�
(vt )2 + χ3

3!�2
(vt )3 + · · · . (8)
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Here χ2 and χ3 are the quadratic and cubic nonlinearity pa-
rameters, respectively. The factors of � in the denominators
are used to make the coefficients χn dimensionless. Correc-
tions from nonlinear terms in physical problems typically
decrease in importance as we go to increasingly high orders.
In other words, one would intuitively expect that, for a prob-
lem with a weak nonlinearity, the quadratic term will produce
the main correction to the transition probability, followed by
the cubic term and so on. We shall show below that the
quadratic nonlinearity leads to an especially small correction,
which can make the cubic nonlinearity important even in the
presence of a quadratic nonlinearity.

Figure 1 shows schematic diagrams of the energy-level
structure and various nonlinear sweep functions. The nonlin-
ear function plotted in Fig. 1(b) contains a quadratic term,
which is the leading-order correction to the linear approxi-
mation:

ε(t ) = vt

(
1 + α tanh

vt

α̃�

)
≈ vt + α

α̃

(vt )2

�
. (9)

Figure 1(c) shows examples of sweep functions that do not
contain a quadratic term: A superlinear function,

ε(t ) = vt (1 + λt2)1/2 ≈ vt

(
1 + λt2

2

)
, (10)

and a sublinear function,

ε(t ) = vt (1 + 2λt2)−1/4 ≈ vt

(
1 − λt2

2

)
, (11)

with λ > 0 in both cases. The superlinear case has
ε (3)(0)ε̇(0) > 0, while the sublinear case has ε (3)(0)ε̇(0) <

0. Throughout this paper, we denote the first and second
time derivatives using dots, while we denote the third time
derivative with the superscript “(3).” The functions plotted
in Fig. 1(c) have the additional property of being antisym-
metric about the point t = 0 and therefore contain only odd
powers of t .

III. DYKHNE-DAVIS-PECHUKAS FORMULA

The DDP formula [12,13] (see also Ref. [14]) is a powerful
tool to investigate LZSM-type problems with general func-
tional forms of the parameters v(t ) and �(t ). It was derived
with rigorous foundation in the adiabatic limit, but it has
proved to be a good approach to obtain rather accurate results
even away from the adiabatic limit.

A calculation utilizing the DDP formula typically proceeds
as follows: For the time evolution from t → −∞ to t → ∞
with general functions ε(t ) and �(t ), one first finds the zeros
of the function

E (t ) =
√

ε2(t ) + �2(t ) (12)

in the complex plane. In other words, one finds the values of t
that satisfy the condition

E (t ) = 0, (13)

treating t as a complex variable. For the DDP approach to be
justified, the following assumptions are made:

(1) The function E (t ) is analytic at least in a region that
contains the real axis and relevant zeros.
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FIG. 1. Schematic diagrams of the energy levels and sweep func-
tions of nonlinear LZSM problems. Panel (a) shows the energy levels
as functions of the bias ε, which is generally a function of time.
As in the linear LZSM problem, the instantaneous energy levels
(solid cyan lines) exhibit an avoided crossing. The dashed black
lines show the energies of the diabatic states, which asymptotically
approach the instantaneous energy eigenstates at ε → ±∞. In panel
(b), the solid red line corresponds to a nonlinear sweep function
that contains both a linear term and a quadratic term: Specifically,
ε(t ) = vt × [1 + 0.5 tanh(vt/10�)]. Panel (c) shows two examples
of time-antisymmetric sweep functions: The solid blue line cor-
responds to the superlinear function ε(t ) = vt[1 + 0.2(vt/�)2]1/2,
while the dashed magenta line corresponds to the sublinear function
ε(t ) = vt[1 + 0.4(vt/�)2]−1/4. For comparison, the dotted green
lines in panels (b) and (c) show the linear sweep function ε(t ) = vt .
The gap � is used as an energy unit for all the axes in this figure.

(2) There are no zeros on the real t axis, i.e., the functions
ε(t ) and �(t ) do not vanish simultaneously at any point during
the parameter variation.
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(3) No two zeros are extremely close or coincide with each
other.

One then identifies all the zeros of E (t ) that have positive
imaginary parts. In general, there will be multiple such zeros
t k
c , where the superscript k is a label for the different zeros

(k = 1, 2, . . . , n). In this case, the generalized DDP formula
can be used to calculate the transition probability [15]

P ≈
∣∣∣∣∣

n∑
k=1

�keiD(t k
c )

∣∣∣∣∣
2

, (14)

where

�k = 4i lim
t→t k

c

(
t − t k

c

) ε̇(t )�(t ) − ε(t )�̇(t )

2E2(t )
, (15)

and

D(t ) =
∫ t

0
E (s)ds. (16)

Note that |�k| = 1 for functions that satisfy the required con-
ditions for the DDP approach. If there is only one zero of E (t )
with a positive imaginary part, i.e., n = 1, Eq. (14) is consid-
erably simplified. Even if there are multiple zeros, one can
obtain a simple approximation for Eq. (14) by keeping only
the contribution from the zero that has the smallest positive
imaginary part, i.e., the zero that is closest to the real axis in
the upper half of the complex plane. This approximation can
be justified by the reasonable argument that as we move far-
ther away from the real axis we can intuitively expect that the
integrals D(t k

c ), including their positive imaginary parts, will
grow, which means that the contributions of far-away zeros
to Eq. (14) will be exponentially small and can be neglected.
One then obtains the standard DDP formula for the transition
probability,

P = e−2ImD(tc ). (17)

We note here that the generalized DDP formula was put
on rigorous foundations in Refs. [16–18], although it was
mentioned in Ref. [13] as a possible generalization for the
single-zero formula of Eq. (17).

In the simple case ε(t ) = vt and �(t ) = �, i.e., the orig-
inal LZSM problem, we easily find that there is only one
relevant zero, namely tc = i�/v, which then gives the simple
elliptical integral

D(tc) = i
∫ �/v

0

√
�2 − (vs)2ds

= i�2

v

∫ 1

0

√
1 − x2dx = iπ�2

4v
, (18)

leading to the LZSM formula [Eq. (4)].

IV. PREVIOUS WORK ON THE NONLINEAR
LANDAU-ZENER-STÜCKELBERG-MAJORANA

PROBLEM

We now briefly review previous studies of the nonlinear
LZSM problem in the literature.

A. Perturbative nonlinearities

Here, the nonlinearities appear as perturbative corrections,
and the transition probability P deviates little from the LZSM
formula. These corrections are in fact of principal interest for
our present study. With such perturbations, appreciable devi-
ations from the LZSM formula appear only for sufficiently
large values of the nonlinearity parameter. By reducing the
nonlinearity to zero, one can approach and recover the LZSM
formula.

Based on the DDP formalism, the superlinear (10) and
sublinear (11) sweep functions were considered in Ref. [15].
In the superlinear and sublinear cases, the nonlinearity, re-
spectively, decreases and increases the transition probability
P with respect to the LZSM formula [15].

In Ref. [19], the authors studied situations where the
Hamiltonian of a gapless physical system, such as graphene
and one- and two-dimensional p-wave superconductors, can-
not be linearized even in the vicinity of the crossing point
and quadratic corrections are crucial. Similarly, linearizing the
spectrum in the vicinity of the crossing point is insufficient
to describe the probability of the topological transition in a
two-dimensional electron gas subject to an in-plane magnetic
field and in the presence of spin-orbit coupling [20]. In this
context it is worth mentioning the related problem in which
a physical system (for example, single electrons tunneling
between semiconductor quantum dots) possesses more than
two states and experiences nonadiabatic transitions among
these states, which is referred to as the multistate LZSM
problem [21].

B. Essential nonlinearities

In this case, the problem parameters do not simply have a
small correction term added to the linear LZSM problem, e.g.,
having a bias term ε = vt + δε(t ) where δε(t ) is a small term
that leads to small corrections in various physical quantities.
Instead, the problem parameters deviate essentially from the
linear case. Essential nonlinearities in the bias term of power-
law form

ε(t ) = βN+1tN (19)

(with β having frequency units), were studied in detail in
Refs. [15,22] for odd and even N , respectively, both analyt-
ically with the generalized DDP formula and by numerically
solving the Schrödinger equation.

The case with a general value of N , not necessarily an
integer, was treated in Ref. [23]. Note that by treating N as
a real number and taking the limit N → 1 the nonlinearity
becomes perturbative.

The special case of N = 2 is called the parabolic model
[22]. In general, this model is characterized by the sweep
function

ε(t ) = ε0 + αt2. (20)

For ε0α < 0, we obtain a double passage of the avoided
crossing. Since the two passages do not occur at t = 0, each
passage can be approximated as a linear one with the pa-
rameters taken from their values at the points of the energy
quasicrossing [24]. Hence, this situation is, in general, not a
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case of an essential nonlinearity. It becomes an essentially
nonlinear model at ε0 = 0.

Essential nonlinearities also include nonanalytical models,
e.g., models with sweep functions that are nonanalytical at
t = 0 [23,25].

C. Exactly solvable problems with nonlinearities

Several models assume analytic solutions, typically be-
cause the functional forms of ε(t ) and �(t ) allow an analytic
integration of the Schrödinger equation. Such models can be
used as test beds for different computational and analytic
approaches.

One such case is the so-called Allen-Eberly-Hioe model
[26,27], which is a special case of the Demkov-Kunike model
[28] (see also Ref. [17]):

ε(t ) = 2B tanh (t/T ), �(t ) = 2A

cosh (t/T )
. (21)

This choice of functions results in the transition probability,
i.e., the probability to remain in the same diabatic state,

P = cosh2(π
√

B2 − A2T )

cosh2 (πBT )
(22)

(see Ref. [17]). This probability is equal to unity (P = 1) at
A = 0 and decreases with increasing A for A < B. When A >

B, the probability is an oscillatory function of (A2 − B2)1/2T .
Another member of this class, with the very same result, i.e.,
Eq. (22), is the case of sweeping through an avoided crossing
with the tangent function

ε(t ) = 2B tan (t/T ), �(t ) = 2A, −πT

2
� t � πT

2
.

(23)

As can be expected, in the limit B/A → ∞, the nonlinearity
is weak, leading as a result to a small correction to the LZSM
formula. This correction can also be obtained via the DDP
formula [15].

The Rosen-Zener model,

ε(t ) = 2a, �(t ) = 2b

cosh (t/T )
, (24)

was introduced in Ref. [29] (see also Refs. [17,30]). Because
there is no avoided-level crossing in this problem, there is no
LZSM limit. The probability to remain in the same diabatic
state is given by [17]

P = 1 − sin2 (πbT )

cosh2 (πaT )
, (25)

which oscillates as a function of b and is equal to unity at
integer values of bT .

D. Nonlinear Landau-Zener-Stückelberg-Majorana problem
in Bose-Einstein condensates

A special case of the nonlinear LZSM problem relates
to a two-level system where the level energies depend on
the occupation probabilities of the two levels. This situation
can arise in the mean-field treatment of a many-body system
where the particles predominantly occupy two quantum states

and the interparticle interaction energy depends on the states
of the particles [31–34]. Such systems can be described by the
Gross–Pitaevskii equation, which plays a similar role as the
Schrödinger equation but can be nonlinear in the probability
amplitudes [35,36]. Even if the external system parameters
vary linearly, the problem can be equivalent to a nonlinear
one because of the nonlinearity that appears implicitly through
the interaction term, keeping in mind that the form of the
nonlinearity is determined only when the problem is solved.
Such a system could be experimentally realized in several
ways within the context of Bose-Einstein condensate [37].

E. Reverse engineering and transitionless driving

The idea of reverse engineering can be formulated as find-
ing a Hamiltonian H̃ (t ) that generates a given dynamics, e.g.,
a certain evolution in the basis of the instantaneous eigenstates
of a given Hamiltonian H (t ) [38] (see also the review [39]).
One example is the inverse LZSM problem, formulated as
finding the bias ε(t ) that results in any required time depen-
dence of the level populations. This problem was solved in
Ref. [40] (see also Ref. [41]). Another problem related to the
reverse engineering approach is the problem of transitionless
quantum driving, which is analogous to reflectionless poten-
tials. This problem was studied both theoretically [38,42] and
experimentally [43,44]. Importantly, in our context, the linear
driving requires a nonlinear correction in H̃ (t ) so that the
resulting dynamics becomes transitionless [38].

V. PERTURBATIVE NONLINEARITY

In this section, we derive analytical perturbative formulas
for the corrections to the transition probability caused by small
quadratic and cubic nonlinearities. We also present results
of numerical calculations and compare them with the per-
turbative formulas. Finally, we comment on the application
of the DDP approach to the double-passage problem with a
linear-plus-quadratic sweep function.

A. Linear-plus-quadratic sweep function

We start by taking the linear LZSM problem and adding
the lowest-order correction to the sweep function ε(t ):

ε(t ) = ε̇(0)t + 1

2
ε̈(0)t2 = v0t + χ2

2�
(v0t )2, (26)

where we have introduced the parameter v0 to denote the
sweep rate at the crossing point, i.e., v0 = ε̇(0). To simplify
the notation, we sometimes find it convenient to express
the sweep function in Eq. (26) as ε(t ) = v0t + v1t2, hence
defining v1 = χ2v

2
0/(2�). At first sight, this sweep function

seems to be the natural one containing the lowest-order non-
linearity, namely the quadratic term. However, this function
is obviously not a good choice for our purposes, because
ε(t ) approaches the same value (either +∞ or −∞) when
t → −∞ and when t → ∞, as shown in Fig. 2. As a result,
we would not simply obtain perturbative corrections to the
LZSM formula. Instead, we would encounter two crossings.
One consequence of this situation is that in both the adiabatic
and the fast limits the system is expected to return to its
initial state at the final time. However, we are interested in the
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FIG. 2. Two possible nonlinear sweep functions that contain
quadratic terms: The solid red line is the function ε(t ) = v0t[1 +
0.5 tanh(v0t/10�)], while the dotted green line is the function ε(t ) =
v0t + (0.05v2

0/�)t2. These two functions have the same first and
second derivatives at t = 0. However, when we consider the behavior
from t → −∞ to t → ∞, the two functions describe qualitatively
different LZSM problems: The former describes a single-passage
problem, while the latter describes a double-passage problem.

effect of the nonlinearity on the single-passage problem. We
therefore look for a function v(t ) that varies almost linearly in
the vicinity of t = 0 but becomes constant away from t = 0.
In our numerical simulations of the dynamics, we use the tanh
function, which exhibits the above-described dependence on
t . Specifically, we use the sweep function

ε(t ) = v0t

(
1 + α tanh

t

T

)
, (27)

where α quantifies the total variation in the sweep rate over
time, and T is the duration over which the temporal varia-
tion of v(t ) continues. If T is much larger than the crossing
duration [Eq. (7)], one can expect that the tanh function has
the intended effect of providing a quadratic term in ε(t )
throughout the most consequential time for the LZSM tran-
sition dynamics without creating a double-passage situation.
To avoid the problem of a double crossing, it is obviously
important that the value of v(t ) does not change sign, which
requires us to take |α| < 1.

As explained in the previous paragraph, using Eq. (26)
results in a qualitatively different problem from the one that
we would like to study. However, the drastic deviation from
the linear case, namely, the turnaround in ε(t ), occurs for large
negative values of the time variable t . For small values of
|t |, the quadratic term in ε(t ) does indeed appear to be the
small perturbation that we would like to include. We therefore
perform a perturbative calculation where we follow the steps
for evaluating the DDP formula to determine the transition
probability in the presence of this term, being careful to
include only the small corrections that vanish in the linear,
single-passage problem.

As explained in more detail in Appendix A, the zero in
the DDP calculation that used to be at tc = i�/v is shifted

because of the nonlinear term to

t ′
c ≈ �

v0

{
χ2

2
+ i

(
1 − χ2

2

2

)}
, (28)

this approximation being valid when χ2 is small:

χ2 
 1. (29)

After the substitution x = (t ′
c − s)/t ′

c, the integral D(t ′
c) =∫ t ′

c

0 E (s)ds takes the form

D(t ′
c) = −iv0(t ′

c)2
∫ 1

0
Q(x)dx, (30)

where

Q(x) =
√

p2(x)

√
1 + 2γ

p3(x)

p2(x)
+ γ 2

p4(x)

p2(x)
, (31)

γ = χ2v0t ′
c/(2�), |γ | ∼ χ2 
 1, p2(x) = 2x − x2, p3(x) =

3x − 3x2 + x3, p4(x) = 4x − 6x2 + 4x3 − x4. Using the Tay-
lor expansion of the square root and holding terms up to γ 2

we obtain

D(t ′
c) ≈ 1

3

�2

v0
χ2 + i

π

4

�2

v0

(
1 − 3χ2

2

8

)
. (32)

It is worth noting that two things go wrong if the condition
(29) is not satisfied: The approximate expression for t ′

c and
the Taylor expansion in the integral of D(t ′

c) both break down
outside the small-χ2 regime.

Using the value of D(t ′
c) given in Eq. (32), the transition

probability including the lowest-order correction reads

P ≈ exp

{
− 2πδ

(
1 − 3χ2

2

8

)}
, (33)

with the adiabaticity parameter δ defined in Eq. (5) with
v = ε̇(0) = v0. The first term inside the exponential is the one
that gives the standard LZSM formula (4), while the second
term represents the correction arising from the nonlinearity in
the problem. Since our perturbative DDP calculation is valid
when χ2 
 1, we can also write the alternative approximate
expression

P ≈ PLZSM
(
1 + 3

4πδχ2
2

)
. (34)

Interestingly, this approximation remains well behaved and a
good approximation even if we take the adiabatic limit with
χ2 � 1, as we shall see below. If we vary v0 while keeping the
ratio v1/(v0�) fixed, the function on the right-hand side of
Eq. (34) has a peak whose highest value of (27e−3/π )v2

1/v
3
0

is located at v0/�
2 = π/6.

It is interesting that the correction in Eq. (33) skips one
power, i.e., there is no term that is linear in χ2. Since these
extra terms inside the exponential describe the correction to
the LZSM formula, skipping the lowest-possible power means
that the correction will be quite small, as we shall see more
clearly when we present the numerical results in Sec. V C. It
is also interesting that P depends on the magnitude but not the
sign of χ2, i.e., it is independent of whether the nonlinearity
corresponds to a sweep that is speeding up or slowing down
during the crossing.

It is useful at this point to consider the physical meaning of
the condition χ2 
 1 needed for the validity of our derivations
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above. In the slow-passage regime (v0 
 �2), considering
that the crossing duration is given by τLZSM ∼ �/(2v0) [see
Eq. (7)], the condition χ2 
 1 can be understood as the condi-
tion that the quadratic term in ε(t ) remains much smaller than
the linear term throughout the duration of the crossing pro-
cess. This condition makes sense. In the fast-passage regime
(v0 � �2), τLZSM ∼ 1/

√
v0, and the condition χ2 
 1 does

not guarantee that the quadratic term in ε(t ) is small com-
pared with the linear term up to times t ∼ ±τLZSM. Indeed,
our numerical simulations show that the DDP approach is
valid only under a stricter weak-nonlinearity condition in the
fast-passage regime, as we shall see in Sec. V C.

B. Linear-plus-cubic sweep function

Now we consider the case where the sweep function does
not contain a quadratic term, and the leading-order nonlinear-
ity (at the crossing point) is cubic:

ε(t ) = ε̇(0)t + 1

3!
ε (3)(0)t3 = v0t + χ3

3!�2
(v0t )3. (35)

This function describes a perturbative nonlinearity if the sec-
ond term is small compared with the first one throughout the
crossing duration. Assuming that χ3 is small, we can follow
steps similar to those of Sec. V A and obtain

t ′
c = i

�

v0

(
1 + χ3

6

)
(36)

and

ImD(t ′
c) = π

4

�2

v0

(
1 + χ3

8

)
. (37)

Then we obtain for the transition probability

P ≈ exp

{
− 2πδ

(
1 + χ3

8

)}
≈ PLZSM

(
1 − πδχ3

4

)
, (38)

δ being the adiabaticity parameter defined in Eq. (5) with v =
v0.

Importantly, in contrast with the case of a quadratic non-
linearity, the correction from the cubic nonlinearity is linear
in χ3. Note that Eq. (33) for the quadratic correction and
the first row of Eq. (38) can be expressed in the form
P ≈ exp{−2πδ(1 + μ)}, with μ = −3χ2

2 /8 and χ3/8, re-
spectively. Furthermore, we can combine the perturbative
corrections in Eqs. (33) and (38) and obtain the unified
formula

P ≈ exp

{
−2πδ

(
1 − 3χ2

2

8
+ χ3

8

)}
. (39)

In Sec. VIII and Appendix C we discuss a case where this
formula is crucial and proves to be a good approximation.

C. Numerical results

To demonstrate the validity and limitations of the approx-
imate formulas derived in Secs. V A and V B, we performed
essentially exact numerical simulations of the dynamics by

10−2 10−1 100 101 102

v0/Δ
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0.6

0.8

1.0

P

FIG. 3. Probability that the system makes a transition between
the ground and excited states as a result of traversing the avoided
crossing. The parameter v0 is the sweep rate at the crossing point,
where ε(t ) = 0. All our simulations of the LZSM problem with
weak nonlinearities produce probability functions that look generally
similar to the two shown here. The solid red line is the transition
probability PLZSM for the linear LZSM problem. The dashed green
line corresponds to the sweep function in Eq. (27) with α = 0.8 and
T = 3/�, which will be analyzed further in Fig. 6 below.

solving the time-dependent Schrödinger equation and com-
pared the results to those predicted by our approximate
formulas.

In our calculations for the case of a quadratic nonlinearity
we use the tanh-function-based sweep function [Eq. (27)].
For the case of a cubic nonlinearity, we simply use Eq. (8)
with χ2 = 0, since the cubic term does not lead to the same
complications as the quadratic term. For both cases, as well as
in other similar situations that we consider below, we vary the
sweep rate at the crossing point [i.e., ε̇(0) or v0] and use it for
the x axis when we plot the calculation results.

To confirm that our simulations using Eq. (27) correctly
represent the desired nonlinearity, we perform multiple calcu-
lations with different settings that are expected to produce the
same results, for example varying α and T in Eq. (27) while
keeping the ratio α/(T �) fixed. Any deviation between the
results of these alternative calculations would be an indication
that our parameters are not suitable to produce the sought
physical results. Similarly, in our numerical calculations, we
run multiple calculations where we vary the initial and final
times, which will necessarily be finite in a numerical simula-
tion, to make sure that we are obtaining the correct asymptotic
values for the transition probability.

Since here we consider small deviations from the linear
LZSM problem, the transition probability as a function of the
sweep rate for all our data sets look generally like the curves in
Fig. 3. To investigate the corrections to the LZSM probability,
we plot the difference between the transition probability P for
a given set of parameters and the LZSM probability in the
linear case:

δP = P − PLZSM. (40)
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δP

FIG. 4. Deviation of the transition probability in the nonlinear
case from the linear-case probability PLZSM. The data plotted us-
ing the various symbols are obtained by numerically solving the
Schrödinger equation and can be considered exact, while the data
plotted as lines are obtained using the DDP approach. For the red +
symbols and green circles, we use the sweep function described by
Eq. (27) with T = 10�/v0. The red + symbols correspond to α =
0.5 (χ2 = 0.1). The green circles correspond to α = 0.2 (χ2 = 0.04).
The solid magenta line and dotted green line show the deviation δP
calculated based on Eq. (33) with χ2 = 0.1 and 0.04, respectively.
The DDP formula accurately reproduces δP at small values of v0/�

2,
but clear disagreement is observed at large values of v0/�

2. As
explained in the text, in this regime the quadratic term is not a small
perturbation throughout the crossing duration.

Figures 4–10 show the probability P or the deviation δP, de-
pending on which one is more informative, for a few different
cases of LZSM problems with perturbative nonlinearities.

First we fix the quadratic nonlinearity coefficient χ2 and
vary v0/�

2. In other words, we use Eq. (27) with α/T =
χ2v0/(2�). The results are shown in Fig. 4. The perturbative
DDP formula [Eq. (33)] agrees with the exact solution in the
slow-passage regime but becomes invalid in the fast-passage
regime. As explained in Sec. V A, this breakdown can be
attributed to the fact that a fixed χ2 and an increasingly large
v0/�

2 lead to a situation where the nonlinear term is not small
throughout the crossing duration. We note here that the exact
simulation exhibits a sign reversal in δP, whereas Eq. (33)
always gives a positive value of δP. To investigate the situation
where the nonlinear term is small in the fast-passage limit,
we perform additional simulations in which we keep the ratio
v1/(v0�), i.e., χ2v0/(2�2), fixed and small instead of keeping
χ2 fixed. As can be seen in Fig. 5, the perturbative DDP for-
mula now agrees well with our numerical simulation results
for a small nonlinearity and all values of the sweep rate with
v0/�

2 > 0.1, including the fast-passage regime. One issue
that arises when we fix v1/(v0�) is that the condition χ2 
 1
will necessarily be violated in the adiabatic limit. Therefore
the perturbative calculation does not apply in that limit. More
specifically, since we fix the ratio v1/(v0�) for each data
set, the validity condition becomes v0/�

2 � v1/(v0�). For
both v1/(v0�) = 0.05 and v1/(v0�) = 0.02, the theoretical
formula clearly breaks down when v0/�

2 � v1/(v0�). Taken
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0.0025

δP

FIG. 5. Same as in Fig. 4, but keeping ratio v1/(v0�) fixed
instead of keeping χ2 fixed. For all the data shown by symbols
in this figure, we set T = 10/�. The red + symbols correspond
to α = 0.5. The blue × symbols correspond to α = −0.5. The
green circles correspond to α = 0.2. The orange squares correspond
to a time-independent v and time-dependent � given by �0(1 +
0.5 tanh[�0t/10]). The solid magenta line and dotted green line
show the deviation δP calculated based on Eq. (33) with v1/(v0�) =
0.05 and 0.02, respectively. The magenta line also corresponds to
Eq. (67) with �′ = 0.05. The approximate theoretical formula breaks
down at small values of v0 because the condition χ2 
 1 is no longer
satisfied in that regime. Importantly, the theoretical formula fits the
simulation results very well in the region of largest nonlinearity-
induced correction. The dashed brown line shows the results of a
DDP calculation with all the steps performed numerically for the
case of the parameters that gave the + symbols. This calculation
gives good agreement with the + symbols everywhere. Comparing
the + and × symbols, we see that the cases α = 0.5 and α = −0.5
give identical results, as expected.

together, Figs. 4 and 5 show that if the quadratic term is
small compared with the linear term throughout the crossing
duration, the perturbative DDP formula provides a good ap-
proximation for the transition probability.

In addition to plotting the perturbative formula derived
in Sec. V A for the lowest-order correction, we performed
a numerical calculation of the DDP formula using the same
sweep function that we used in the Schrödinger equation,
i.e., Eq. (27). In other words, solving the equation E (t ) = 0
and evaluating the integral D(tc) were performed numerically
using Eq. (27). The results of this calculation agree even better
with the results of the numerical simulation of the dynamics
(compare the dashed brown line with the red + symbols in
Fig. 5). In particular, we no longer obtain the incorrect in-
crease in δP at small values of v0/�

2.
It is worth pausing at this point to consider the following

note on the results in the perturbative regime: the analytic
formula and numerical simulations were obtained using two
different functions that are drastically different away from the
crossing point. The fact that the results of the two approaches
agree with each other means that the behavior away from the
crossing point does not affect the final results even though one
might expect the difference between the two functions to af-
fect the zeros, defined by Eq. (13), in the complex plane. After
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FIG. 6. Same as in Fig. 5, but for stronger nonlinearity. Now we
take α = 0.8 and T = 3/�. The red + symbols correspond to the
solution of the Schrödinger equation. The solid magenta line and
dashed green line are, respectively, given by Eqs. (33) and (34) with
v1/(v0�) = 4/15. The perturbative formula [Eq. (33)] clearly fails
for small values of v0/�

2, while Eq. (34), which we obtained as an
approximation for Eq. (33) in the small v1�/v2

0 limit, turns out to be
a reasonably good approximation for all values of v0/�

2.

all, the zeros in the complex plane are obtained via analytic
continuation, which depends on the function on the entire real
line. It turns out, however, that the zeros and integrals in the
DDP formula are most sensitive to ε(t ) around t = 0, and the
two sweep functions are almost equal for small values of |t |.

In Fig. 6 we plot simulation results for stronger nonlin-
earity. The perturbative DDP formula [Eq. (33)] is a good
approximation for large values of v0/�

2, but it fails away
from that regime. It is interesting that Eq. (34), which was
derived as a simple approximation to Eq. (33), exhibits better
agreement with the simulation results for the values of v0/�

2

that correspond to the largest deviations from PLZSM.
In Fig. 7 we plot simulation results for an extremely strong

nonlinearity along with results from a numerical calculations
following the DDP approach. Remarkably the DDP formula
still works but only after we include a sufficient number of
zeros in the calculation. In particular, keeping only one zero
of E (t ) gives accurate results in the fast-passage limit but fails
as we move towards the adiabatic limit. This feature can be
understood by noting that a second zero becomes increasingly
important as we approach the adiabatic limit. Keeping two
zeros gives accurate results in the adiabatic limit. In fact, all
the zeros of E (t ) form pairs with asymptotically vanishing
intrapair distance in the adiabatic limit, which leads to the
result that keeping an even number of zeros leads to better
approximations in this limit. Apart from the odd-even differ-
ence, the approximations generally improve as we increase the
number of zeros that we keep in the DDP calculation. If we
keep five zeros in the calculation, we obtain good agreement
with the Schrödinger equation solution everywhere. A point
worth noting about Fig. 7 is that when we keep two zeros
we obtain P > 1 in the fast-passage regime. This result is
clearly unphysical. However, this seemingly serious problem
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FIG. 7. Transition probability P as a function of v0/�
2 for the

case of very strong nonlinearity: α = 0.8 and T = 0.3/�. The dotted
green line is PLZSM and serves as a reference. The solid red line is
obtained by numerical integration of the time-dependent Schrödinger
equation. The other data points are obtained by numerical evaluation
of the transition probability following the DDP approach. The blue
+ symbols, orange × symbols, magenta triangles, cyan squares and
black circles correspond, respectively, to keeping 1, 2, 3, 4, and 5
zeros of E (t ) in the DDP calculation.

is specific to the choice of an inappropriate number of zeros
that we keep in the DDP calculation and does not imply that
the DDP approach as a whole is invalid in this case. No
similar behavior (i.e., P > 1) occurs for any other number of
zeros.

Figure 8 shows plots for the case of cubic nonlinearity.
As with the case of a quadratic nonlinearity, when we fix
the nonlinearity coefficient χ3, we obtain good agreement
between the perturbative DDP formula and the exact results
in the adiabatic regime, but the approximate formula breaks
down in the fast-passage regime. When we use parameters
such that χ3 decreases with increasing v0/�

2, we obtain good
agreement between the approximate DDP formula and the
exact results.

D. Double-passage problem

We now go back to the step of locating the zeros of E (t ) in
the case of a quadratic nonlinearity. In Sec. V A we proceeded
by determining the new, shifted location of the zero that ex-
ists in the linear case. However, if we inspect E (t ) with the
quadratic sweep function

ε(t ) = v0t + v1t2 = − v2
0

4v1
+ v1

(
t + v0

2v1

)2

(41)

more closely, we find that in addition to t ′
c there are three

other zeros: t ′
c
∗, (−v0/v1 − t ′

c) and (−v0/v1 − t ′
c)∗. (The as-

terisk denotes complex conjugation.) The last one of these has
a positive imaginary part. We can then use the generalized
DDP formula and include contributions from the zeros at t ′

c
and −v0/v1 − t ′

c
∗. We have already derived an approximate

expression for D(t ′
c) in Sec. V A. By examining the integra-

tion path that goes from s = 0 to s = −v0/v1 and then to
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FIG. 8. Probability difference δP as a function of v0/�
2 for the

sweep function ε(t ) = v0t + χ3(v0t )3/(6�2). The red + symbols,
green circles and blue triangles correspond, respectively, to χ3 =
0.1, 0.1�2/v0, and 0.1�4/v2

0 . The solid magenta, dotted green, and
dashed cyan lines are obtained using Eq. (38) with χ3 values that
correspond, respectively, to the red + symbols, green circles and
blue triangles. Keeping χ3 fixed leads to large deviations between
the perturbative DDP formula and exact results in the fast-passage
regime, while having a value of χ3 that decreases with increasing
v0/�

2 leads to better agreement between the approximate formula
and exact transition probability.

s = −v0/v1 − t ′
c
∗, we find that

D

(
−v0

v1
− t ′

c
∗
)

= −D(t ′
c)∗ +

∫ −v0/v1

0
E (s)ds. (42)

The last integral can be recognized as the dynamical phase
that accumulates between the two crossings in the double-
passage problem. The imaginary parts of D(−v0/v1 − t ′

c
∗)

and D(t ′
c) are equal because the sweep function is symmetric:

Both the sweep rate and nonlinearity are equal at the two
crossing points. The minus sign and complex conjugation
in the first term on the right-hand side of Eq. (42) mean
that (excluding the dynamical-phase term) the real part of
the D(−v0/v1 − t ′

c
∗) has the opposite sign to the real part

of D(t ′
c). The difference between the real parts of D(t ′

c) and
D(−v0/v1 − t ′

c
∗) can then be interpreted as a geometric phase

accumulated between the two crossings. So far, these results
seem to be consistent with our knowledge about the double-
passage LZSM problem. However, when we substitute the
relevant expressions in Eq. (14), we obtain the net transition
probability

P ≈ PLZSM
(
1 + 3

4πδχ2
2

)|1 − eiφ |2, (43)

where

φ = 2

3

�2

v0
χ2 −

∫ −v0/v1

0
E (s)ds. (44)

This result is clearly problematic. Excluding the factor |1 −
eiφ|2, Eq. (43) describes a function that increases from zero
in the adiabatic limit to one in the fast-passage limit. The
factor |1 − eiφ | lies between 0 and 2, depending on the phase
φ. Therefore, if we consider a double-passage problem with
both passages being in the fast limit and a phase φ that is
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FIG. 9. Probability difference δP as a function of v0/�
2 for

the sweep function ε(t ) = A sinh(t/T ). For this sweep function, the
sweep rate at the crossing point is given by v0 = A/T . The red +
symbols, green circles and blue triangles correspond, respectively,
to A/� = 1, 2, and 5. The parameter T is set at T = A/v0 and is
therefore not fixed for any of the data sets in the figure. The solid
magenta, dotted green, and dashed cyan lines are obtained using
Eq. (38) for A/� = 1, 2 and 5, respectively. Similar to the quadratic
and cubic cases, the approximate formula agrees well with the exact
results in the adiabatic regime, but the exact results exhibit peaks in
the fast-passage regime that are not reproduced by the perturbative
DDP formula.

an odd-integer-multiple of π , we would obtain a probability
that is approximately equal to four, a clearly unphysical result.
Meanwhile, in a symmetric double-passage problem, the tran-
sition probability should approach zero in both the adiabatic
and fast-passage limits. It should be noted that the sweep
function in Eq. (41) does not violate any of the conditions that
we mentioned above for the validity of the DDP approach.
It should also be noted that the solution to this paradoxical
situation cannot be in including more zeros in the generalized
DDP formula, because there are no additional zeros apart
from the two that are included in Eq. (43). We do not have
a definitive explanation for why the DDP approach fails in
this case. We just note that numerical calculations suggest
that the DDP approach gives good results in the regime δ � 1,
which is the regime where the DDP calculation has rigorous
justification.

It is also interesting that by keeping one zero we obtained
correct results for a single passage with nonlinearity, although
this approximation was not rigorously founded, while keeping
both zeros did not produce good results for the double-passage
problem, even though this procedure seems to be more con-
sistent with the conventional wisdom in applying the DDP
approach.

VI. OTHER RELATED PROBLEMS

A. Some examples of perturbatively nonlinear sweep functions

We now consider a few special cases involving functions
that allow us to make some progress with analytical deriva-
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FIG. 10. Same as in Fig. 9, but now we use a variable A. The red
+ symbols, green circles and blue triangles correspond, respectively,
to A�/v0 = 1, 2, and 5. The solid magenta, dotted green, and dashed
cyan lines are obtained using Eq. (38) for A�/v0 = 1, 2, and 5.
The weakest nonlinearity case (A�/v0 = 5; shown also in the inset)
exhibits good agreement between the perturbative DDP formula and
the exact results.

tions. First we treat the case of a sinusoidal function

ε1(t ) = A sin (t/T ) (45)

together with a constant �. If the time variable extends over
a sufficiently long duration, the sine function is an oscil-
lating function, which means that we will be dealing with
a periodic driving problem [5,45,46]. The dynamics there-
fore exhibits oscillations that continue indefinitely, unlike the
single-passage problem where the diabatic basis-state prob-
abilities approach constant asymptotic values at t → ∞. As
a result, this case does not fit the picture of a single-passage
LZSM problem discussed in this paper. Nevertheless, as we
shall see below, it is interesting to apply the DDP formula to
this case and see what results this calculation gives.

At the crossing points, e.g., taking t = 0 for definiteness,
the first three derivatives of ε1(t ) are given by ε̇1(0) = A/T ,
ε̈1(0) = 0, and ε

(3)
1 (0) = −A/T 3. Considering that sin(x +

iy) = sin x cosh y + i cos x sinh y, we find that the solutions of
the equation

A2 sin2 t

T
+ �2 = 0 (46)

are given by

t (n,±)
c = nπT ± iν, (47)

where n is any integer,

ν = T arcsinhξ = T ln(ξ +
√

ξ 2 + 1), (48)

and the parameter

ξ = �/A (49)

quantifies the nonlinearity. Note that the parameter ξ for the
sweep function (45) is related to the parameter χ3 for the
sweep function (35) by the formula χ3 = −ξ 2. As a first
step, we make the arbitrary choice n = 0, i.e., we choose

t ′
c = t (0,+)

c = iν. The integral

D(t ′
c) =

∫ iν

0

√
�2 + A2 sin2 (s/T )ds, (50)

after the substitution s = iT z, reads

D(t ′
c) = iT �

∫ ν/T

0

√
1 − ξ−2 sinh2 zdz. (51)

Note that the integrand in Eq. (51) decreases from 1 to 0 and
is real throughout the integration interval. As a result, D(t ′

c) is
purely imaginary. The substitution w = sinh z gives

D(t ′
c) = iT �

∫ sinh (ν/T )

0

√
1 − ξ−2w2

1 + w2
dw. (52)

Taking into account that sinh(ν/T ) = ξ and making the sub-
stitution u = w/ξ , we obtain

D(t ′
c) = iT � ξ

∫ 1

0

√
1 − u2

1 + (ξu)2 du

= iT �

√
1 + ξ 2

ξ

[
K

(
ξ√

1 + ξ 2

)
− E

(
ξ√

1 + ξ 2

)]
,

(53)

where K (k) and E (k) are the full elliptic integrals of the
first and second kind, respectively. For ξ 
 1, the integral in
Eq. (53) can be approximated by expanding [1 + (ξu)2]−1/2:

D(t ′
c) = iT � ξ

{∫ 1

0

√
1 − u2du − 1

2
ξ 2

∫ 1

0
u2

√
1 − u2du

}
.

(54)

As ∫ 1

0

√
1 − u2du = π

4
,

∫ 1

0
u2

√
1 − u2du = π

16
, (55)

the transition probability is given by Eq. (38). In other words,
keeping only the linear and cubic terms in the sweep function
gives the same lowest-order effect of the nonlinearity as work-
ing with the sine function without truncating its Taylor-series
expansion.

Analogous calculations can be performed for

ε2(t ) = A sinh (t/T ) (56)

(see Appendix B) and

ε3(t ) = A tanh (t/T ). (57)

We again find that in the perturbative regime (ξ 
 1) the
correction is given by the formula in Eq. (38). In accordance
with the results of Ref. [15], P < PLZSM for the superlinear
driving function ε2(t ) and P > PLZSM for the sublinear driving
functions ε1(t ) and ε3(t ). Moreover, our result for ε2(t ) coin-
cides with Eq. (19) of Ref. [15] obtained for the superlinear
function in Eq. (10), and also our results for ε1(t ) and ε3(t )
coincide with Eq. (29 a) of Ref. [15] obtained for the sublinear
function in Eq. (11).

In Figs. 9 and 10, we plot δP for the case of ε2(t ) =
A sinh(t/T ). In Fig. 9, we keep the nonlinearity coefficient
χ3 fixed for each data set. In other words, for each value of
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A, the parameter T is given by T = A/v0. As with the case
of a linear-plus-cubic sweep function, we obtain peaks in δP
for the exact results in the fast-passage regime, signaling a
breakdown of the perturbative DDP calculation. If we avoid
this breakdown by setting A�/v0 to a fixed value for each data
set, i.e., setting A to be proportional to v0/�

2 (and keeping
the relation T = A/v0), we obtain good agreement between
the approximate formula and exact results everywhere for a
sufficiently weak nonlinearity [Fig. 10]. For stronger nonlin-
earity, the agreement remains rather poor, especially in the
adiabatic regime, where now A/� becomes small and violates
the condition of weak nonlinearity.

B. Uniformly rotating field

We now consider the problem of a two-level system in an
external field that has a fixed magnitude and rotates at constant
speed:

ε(t ) = � cos ωt, �(t ) = � sin ωt, (58)

from the initial time t = 0 until a final time t = T . The prob-
lem can be transformed into one with a fixed external field
by making a reference frame transformation to a frame that
rotates about the y axis with frequency ω, such that the exter-
nal field always points along the z axis. This transformation
is similar to the standard one used in the study of Rabi os-
cillations. The dynamics is then governed by the Schrödinger
equation with the effective Hamiltonian:

H̃ = 1

2

(
� iω

−iω −�

)
. (59)

Straightforward algebra then shows that for an initial state that
is an eigenstate of the initial Hamiltonian, e.g., the ground
state, the probability for the system to make a transition and
end up in the other adiabatic state at a later time t , i.e., the
excited state of the Hamiltonian H (t ), is given by

P = 1

2

x2

1 + x2
[1 − cos(

√
�2 + ω2t )], (60)

where the parameter x = ω/� quantifies the adiabaticity of
the Hamiltonian variation. As one would intuitively expect,
the adiabatic limit x → 0 gives P = 0. The fast-rotation limit
x → ∞ (i.e., ω � �) gives P = [1 − cos(ωt )]/2, which os-
cillates between 0 and 1 at the same frequency as the rotating
field. This result can be understood as the quantum system
being unable to react to the fast-oscillating field and hence
remaining frozen in the initial state in the laboratory frame,
which also agrees with the intuitive expectation. If we take
the special case in which the field makes a single 180◦ rota-
tion from the beginning to the end of the field variation, the
transition probability is given by Eq. (60) with t = π/ω:

P = 1

2

x2

1 + x2
[1 − cos(

√
1 + x−2π )], (61)

which exhibits small oscillations at intermediate values of x
but is well behaved in the limit x → ∞ and asymptotically
approaches 1 (see Fig. 11).

10−2 10−1 100 101 102

v0/Δ
2 , ω/Ω

0.0

0.2

0.4

0.6

0.8

1.0

P

FIG. 11. Transition probability P for a uniformly rotating field
of fixed magnitude. The dashed green line shows the function in
Eq. (61). The solid red line shows PLZSM for reference. To compare
these two cases we make the correspondence � ↔ � and v0 ↔ ω�,
which give v0/�

2 ↔ ω/�.

If we try to apply the DDP formula to this problem, we
obtain the equation

E (t ) = �
√

cos2 ωt + sin2 ωt = 0, (62)

which clearly does not have any solutions. Hence, the DDP
formula cannot be used, even though this problem is closely
related to LZSM problems. It is not entirely surprising that
the DDP formula does not work here. If we consider the
time variable extending from −∞ to ∞, with ε and � being
fixed before t = 0 and after t = π/ω, then the functions ε(t )
and �(t ) are nonanalytic, since they start and stop oscillating
abruptly.

VII. ESSENTIAL NONLINEARITY

The sweep function

ε(t ) = Asgn(t )

∣∣∣∣ t

T

∣∣∣∣a

, a > 0 (63)

is essentially nonlinear for a �= 1: ε̇(0) = 0 for a > 1 and
ε̇(0) = ∞ for 0 < a < 1. For noninteger a, the function (63)
is nonanalytical, and the generalized DDP formula cannot be
used. We therefore calculate the LZSM probability numer-
ically by solving the Schrödinger equation. In the present
study, we are especially interested in a 
 1, when Eq. (63)
describes an almost square pulse. Periodic square pulses are
studied in literature, both theoretically and experimentally
(see, for example, Refs. [9,47]). In Fig. 12, we show the
sweep functions for several values of a and the dependence
of the probability P, calculated numerically, on A/�. For
a → 0, the numerically calculated occupation probability P
as a function of the amplitude A [see Fig. 12(b)] tends to the
limiting function

Plim(A) = A2

�2 + A2
. (64)
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FIG. 12. (a) The sweep function ε(t ), Eq. (63), as a function of
time t for A/� = 1 and a = 10−3 (solid red line), 0.5 (dashed green
line), 1 (dotted blue line). (b) The numerically calculated transition
probability as a function of the amplitude A (measured relative to �).
The dotted blue and dashed green lines correspond, respectively, to
a = 1 and 0.5 in Eq. (63). The solid red line shows three virtually
coinciding (indistinguishable) curves—for a = 10−3 in Eq. (63), for
σ = 10−3 in Eq. (65), and for the limiting function (64).

Interestingly, the error function

ε(t ) = Aerf

(
t√

2σT

)
= A

∫ t/
√

2σT

0
e−τ 2

dτ, (65)

which has a finite derivative ε̇(0) = A/
√

2σT , also describes
a square pulse for σ 
 1, and, for σ → 0, Perf(σ ) tends to
the same limiting function (64). We compare the occupation
probability P for a = 10−3, 0.5, 1 and Perf for σ = 10−3 in one
plot in Fig. 12(b).

VIII. TIME-DEPENDENT GAP

A. Eliminating the time dependence of �(t )

We now consider the qubit Hamiltonian

H = 1

2

(
ε(t ) �(t )
�(t ) −ε(t )

)
, (66)

with a general sweep function ε(t ) and a time-dependent
gap �(t ).

With an appropriate transformation of the time variable,
the time-dependent Schrödinger equation can be transformed
to a form that has a time-independent gap and a modified
sweep function. The details of the derivation are shown in
Appendix C.

Once the problem is transformed to a time-independent-
gap LZSM problem, the formulas that we derived in previous
sections can be applied. In particular, if we consider the
case of a linear sweep function ε(t ) = vt and a weakly
time-dependent gap [�(t ) = �0 + �′t in the vicinity of the
crossing point], we obtain the perturbative formula

P ≈ exp

{
− 2πδ

(
1 − 3(�′)2

2v2

)}
. (67)

The line in Fig. 5 that corresponds to a linear sweep function
and time-dependent � is fit well by this formula.

B. Asymptotically vanishing gap

In this section, we consider a different variation on the
LZSM problem that can arise naturally in realistic systems,
namely, the situation where � has a maximum at the avoided
crossing point and decreases to much smaller values when
ε → ±∞. For example, if one thinks of a problem described
in terms of a single particle trapped in a time-dependent poten-
tial well, the trapping potential can be deformed in time such
that two things occur simultaneously: (1) the energies of local
minima in two local wells move up and down relative to each
other such that the locations of the ground and first-excited
states switch, and (2) the distance and/or energy barrier be-
tween the two wells increase away from the crossing point,
such that the energy scale coupling the states in the two wells
decreases away from the crossing point. This situation can
occur, for example, in the context of superconducting qubits,
where the effective potential for the phase variables varies in
complex ways if any of the bias parameters is varied.

For definiteness, we consider a Gaussian function when
describing the suppression of � away from the crossing
point, i.e.,

ε(t ) = vt,

�(t ) = �0e−(t/T )2
. (68)

The results of numerical simulations are shown in Fig. 13. We
also performed calculations using a Lorentzian function, and
these calculations produced qualitatively similar results.

When �(t ) decreases quickly away from the crossing
point, the transition probability increases in general. This ef-
fect resembles the effect of having a smaller value of �. This
result is logical, since having � active for a shorter duration
can be expected to result in a smaller effective value of �. The
transition probability also exhibits more oscillatory behavior
with decreasing width T . This result is also to be expected,
since the presence of oscillations is natural for pulsed manip-
ulation of quantum systems, while the absence of oscillations
in the linear LZSM problem is a rather particular feature of
that problem.
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FIG. 13. Transition probability in the case of an asymptotically
vanishing gap, described by Eq. (68). The solid red line corresponds
to T = 0.1/�0. The dashed green line corresponds to T = 0.5/�0.
The dotted blue line corresponds to the original LZSM problem,
which also corresponds to the limit T → ∞. The red line in this
figure does not go all the way down to zero in each oscillation
because of the limited number of points in our data set.

IX. CONCLUSIONS

Realizations of the energy-level avoided crossings are
ubiquitous in quantum physics, and the driving of quantum
systems through such energy-level structures is usually de-
scribed by the linearized model, where a generally nonlinear
function ε(t ) is replaced by a linear one, ε(t ) = vt . But what
is the effect of this approximation, and what is neglected by
the linearization procedure? We have addressed this question,
which is becoming increasingly important in recent years,
given the precision of modern quantum technologies. One
of the important results that we have demonstrated in this
paper is that the corrections to the LZSM formula under the
influence of a perturbatively nonlinear parameter variation
are smaller than what one might intuitively expect. Besides
demonstrating analytically and numerically the robustness of
the LZSM formula, our corrections may become important for
realistic systems. Our results demonstrate that the choice of a
nonlinear driving function and tuning its parameters can be
used for alternative quantum control protocols.

The main results can be summarized as follows:
(1) We have obtained analytically, using the DDP formula,

the first correction to the LZSM probability for several per-
turbatively nonlinear sweep functions: Linear-plus-quadratic,
linear-plus-qubic, sine, sinh, and tanh functions in the single-
passage regime. We have shown that the correction for the odd
sine, sinh, and tanh functions is given by the same formula,
Eq. (38), as for the linear-plus-qubic function based on the
Taylor expansion.

(2) We have compared the perturbative analytical calcu-
lations with results obtained by numerical solving of the
Schrödinger equation. The agreement is very good for weak
nonlinearity, i.e., for parameters for which the nonlinear term
in the sweep function is small compared with the linear term
in the crossing region. The crossing region here corresponds

to the time interval during which the state probabilities expe-
rience significant changes, as established in previous studies
on LZSM dynamics. The approximate expressions become
invalid if this condition of small nonlinearity is violated.

(3) We have analyzed the double-passage problem for the
linear-plus-quadratic sweep function and found that the DDP
approach is not applicable in this case.

(4) We have considered the case of the sweep function
ε(t ) = v0t (1 + α tanh t/T ) to study a case of strong nonlin-
earity. The numerical evaluation of the transition probability
following the DDP approach gives good agreement with the
results obtained by numerically solving the Schrödinger equa-
tion when a sufficiently large number of zeros, Eq. (13), in the
complex plane are taken into account.

(5) We have obtained an analytical formula for the transi-
tion probability for the case of a uniformly rotating field when
the sweep function and the gap are given by Eq. (58).

(6) We have calculated numerically the transition proba-
bility for two essentially nonlinear sweep functions in the limit
when they describe an almost square pulse—the power func-
tion (63) for a → 0 and the error-function (65) for σ → 0.
We have also given the limiting function for the probability in
these cases.

(7) We have proven that the time dependence of the gap in
the qubit Hamiltonian can be eliminated with a transformation
of the time variable, such that the LZSM problem is reduced
to one with a time-independent gap.

(8) We have studied numerically the LZSM problem with
asymptotically vanishing gap (68) and found oscillations in
the transition probability. The number of peaks and their max-
imum values grow with decreasing gap pulse width.
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APPENDIX A: CALCULATING D(t ′
c) FOR THE CASE

OF A WEAK QUADRATIC NONLINEARITY

To illustrate one technique that we use for evaluating D(t ′
c),

we first revisit the calculation in the linear case. The calcu-
lation of D(tc) in Eq. (18) can alternatively be performed as
follows

D(tc) = i
∫ τc

0

√
�2 − (vs)2ds

= i
∫ τc

0

√
�2 − [v(τc − s′)]2ds′

(A1)
= i

∫ τc

0

√
v2(2τcs′ − s′2)ds′

= ivτ 2
c

∫ 1

0

√
2x − x2dx = ivτ 2

c

π

4
,
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where we have defined τc = �/v. Reversing the roles of the
lower and upper limits of the integral simplifies the treatment
of the perturbation term that we shall add shortly. In particular,
with this change we avoid complications that can arise with
the Taylor expansion of the square root at the point where the
square root vanishes.

The weak quadratic nonlinearity term modifies E (t ),

E (t ) =
√

(v0t + v1t2)2 + �2, (A2)

and shifts the zero of the DDP calculation from tc = i�/v0 to
v0t ′

c + v1(t ′
c)2 = i�, which gives

t ′
c =

−v0 +
√

v2
0 + 4iv1�

2v1

≈ i
�

v0
+ �2v1

v3
0

− i
2�3v2

1

v5
0

. (A3)

We refer to −it ′
c as τ ′

c below.
The integral D(t ′

c) now becomes

D(t ′
c) =

∫ t ′
c

0

√
�2 + (v0s + v1s2)2ds

=
∫ t ′

c

0

√
�2 + (v0(t ′

c − s′) + v1(t ′
c − s′)2)2ds′

=
∫ t ′

c

0

√
−v2

0 (2t ′
cs′ − s′2) − 2v0v1(3(t ′

c)2s′ − 3t ′
cs′2 + s′3) − v2

1 (4(t ′
c)3s′ − 6(t ′

c)2s′2 + 4t ′
cs′3 − s′4)ds′

= i
∫ τ ′

c

0

√
v2

0 (2τ ′
cs′ − s′2) + 2iv0v1(3(τ ′

c)2s′ − 3τ ′
cs′2 + s′3) − v2

1 (4(τ ′
c)3s′ − 6(τ ′

c)2s′2 + 4τ ′
cs′3 − s′4)ds′

≈ i
∫ τ ′

c

0

√
v2

0 (2τ ′
cs′ − s′2)ds′ + i

∫ τ ′
c

0

2iv0v1(3(τ ′
c)2s′ − 3τ ′

cs′2 + s′3) − v2
1 (4(τ ′

c)3s′ − 6(τ ′
c)2s′2 + 4τ ′

cs′3 − s′4)

2v0

√
2τ ′

cs′ − s′2 ds′

− i
∫ τ ′

c

0

−4v2
0v

2
1 (3(τ ′

c)2s′ − 3τ ′
cs′2 + s′3)2

8v3
0 (2τ ′

cs′ − s′2)3/2
ds′

= iv0(τ ′
c)2

∫ 1

0

√
2x − x2dx − v1(τ ′

c)3
∫ 1

0

3x − 3x2 + x3

√
2x − x2

dx − i
v2

1

2v0
(τ ′

c)4
∫ 1

0

4x − 6x2 + 4x3 − x4

√
2x − x2

dx

+ i
v2

1

2v0
(τ ′

c)4
∫ 1

0

(3x − 3x2 + x3)2

(2x − x2)3/2
dx

≈ iπv0

4

(
�2

v2
0

− 2i
�3v1

v4
0

− 4
�4v2

1

v6
0

− �4v2
1

v6
0

)
− 3π − 4

6
v1

(
�3

v3
0

− 3i
�4v1

v5
0

)
− 5π

32
i
�4v2

1

v5
0

+
(

2 − 15π

32

)
i
�4v2

1

v5
0

≈ i

(
π�2

4v0
− 3π

8

�4v2
1

v5
0

)
+ 2�3v1

3v3
0

. (A4)

Note that the step where we approximated the square-root
using the Taylor expansion is valid when the first term inside
the square root is much larger than the second and third terms
combined, which implies the relation v1 
 v2

0/� or in other
words v1�/v2

0 
 1.

APPENDIX B: CALCULATION OF THE
LANDAU-ZENER-STÜCKELBERG-MAJORANA

PROBABILITY FOR THE SINH FUNCTION

We consider the sweep function

ε2(t ) = A sinh

(
t

T

)
. (B1)

Considering the Taylor expansion of the sinh function, the
sweep function ε2(t ) gives

χ3 = �2

A2
. (B2)

We now proceed with the DDP calculation for this case. Con-
sidering that sinh(x + iy) = sinh x cos y + i cosh x sin y, we
find that we need to specify the value of ξ = �/A to proceed
with finding the solutions of the equation

A2 sinh2 t

T
+ �2 = 0. (B3)

If ξ < 1, all the solutions of Eq. (B3) are purely imaginary
and can be described by the formula

t (n,±)
c = ±iT arcsin ξ + iπT n, (B4)

with n being any integer. If ξ > 1, the solutions are given by

t (n,±)
c = ±ν + iT

π

2
(2n + 1), (B5)

with

ν = T arccoshξ = T ln(ξ +
√

ξ 2 − 1). (B6)
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For ξ = 1, the roots of Eq. (B3) have multiplicity two and are
located at

t (n)
c = iT

π

2
(2n + 1). (B7)

If ξ approaches 1 from below, each pair of zeros close to
iT π (n + 1/2) approach each other and converge to the same
point. If ξ increases above 1, each zero splits back into two
zeros that move away from each other in the horizontal direc-
tion.

For ξ < 1, the solution of Eq. (B3) that is closest to the real
axis and has a positive imaginary part reads

t ′
c = iT arcsin ξ . (B8)

Straightforward calculations [as in Sec. VI for the sine func-
tion (45)] lead to the formula [analogous to Eq. (52)]

D(t ′
c) = iT �

∫ ξ

0

√
1 − ξ−2w2

1 − w2
dw, (B9)

and finally, in the limiting case ξ 
 1, we get Eq. (38) for the
transition probability. Note that if we take the limit A/� →
∞ and use the relation T = A/v0 we obtain the probability
PLZSM, as expected.

For ξ > 1, there are two solutions of Eq. (B3) with a
positive imaginary part that are the nearest ones to the real
axis

t±
c = ±T ln(ξ +

√
ξ 2 − 1) + i

π

2
T . (B10)

Using the generalized DDP formula (14) we obtain for the
probability

P = 2 exp [−2ImD(t+
c )]{1 + cos[2ReD(t+

c )]}, (B11)

where

ReD
(
t+
c

) = AT

{ ∫ ln(ξ+
√

ξ 2−1)

0

√
ξ 2 + sinh2 xdx

−
∫ π/2

0
r(y, ξ )dy

}
, (B12)

ImD
(
t+
c

) = AT
∫ π/2

0
j(y, ξ )dy, (B13)

j(y, ξ ) =

√√√√u1(y, ξ ) +
√

u2
1(y, ξ ) + u2

2(y, ξ )

2
, (B14)

r(y, ξ ) = u2(y, ξ )

2 j(y, ξ )
, (B15)

and

u1(y, ξ ) = 1
2 [(2ξ 2 − 1) cos (2y) − 1], (B16)

u2(y, ξ ) = ξ
√

ξ 2 − 1 sin (2y). (B17)

The integrals in Eqs. (B12) and (B13) can be evaluated nu-
merically.

As mentioned above, the roots of Eq. (B3) have multiplic-
ity two at ξ = 1, which violates one of the conditions required
for the DDP formula. This point is interesting, because it
suggests that there might be something pathological about the
case ξ = 1. However, in reality no unusual behavior occurs

at this point, as confirmed by numerical simulations based
on solving the Schrödinger equation. This point therefore
illustrates one of the limitations of the DDP approach.

APPENDIX C: TIME-DEPENDENT GAP �(t )

In this Appendix, we show the details for eliminating the
time dependence of the gap �(t ) and derive the perturbative
formula in this case.

1. Transformation for eliminating the time dependence of �(t )

Let us take the time-dependent Hamiltonian (66). We seek
a transformation that eliminates the time dependence in �(t ),
i.e., a mapping between the present problem and one with a
time-independent �. Below we present two equivalent meth-
ods that use slightly different languages.

a. Method 1

Let us make a substitution

t = G(t̃ ) (C1)

in the Schrödinger equation (1) with the Hamiltonian (66)
such that

dt

dt̃
�(t ) = �̃ = const. (C2)

Equation (C2) can alternatively be expressed as

G′(t̃ )�(G(t̃ )) = �̃. (C3)

After multiplying Eq. (1) by dt/dt̃ = G′(t̃ ) we obtain

i
d|ψ (G(t̃ ))〉

dt̃
= H̃ (t̃ )|ψ (G(t̃ ))〉, (C4)

where the new Hamiltonian reads

H̃ (t̃ ) = �̃

2
σx + ε̃(t̃ )

2
σz, (C5)

with

ε̃(t̃ ) = ε(G(t̃ ))G′(t̃ ). (C6)

We look for a function G(t̃ ) that satisfies Eq. (C3), which for
G(0) = 0, is equivalent to∫ G(t̃ )

0
�(t )dt = �̃t̃ . (C7)

Assuming that �(t ) > 0 and
∫ ∞

0 �(t )dt = ∞, we conclude
that there exists a unique solution G(t̃ ) of Eq. (C3). Therefore,
the problem is reduced to one with a time-independent gap �̃

and a modified sweep function ε̃(t̃ ), Eq. (C6).

b. Method 2

We define a new timelike variable t̃ . The time-dependent
Schrödinger equation can then be expressed as

i
d|ψ〉

dt̃
= dt

dt̃
H |ψ〉. (C8)
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If we choose the relationship between t and t̃ such that
Eq. (C2) is satisfied, Eq. (C8) reduces to

i
d|ψ〉

dt̃
= H̃ |ψ〉, (C9)

with

H̃ = 1

2

(
ε̃(t̃ ) �̃

�̃ −ε̃(t̃ )

)
, (C10)

and

ε̃(t̃ ) = dt

dt̃
ε[t (t̃ )], (C11)

where we treat t as being a function of t̃ . As a result, the effect
of having a time-dependent gap �(t ) is the same as the effect
of having a fixed gap �̃ but a modified sweep function ε̃(t̃ ).
Consequently the lowest-order effect of a temporal variation
in � can be inferred from our results concerning the lowest-
order effect of having a nonlinear sweep function ε(t ).

2. Illustrative examples

As an example, we consider the following time dependence
of the gap:

�(t ) = d0

∣∣∣∣ t

T

∣∣∣∣a

, a > 0. (C12)

For t̃ > 0, the solution of Eq. (C7) gives the relation between
t and t̃ as follows

t = G(t̃ ) =
[

�̃

d0
(a + 1)T at̃

]1/(a+1)

. (C13)

Therefore, the function ε̃(t̃ ) in the resulting Hamiltonian (C5)
is obtained explicitly.

As another example, let us take �(t ) = �0(1 +
α tanh t/T ) and a linear sweep function ε(t ) = vt . We
can set

dt̃

dt
=

(
1 + α tanh

t

T

)
, (C14)

or in other words

t̃ = t + T α ln cosh
t

T
, (C15)

to get �̃ = �0. Note that we have set the integration constant
in Eq. (C15) to zero, which sets the relation that t̃ = 0 when
t = 0. The modified function ε̃(t̃ ) is then given by

ε̃(t̃ ) = vt (t̃ )

1 + α tanh t (t̃ )
T

. (C16)

The function t̃ (t ) in Eq. (C15) cannot be inverted easily to
obtain t (t̃ ) as a simple function. As a result, we cannot write
ε̃(t̃ ) explicitly.

3. Perturbative formula

Even if we cannot find an explicit expression for ε̃(t̃ ),
we can derive relations between the derivatives of ε̃(t̃ ) with
respect to t̃ and the derivatives of ε(t ) and �(t ) with respect
to t , especially at the crossing point. The derivatives of ε̃ with
respect to t̃ allow us to calculate the adiabaticity and non-
linearity parameters in the transformed problem. As a result,
the relations between the derivatives will allow us to infer the
effect of a slowly time-dependent �(t ) from our perturbative
results for a weakly nonlinear ε(t ).

For general time-dependent functions ε(t ) and �(t ), with
the assumption that both �(t ) and dε/dt are always positive,
we can set

dt̃

dt
= �(t )

�̃
, (C17)

where �̃ is a constant. We then obtain

ε̃(t̃ ) = �̃ε(t )

�(t )
. (C18)

We can then evaluate the derivatives

d ε̃

dt̃

∣∣∣∣
ε=0

=
(

d ε̃

dt

dt

dt̃

)∣∣∣∣
ε=0

=
([

�̃dε/dt

�(t )
− �̃ε(t )d�/dt

�2(t )

][
�̃

�(t )

])∣∣∣∣
ε=0

= �̃2

(
dε/dt

�2(t )
− ε(t )d�/dt

�3(t )

)∣∣∣∣
ε=0

= �̃2dε/dt

�2(t )

∣∣∣∣
ε=0

; (C19)

d2ε̃

dt̃2

∣∣∣∣
ε=0

=
[

d

dt

(
d ε̃

dt̃

)
dt

dt̃

]∣∣∣∣
ε=0

= �̃3

(
d2ε/dt2

�3(t )
− 2(dε/dt ) × (d�/dt )

�4(t )
− (dε/dt ) × (d�/dt )

�4(t )
− ε(t )d2�/dt2

�4(t )
+ 3ε(t )(d�/dt )2

�5(t )

)∣∣∣∣
ε=0

= �̃3

(
d2ε/dt2

�3(t )
− 3(dε/dt ) × (d�/dt )

�4(t )

)∣∣∣∣
ε=0

; (C20)

d3ε̃

dt̃3

∣∣∣∣
ε=0

=
[

d

dt

(
d2ε̃

dt̃2

)
× dt

dt̃

]∣∣∣∣
ε=0

= �̃4

(
d3ε/dt3

�4(t )
− 3(d2ε/dt2)(d�/dt )

�5(t )
− 3(d2ε/dt2)(d�/dt )

�5(t )
− 3(dε/dt )(d2�/dt2)

�5(t )

+ 12(dε/dt )(d�/dt )2

�6(t )
− (dε/dt )(d2�/dt2)

�5(t )
− ε(t )d3�/dt3

�5(t )
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+ 4ε(t )(d2�/dt2)(d�/dt )

�6(t )
+ 3(dε/dt )(d�/dt )2

�6(t )
+ 6ε(t )(d�/dt )(d2�/dt2)

�6(t )
− 18ε(t )(d�/dt )3

�7(t )

)∣∣∣∣
ε=0

= �̃4

(
d3ε/dt3

�4(t )
− 6(d2ε/dt2)(d�/dt )

�5(t )
− 4(dε/dt )(d2�/dt2)

�5(t )
+ 15(dε/dt )(d�/dt )2

�6(t )

)∣∣∣∣
ε=0

. (C21)

These expressions can be used to evaluate the parame-
ters χi (i = 2, 3, . . .) and subsequently evaluate the transition
probability. For example, if we take the case where ε(t ) =
vt and only the first derivative of �(t ) is non-negligible
(�′ = d�/dt |ε=0), we set �̃ = �(t )|ε=0 = �0 and obtain the
rates

d ε̃

dt̃

∣∣∣∣
ε=0

= v,
d2ε̃

dt̃2

∣∣∣∣
ε=0

= −3v�′

�0
,

d3ε̃

dt̃3

∣∣∣∣
ε=0

= 15v × (�′)2

�2
0

, (C22)

which in turn give the nonlinearity parameters

χ2 = −3�′

v
,

χ3 = 15(�′)2

v2
. (C23)

Substituting these expressions for χ2 and χ3 in Eq. (39), we
obtain Eq. (67).
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