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ABSTRACT

Some unique properties of superconducting devices are promising for the development of modern quantum technologies. Superconducting
quantum circuits use large coupling constants and provide good scalability and controllability due to their macroscopic dimensions. Still,
micro-fabrication methods have some hardship with reproducibility of identical superconducting quantum circuits. The dressed state
approach presents some possibility to reduce influence of non-identity of qubits. We study a qubit-resonator system, when the qubit inter-
acts with three signals. Such system configuration adds additional flexibility for circuit tunability. A particular realization of such a system is
a superconducting flux qubit coupled to a transmission-line resonator driven by three signals. We describe this triply-driven system in
terms of the dressed qubit states and conclude that using several signals can be beneficial for both system spectroscopy and tunability. Such
study of a qubit-based system, coupled to both classical and quantum fields, can be useful for detection of individual itinerant microwave
photons.

Published under license by AIP Publishing. https://doi.org/10.1063/10.0004230

1. INTRODUCTION

Superconducting quantum systems have a number of impor-
tant advantages that make them a promising platform for modern
quantum technologies.1–3 Due to their macroscopic size, they
provide good scalability as well as controllability. Although the first
experiments in circuit electrodynamics focused on demonstrating
fundamental quantum effects, the emphasis has now shifted to cre-
ating hybrid structures for modeling quantum information proto-
cols.4 In addition to decoherence, inaccuracies in manufacturing of
samples and their non-identity remain significant obstacles in the
study of multicomponent schemes. To avoid such side effects, we
suggest one of the tools, which consists of using the qubit dressed
model.

The notion of dressed states is important for various effects,
such as Autler–Townes effect,5,6 electromagnetically induced trans-
parency,7 multi-photon transitions,8–11 cooling,12 Landau-Zener-
Stuckelberg-Majorana interferometry,13–16 lasing,17 Mollow
triplet.18 One important conclusion, which one can draw from
studying dressed states, is that adding one more signal allows for
such fine tuning which would not be accessible otherwise (with
single dressing field).19,20 A flux qubit was considered in a

qubit-resonator system, and the transmission coefficient of an elec-
tromagnetic wave was obtained.21 Then, in Ref. 22, a doubly-driven
system was described in terms of doubly-dressed states of a qubit,
which was proposed to be used to create quantum amplifiers.23–25

Similar experiments26 showed amplification and attenuation of the
probe signal for two different types of superconducting qubits: a
flux qubit based on a loop with three Josephson junctions and a
phase-slip qubit.

In our work, we consider a superconducting flux qubit
coupled to a transmission-line resonator, which system is being
driven with three signals. For the experimental formulation of the
problem see Ref. 27, while in the theoretical formulation we are fol-
lowing Ref. 28. In Ref. 27, the effect of a strong nonresonant
control signal on the energy levels for a flux qubit was considered.
The authors observed a change in the energy levels of a qubit by a
dynamic Stark shift caused by a driving signal. A similar work29

investigated the response of a qubit and the formation of dressed
states with three states; our model brings more details to these
processes.

The formulation of the problem for a qubit-resonator system
with both classical and quantum signals is important for detection
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of itinerant microwave photons.30,31 Indeed, such photons,
described by the quantum field, can route via the transmission line.
Then, these meet the qubit-cavity system, of which the dressed
energy levels can be fine-tuned. Consequently, the observed trans-
mission coefficient provides the tool to probe individual photons.
The aim of our present work is the detailed study of such dressed
states in the triply-driven qubit-resonator system.

The rest of the paper is organised as follows. In Sec. 2 we
present our model and introduce the Hamiltonian of the system.
Making use of the rotating-wave approximation results in the
dressed states, as described in Sec. 3 with the details in the
Appendix. In Sec. 4 we discuss the resonant transmission through
the system qubit-resonator and describe the position of the reso-
nances. The paper ends with the Conclusions.

2. HAMILTONIAN

The system which we consider consists of a qubit and a reso-
nator with three signals. To be more specific, we consider a flux
qubit coupled to a transmission-line resonator, as shown in Fig. 1.

Consider a qubit that interacts with three resonator signals: two
classical (with frequencies ωd and ωs and amplitudes Ad and Bs) and
one quantum (with the frequency ωp and the amplitude ξp).
Amplitudes are related as: ξp <Ad, Bs. The Hamiltonian of the
system has the following form:28

H ¼ Hqb þ Hr þ Hprobe þHdrive þ Hsd þ Hint: (1)

Here, the Hamiltonian consists of the following parts. The qubit is
described by

Hqb ¼ �hωqb

2
σz (2)

with the energy difference �hωqb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε20 þ Δ2

p
, the energy bias ε0,

which is defined by the external magnetic flux, minimal energy

splitting Δ, and the Pauli matrices σi. Note that this is given in the
representation of the qubit energy eigenstates. Next, the resonator is
characterized by the resonant frequency ωr. and the annihilation/cre-
ation operators a/ay:

Hr ¼ �hωra
ya: (3)

The probe field with the amplitude ξp and the frequency ωp is
described by

Hprobe ¼ �hξp(ae
iω pt þ aye�iω pt ): (4)

The probe field is supplied via the transmission line. In contrast, the
next, driving, signal is supplied through the magnetic flux21

Hdrive ¼ Ad cosωdt~σ
0
z , ~σ

0
z ¼

ε0
�hωqb

σz þ Δ

�hωqb
σx

� �
: (5)

Note that the former signal is described by the cavity operators,
while the latter is defined by the qubit operators. Finally, the third
(strong) driving signal enters with the Hamiltonian

Hsd ¼ Bs cosωst~σ
0
z: (6)

So, it is the first (weak) signal which is considered fully quantum-
mechanically, while the second and the third (strong) signals are
considered semiclassically. Finally, the interaction of the qubit and
the resonator (with the coupling constant g) is given by the term

Hint ¼ g(aþ ay)~σ0
z: (7)

With the Hamiltonian (1) one can describe both the eigen-
states and dynamics of a qubit coupled to a resonator with three
signals.

3. DRESSED AND DOUBLY-DRESSED STATES

Now, in order to describe our system with three drive signals,
we can make use of the rotating-wave approximations (RWA) so
that to exclude the respective time dependence from the
Hamiltonian. The result is known as dressed states. Details of using
RWA corresponding to the three signals are given in the Appendix.
Essentially, each time excluding the signal from the Hamiltonian,
starting from the bare energy levels, we obtain dressed and doubly-
dressed energy levels with the respective energy separations:

�hωqb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þ ε20

q
(8)

for the bare states, which are controlled by the energy bias ε0;

Δ�E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~Δ
2 þ ~ε2

q
(9)

for the dressed states, with ~Δ ¼ AdΔ/�hωqb and ~ε ¼ �h(ωqb � ωd),
which are controlled by the driving signal with the frequency ωd

FIG. 1. Schematic diagram of a driven qubit-resonator system. The qubit is a
flux qubit, which is a superconducting ring with three Josephson junctions; the
current in the loop can be in either direction, which defines the qubit basis; the
loop is pierced by the external magnetic flux, which defines both the energy
bias and the driving. A resonator is based on a transmission line interrupted by
two capacitors. The qubit is coupled to the resonator via mutual inductance M.
The transmission line is excited by two signals, corresponding to first and third
harmonics of the resonator; distribution of the current density is given by the
green and red lines, respectively. The qubit is situated at the maxima of the
current densities, at x = d/2.
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and amplitude Ad; and

Ωqb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 þ δω2

qb

q
, (10)

for the doubly-dressed states, with δωqb ¼ (Δ~E/�h)� ωs, and
Λ ¼ Bs(ε0/�hωqb)(~Δ/Δ~E), which are then controlled by the signal
with the frequency ωs, and amplitude Bs.

Taking into account the third, probe, signal with the frequency
ωp and amplitude ξp brings us to the Hamiltonian in the form of
the well-known Janes–Cummings Hamiltonian:

~HRWA�3 ¼ �h
δ~ωqb

2
~σ

0
2 þ �hδωra

yaþ ~γ(a~σ
0
þ þ ay~σ0

�)þ �hξp(aþ ay),
(11)

where

δ~ωqb ¼ Ωqb � ωp, ~γ ¼ γ
Δ

Ωqb
, δωr ¼ ωr � ωp:

Expression (11) coincides exactly with the Hamiltonian of an effec-
tive two-level system interacting with a quantum field. But now we
have the opportunity to influence the shape of the levels by

changing the parameters of the excitation fields. The first term in
Eq. (11) gives the energy levels of the triply-dressed states.

The bare, dressed, and doubly-dressed energy levels are shown
in Fig. 2. For calculations we take the parameters close to the ones
in Ref. 27: Δ/h = 2.97 GHz, ωr /2π = 2.59 GHz, ωp = ωr, ωd = 3ωr,
ωs,/2π = 2.62–3.25 GHz, g / h = 3MHz. So, the position of the reso-
nances in the transmission coefficient can be used for defining the
dressed-energy spectra of the system, which can be used for the
multi-signal spectroscopy.27,32

FIG. 2. Energy levels of a triply-driven qubit. The bare energy levels,
E0 ¼ + �hωqb/2, are shown with the blue lines; the dressed levels,
E1 ¼ +Δ~E/2, are shown with the green line; the doubly-dressed levels,
E2 ¼ + �hΩqb/2, are shown with the pink lines. The arrows have the length
corresponding to the frequencies ωd /2π ¼ 7:77 GHz, ωp/2π = 2.59 GHz,
ωd/2π = 3.0 GHz. Where the energy levels are matched by the photon energy,
we expect the resonant excitation of the qubit-resonator system, resulting in the
changes of the transmission coefficient. Position of the resonances, at ε0 ¼ ε�0 ,
we further demonstrate in Fig. 3. The structure of the energy levels and the
position of the resonances are defined by the driving amplitudes; here we take
these: Ad/h = 3 GHz and Bs/h = 1 MHz.

FIG. 3. Position of the resonances ε�0 as a function of the driving amplitude Ad
(a) and the varying second signal frequency ωs (b). The colours of the lines cor-
respond to their position shown by the vertical dashed lines in Fig. 2. Also here
the vertical gray lines show the values of Ad and ωs, at which Fig. 2 was
plotted. For calculations we took: Bs = 1 GHz, ωs/2π = 3 GHz in (a) and
Ad/h = 3 GHz in (b).
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4. RESONANT TRANSMISSION

When a qubit is coupled to a resonator, the state of such
qubit-resonator system is usually probed via either reflection or
transmission of a probe signal.20,27,33 In the multiple-signal formu-
lation, we expect resonances at positions where respective energy
levels are matched by an excitation-signal frequency. Physically,
this is analogous to the phenomena known as the electromagneti-
cally induced transparency.7,34 In particular, we expect the resonan-
ces at where the bare levels are matched by the first driving signal

ωqb(ε0) ¼ ωd , (12)

where the dressed energy levels are matched by the second driving
signal

Δ~E(ε0) ¼ �hωs, (13)

and where the doubly-dressed states are matched by the probe signal

Ωqb(ε0) ¼ ωp: (14)

The position of the respective resonances are shown by the arrows in
Fig. 2. Next, we present the position of the possible resonances in
Fig. 3. There, the lines show the solution of Eq. (12)–(14). Multiple res-
onances and there dependence on the driving parameters helps under-
standing of resonant transmission in the experiments like Ref. 27.

5. DISCUSSION AND CONCLUSIONS

We have described theoretically the qubit-resonator system,
when a qubit interacts with three signals. We have shown that a
strong excitation signal can be used to control the energy levels of a
qubit-based system by several parameters, such as the amplitudes
and frequencies of the signals. The ability to regulate energy levels
in this way stems from their interaction with the driving fields. We
have shown that a qubit interacting with several signals can still be
described as an effective quantum two-level system, in terms of
dressed states. Importantly, such energy levels are highly tunable by
the dressing signals. Probing the energy levels of the systems can be
useful for the system spectroscopy. On the other hand, measuring
the resonant transmission can be used for detecting itinerant
photons of the probe field.
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APPENDIX: ROTATING-WAVE TRANSFORMATIONS

In this Appendix we consider three times rotating-wave
approximations (RWA) so that to exclude driving and obtain
dressed states.

Rotating-wave approximation 1

Consider first the full Hamiltonian H, Eq. (1) and let us make
the unitary transformation

U1 ¼ exp(iωdtσz/2): (A1)

Then, after simplification we obtain the following expression

~HRWA�1 ¼U1HU
y
1 þ i�h _U1U

y
1 ¼ ~H0 þ ~H(t)

¼ ~ε

2
σz þ

~Δ

2
σx þ �hωra

yaþ~g(aþ ay)σz
þ �hξp(ae

iωpt þ aye�iωpt)þBs cosωst
ε0
ωqb

σz , (A2)

where

~Δ¼ AdΔ

�hωqb
, ~ε¼ �h(ωqb�ωd), ~g ¼ g

ε0
�hωqb

: (A3)

Now we rewrite the Hamiltonian in the eigenbasis of ~H0

xwith the unitary transformation S1 ¼ exp(iτσy/2), where
tan τ ¼ �~Δ/~ε, and obtain

~H1 ¼ Δ~E
2

~σz þ Bs cosωst
ε0

�hωqb
σz þ ~g(aþ ay)σz , (A4)

with Δ~E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~Δ
2 þ ~ε2

q
and

σz ¼ cos τ~σz þ sin τ~σx ¼ ~ε

Δ~E
~σz �

~Δ

Δ~E
~σx:

Rotating-wave approximation 2

As a following step, we make the unitary transformation with
respect to the signal with the frequency ωs:

U2 ¼ exp(iωst/~σz/2): (A6)

Then, after applying this transformation, we obtain the
Hamiltonian in the form

~H
0

1 ¼
Δ~E� �hωs

2
~σz þBz

2
ε0
ωqb

� (eiωst þ e�iωst)
~ε

Δ~E
~σz �

~Δ

Δ~E
(e�2iωs t~σþ þ e2iωst~σ� þ ~σx)

� �

þ~g(aþ ay) ~ε

Δ~E
~σz �

~Δ

Δ~E
(e�iωst~σþ þ eiωst~σ�)

� �
: (A7)

Then the Hamiltonian of the system takes the form

~HRWA�2 ¼ δωqb

2
~σz �Δ

2
~σz þ g(aþ ay)~σz þ�hωra

ya

þ �hξp(ae
iωpt þ aye�iωpt), (A8)
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where

δωqb ¼ Δ~E
�h

�ωs,Λ¼ Bs
ε0

�hωqb

~Δ

Δ~E
, γ¼ ~g

~ε

Δ~E
: (A9)

In the eigenbasis of the time-independent Hamiltonian, using
the transformation

S2 ¼ exp(iζ~σy/2), tan ζ ¼ Λ/δωqb, (A10)

the expression (A8) takes the following form

~H
0

RWA�2 ¼
Ωqb

2
~σ

0
z þ γ(aþ ay)~σz

þ �hωra
yaþ �hξp(ae

iωpt þ aye�iωpt), (A11)

with

Ωqb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 þ δω2

qb

q
, (A12)

and

~σz ¼ cos ς~σ
0
z þ sin ς~σ

0
x ¼

δωqb

Ωqb
~σ

0
z þ

Λ

Ωqb
~σ

0
x (A13)

Rotating-wave approximation 3

Finally, we make the unitary transformation

U3 ¼ exp(iωpt(a
yaþ ~σ

0
z/2)): (A14)

After this, the expression (A11) results in the complete
Hamiltonian of the system in the form

~HRWA�3 ¼ �h
δ~ωqb

2
~σ

0
z þ ~γ(a~σ

0
þ þ ay~σ0

�)þ �hδωra
yaþ �hξp(aþ ay),

(A15)

where

δ~ωqb ¼ (Ωqb � ωp), ~γ ¼ γ
Δ

Ωqb
, δωr � ωp: (A16)

We further analyze this Hamiltonian as well as the dressed
states in the main text.
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