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ABSTRACT

Within the framework of an idealized theoretical model, we study the effect of external static homogeneous exchange and magnetic field on
the spin part of the singlet wave function of two electrons. We begin by revising the traditional (textbook) approach to the spin singlet.
Basing our own approach solely on the property of invariance under rotations of the coordinate system and using the theory of spinor
invariants, we derive a generalized representation of the spin singlet whose main feature is that the spins are in mutually time-reversed
states. We show that exactly this feature predetermines the actual form of the Hamiltonian of interaction with the external field and stipu-
lates time evolution of the singlet. Some applications of these results to the theory of superconductivity and spin chemistry are presented.
In particular, it is shown that the case of ferromagnetic superconductors constitutes a good illustration of the validity of our quantum-
mechanical consideration.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/10.0006061

1. INTRODUCTION

The aim of this paper is to study theoretically the effect of
external static homogeneous exchange and magnetic fields on the
spin part of a singlet wave function of two electrons. For fear of
possible misreading, we shall first of all formulate our exact state-
ment of the problem. The idealized model accepted in this paper
does not take into account any electromagnetic or exchange inter-
actions between the electrons of the singlet. Moreover, to make our
consideration uniform, we completely disregard orbital degrees of
freedom and concentrate only on spin dynamics. Surprisingly,
although the thus stated problem concerns the basics of quantum
mechanics and has important applications in related sciences, it is
not discussed in standard textbooks,1–6 and we are unaware of
the correct solution to it in literature. For example, if we choose the
spin quantization axis to be perpendicular to the external field,
we notice that the probabilities of definite spin orientations oscillate
with time and that spin flips occur.3 These intuitive conjectures
about the behavior of the spin singlet in the presence of external
fields will be verified, refined on and developed by means of rigor-
ous mathematical methods in the sections of the paper that follow.

In particular, we begin Sec. 2 with an analysis of certain draw-
backs of the traditional (textbook)1–6 representation of the spin
singlet. After that, based on the theory of spinor invariants,7,8 we
derive a generalized representation of the spin singlet which is free

from the drawbacks of the traditional one: the generalized represen-
tation is explicitly invariant under rotations of the coordinate
system. The main feature of the generalized representation is that
the spins are in mutually time-reversed states. Relationship to the
representation of the spin singlet as a normalized metric spinor is
established.

In Sec. 3, we use the results of section Sec. 2 to study the
evolution of the spin singlet. An exact time dependent spin wave
function is derived. This wave function exhibits periodic conver-
sions from the spin singlet to the zero component of the spin
triplet along the external field. Periodic permutations of the spins
of the singlet, caused by spin flips, are also envisaged.

In Sec. 4, we consider the application of the results of the pre-
vious section to the theory of ferromagnetic super- conductors and
spin chemistry. Some mathematical details related to the results of
Secs. 2–4 are relegated to Appendices A and B. In Sec. 5, key results of
the paper are discussed and several conclusions are drawn.

2. THE GENERALIZED REPRESENTATION OF THE SPIN
SINGLET

The correlation between the spins of the singlet clearly mani-
fests itself in the property of invariance under rotations of the coor-
dinate system. To explain the situation, we begin by drawing the
reader’s attention to some little-known mathematical aspects of the
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singlet wave function, not mentioned in standard textbooks (see,
for example, Refs. 1–6).

Traditionally, the singlet wave function is written down as an
antisymmetric linear combination of the eigenfunctions of one of
the Cartesian components of the total spin S ¼ s1 þ s2, corre-
sponding to a zero eigenvalue of the operator S2:

ΨS(1, 2) ¼ 1ffiffiffi
2

p (Ψαþ �Ψα� �Ψα� �Ψαþ): (1)

Here, α ¼ x, y, z; the sign ⊗ denotes a direct product of two-
dimensional Hilbert spaces of spin 1 (on the left) and spin 2 (on
the right) Ψαþ and Ψα� are the eigenfunctions of the correspond-
ing Pauli matrices.

Using the properties of the time-reversal operator K,9 we may
obtain the following generalized representation of the singlet state:

ΨS(1, 2) ¼ 1ffiffiffi
2

p (KΨα� �Ψα� þ KΨαþ �Ψαþ), (2)

where KΨα� ¼ Ψαþ and KΨαþ ¼ �Ψα�.
We want to say that Eq. (2) are not merely a new representa-

tion of the singlet state, different from the traditional one. It
emphasizes only that the singlet state is formed by two spin states
that are mutually reversed in time.

3. TIME EVOLUTION OF THE SPIN SINGLET

Now we are fully prepared to return to our main problem: the
evolution of the singlet state. If the spins were independent, the
dynamics of both of them would be generated by the same single-
particle Hamiltonian

H ¼ �σzJ: (3)

Note that in the case of an exchange field, which is parallel to z
direction, J is just its value; in the case of a magnetic field H,
J ¼ �gμbHz with μb is the Bohr magneton. The evolution operator
for an initial state is Ψ

U(t) ¼ exp �i
H
�h
t

� �
: (4)

The evolution operator for the time-reversed state KΨ is9

Urev(t) ¼ KU(�t)Kþ¼ exp �i
KHKþ

�h
t

� �
: (5)

Thus, the evolution operator for the spin singlet (2) has the follow-
ing form:

U1,2(t) ¼ exp �i
KHKþ

�h
t

� �
� exp �i

H
�h
t

� �
: (6)

For the perpendicular magnetic field the corresponding time-

dependent two-spin state has the form

Ψ(1, 2; t) ¼ a(t)ΨS(1, 2)þ b(t)ΨT (1, 2), (7)

where ΨT (1, 2) is the triplet two-spin function with z projection of
total spin SZ ¼ 0

ΨT(1, 2) ¼ 1ffiffiffi
2

p (Ψαþ �Ψα� þΨα� �Ψαþ): (8)

Among other things, relation (6) implies that the actual inter-
action Hamiltonian for the spin singlet is not

H� I þ I �H, (9)

as would be the case for two independent spins, but rather

H� I þ I � KHKþ (10)

or

KHKþ�I þH � I, (11)

where I is a unit operator. Relations (10) and (11) take explicitly
into account the correlation between the spins of the singlet.

Consider first the representation (2) and the evolution opera-
tor (6). Although the explicit form of the time-dependent state

Ψ(1, 2; t) ¼ U1,2(t)ΨS(1, 2) ;
1ffiffiffi
2

p [U(t)Ψn̂þ � Urev(t)KΨn̂þ

þU(t)Ψn̂� � Urev(t)KΨn̂�] (12)

can be evaluated for an arbitrary direction of the vector n̂ in
Eq. (12), from the point of view of physical interpretation, it is rea-
sonable to take n̂ perpendicular to the direction of the field: say,
n̂ ¼ x̂. In this way, we immediately arrive at the following set of
expressions:

Ψ(1, 2; t) ¼ a(t)ΨS(1, 2)þ b(t)ΨT ,Sz¼0(1, 2), a(t) . 0;
ja(t)jΨS(2, 1)þ b(t)ΨT ,Sz¼0(2, 1), a(t) , 0;

�
(13)

ΨS(1, 2) ¼ �ΨS(2, 1) ¼ � 1
2

1

1

� �
� 1

�1

� �
� 1

�1

� �
� 1

1

� �� �

¼ 1
2

1

0

� �
� 0

1

� �
� 0

1

� �
� 1

0

� �� �
, (14)

ΨT ,Sz¼0(1, 2) ¼ ΨT ,Sz¼0(2, 1) ¼ 1
2

1

0

� �
� 0

1

� �
þ 0

1

� �
� 1

0

� �� �
,

(15)

a(t) ¼ cos
2Jt
�h

� �
; 2

1
2
� sin2

Jt
�h

� �� �
, (16)
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b(t) ¼ i sin
2Jt
�h

� �
; i2 sin

Jt
�h

� �
cos

Jt
�h

� �
: (17)

Here, ΨT ,Sz¼0(1, 2) is the component of the triplet state corre-
sponding to Sz ¼ 0; a(t) and b(t) are the probability amplitudes of
the states ΨS and ΨT ,0, respectively; sin2

Jt
�h

� 	
is the probability of a

spin flip in a perpendicular field J;3 sin Jt
�h

� 	
and cos Jt

�h

� 	
are the prob-

ability amplitudes of a spin flip and of the absence of a spin flip,
respectively. Furthermore, 1

2 � sin2 Jt
�h

� 	

 

 is the probability of a defi-
nite spin orientation.

In addition, we want to emphasize that time dependence of
the probability amplitude a ¼ a(t) reflects the dynamics of the
time-reversal operator K ¼ K(t), which is clear from the represen-
tations derived in Appendix A:

a(t) ¼ 1
2
Sp[K(t)Kþ(0)] ¼ 1

2
Sp[K(�t)Kþ(0)], (18)

K(t) ¼ exp i
H
�h
t

� �
K(0) exp i

H
�h
t

� �
: (19)

Here, the time-reversal operators are, of course, written down
in the Heisenberg representation. Equal sign in the arguments of
both the exponents in Eq. (19) is due to the antilinearity of
K : Ki ¼ �iK .

As can be seen from Eqs. (13)–(17), when an external
non-time-reversible field is “switched on” at t = 0, the initial singlet
state ΨS starts to decay gradually, whereas the zero component of
the triplet state along the external field, ΨT ,Sz¼0, is emerging owing
to spin flips induced by the field. At t ¼ π�h

4J a permutation of the
spins 1 and 2 occurs, which is reflected in the second line of
Eq. (13). At t ¼ 3π�h

4J a new permutation of the spins occurs.

Formally, the process is periodic with the period T ¼ π�h
J .

Certainly, in view of idealized character of our model (see
the Introduction) the possibility of the observation of the above-
described quantum-mechanical effects in real electron systems
strongly depends on concrete physical situations. For example,
periodic conversions ΨS ! ΨT ,Sz¼0, envisaged by Eqs. (13)–(17),
are prohibited in homogeneous ferromagnetic superconductors
(Sec. 4.1). By contrast, such conversions are experimentally
observed in some situations encountered in spin chemistry
(Sec. 4.2).

If we now take the representation of (2) and the evolution
operator (6), the result for the corresponding time-dependent state
will be straightforward:

Ψ*(1, 2; t) ; U *
1,2(t)ΨS(1, 2) ¼ K0U1,2(t)ΨS(1, 2)

¼ a(t)ΨS(1, 2)þ b*(t)ΨT ,Sz¼0(1, 2), a(t) . 0,

ja(t)jΨS(2, 1)þ b*(t)ΨT ,Sz¼0(2, 1), a(t) , 0:

�
(20)

Given that the function Ψ*(1, 2; t) is the complex conjugate of the
function Ψ(1, 2; t) and differs from the latter only by complex con-
jugation of the probability amplitude b(t) b*(t) ¼ �i sin 2Jt

�h

� 	� �
, both

Ψ(1, 2; t) and Ψ*(1, 2; t) describe the same physical situation, as
could be expected.

4. APPLICATIONS

The quantum-mechanical results of the two previous sections
have immediate applications in related sciences, namely the theory
of superconductivity and spin chemistry. We begin with the theory
of superconductivity.

4.1. Coexistence of superconductivity and
ferromagnetism

As was first observed by Anderson a long time ago10 (see also
Ref. 11), in the BCS theory of superconductivity,12 superconducting
correlations (or Cooper pairs) are formed by electron states that are
mutually reversed in time, e.g., jp "i and j�p #i if the electron
momentum p is a good quantum number. Unfortunately, it seems
that implications of this observation for ferromagnetic supercon-
ductors have not been understood in the literature. As an explana-
tion, we consider the linearized equation for the superconducting
order parameter Δ ¼ Δ(r), valid near the transition curve between
the superconducting and normal phases Tc ¼ Tc(J) (provided the
transition is of second order:

Δ(r) ¼
ð
dr03K(r, r0)Δ(r0),

K(r, r0) ¼
ð

dp3

(2π�h)3
exp

ip
�h
(r-r0)

� �
K(p):

(21)

As regards some details, see for example, the old reviews Refs. 13
and 14 and references therein.

A Fourier transform of Eq. (21) to the momentum space was
employed in the literature13,14 to evaluate peculiar behavior of the
second-order transition curve that had a branching point designat-
ing the origin of a first-order phase transition, but we will not
discuss this issue here. Neither will we ponder on the problem of
existence or non-existence of the so-called FFLO phase (see the
original papers Refs. 15 and 16 and the review Ref. 17): this
problem is also beyond the scope of our paper. Instead, we will
focus on those mathematical properties of the integral kernel
K(r, r0) that are intimately connected with our quantum-
mechanical results and not reflected in the existing literature.

The quantity K(p) is given in Ref. 13 in the quasi-classical

approximation (when max Tc
EF
, J
EF

n o
� 1, with EF being the Fermi

energy) for the two extreme cases, namely: the “clean” limit (no
impurities) and the “dirty” limit (a chaotic distribution of non-
magnetic impurities).

However, to elucidate the effect of the exchange field, we have
to resort to the coordinate representation of the integral kernel that
describes the propagation of superconducting correlations between
the points r0 and r. Thus, in the “clean” limit we have:

K(p) ¼ 2πN(0)jgjTc

pνF

X
ωn.0

arctan
pνF � 2J
2ωn

� ��

þ arctan
pνF þ 2J
2ωn

� ��
, (22)
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K(r, r0) ¼ N(0)jgjTc

�hνF jr-r0j2
X
ωn.0

1� 2sin2
jr-r0jJ
�hνF

� �� �

� exp � 2ωnjr-r0j
�hνF

� �
, (23)

where N(0) ¼ mpF
2π2�h3

is the density of states at the Fermi level in
the normal phase, νF is the Fermi velocity, |g| is the value
of the constant of effective electron-electron interaction, and
ωn ¼ (2nþ 1)πTc(n ¼ 0, + 1, + 2, . . . ). As can be easily seen,
the preexponential factor in the square brackets in Eq. (23) is
nothing but an image (in a rigorous mathematical sense) of the
probability amplitude a(t) [Eq. (18)]. Indeed, physically, the quasi-
classical approximation implies that each electron of the Cooper
pair is represented by a wave packet2,4 formed by the states with
the momenta

p [ pF �max
Tc

νF
,
J
νF

� 

, pF þmax

Tc

νF
,
J
νF

� 
� �
:

The centres of these packets move at the velocity υF along the clas-
sical trajectories linking the points r0 and r.18–20 (As a matter of
fact, there are four trajectories of equal contribution: two direct in
time trajectories for opposite orientation of electron spin plus
the two time-reversed trajectories. The probability of each trajec-
tory is equal to the probability of a definite spin orientation:
see Appendix B for mathematical details.) As the dynamics of the
spins is purely quantum-mechanical, the ratio jr�r0 j

υF
in the pre-

exponential factor of Eq. (23) should be identified with time t in
Eq. (16): see Eq. (B.4).

In the opposite, “dirty” limit the kernel has the following coor-
dinate representation:

K(p) ¼ 2N(0)jgjTc

X
ωn.0

2ωn þ D
�h
p2

2ωn þ D
�h
p2

� �2

þ 4J2
, (24)

K(r,r0) ¼ N(0)jgjTc

�hjr� r0jD

�
X
ωn.0

1� 2sin2
jr� r0j
2

ffiffiffiffiffiffi
�hD

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
n þ J2

q
� ωn

r" #( )

� exp � jr� r0jffiffiffiffiffiffi
�hD

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2
n þ J2

q
þ ωn

r" #
: (25)

Here, D ¼ υF l
3 is the diffusion coefficient. As in the “clean” limit,

the preexponential factor (in the figure brackets) reflects spin-flip
processes. The complexity of the argument of the spin-flip proba-
bility (sin2[ . . . ]) in Eq. (25) is due to the fact that in the “dirty”
limit the relevant classical trajectories of electron motion are those
of a random walk process:19,20 see Eq. (B.5).

The above Eqs. (23) and (25) do not exhibit any trace of the
ΨS ! ΨT ,Sz¼0 conversions described in the previous section,
because the BCS Hamiltonian precludes the formation of

superconducting correlations between two electrons in a triplet
state.12,11 By contrast, the accompanying effects of the vanishing of
the probability amplitude a(t) and spin permutations within the
singlet pair do take place. These effects can be interpreted as a
manifestation of a new mechanism of the destruction of supercon-
ducting correlations, completely overlooked in the literature.
Finally, we want to say a few words about an application of our
results to spin chemistry.

4.2. Spin chemistry

Spin chemistry21–23 is a new and rapidly developing interdisci-
plinary science relating chemistry, physics and biology. It is con-
cerned with the effect of external magnetic fields (including static
ones) on chemical reactions. A significant group of chemical reac-
tions, sensitive to external static magnetic fields, involve as interme-
diates so-called radical pairs in the singlet state. Singlet radical
pairs themselves emerge, in particular, when certain organic mole-
cules experience photochemical reactions that are accompanied by
electron transfer from one molecular complex to the other.22,23

Although singlet radical pairs are usually short-living and tend to
recombine, it has been noticed that external static magnetic fields
can induce a conversion of the singlet state of radical pairs to the
triplet one. Our exact solution represented by Eqs. (13)–(17) sheds
new light on the nature of this latter effect.

Indeed, it is universally believed in spin chemistry22 that the
ΨS ! ΨT ,Sz¼0 conversion in not too small static magnetic fields
should be ascribed to presumed inequality of spin Landé factors of
the members of a radical pair (i.e., Δgs ; gs1 � gs2 = 0). However,
Eqs. (13)–(17) suggest that ΨS ! ΨT ,Sz¼0 conversions may occur
under the condition of equal gs-factors for both the members of the
radical pair (i.e., no assumption of the inequality Δgs = 0 is
required).

Certainly, the value of the gs-factor was calculated by methods
of quantum electrodynamics for free electrons only.24,25 The
unpaired electrons of free radicals are by no means free: different
small interactions within each radical may cause the gs-factors to
deviate. Nevertheless, our results must necessarily be taken into
account in any considerations of the effect of singlet-triplet
conversions.

5. DISCUSSION AND CONCLUSIONS

Summarizing, within the framework of a theoretical model
described in the Introduction, we have studied time evolution of
the spin part of the singlet wave function of two electrons in the
presence of external static homogeneous magnetic and exchange
fields. In order to obtain the exact solution to this quantum-
mechanical problem, we have had to revise in Sec. 2 the traditional
approach2 to the spin singlet, because it does not take adequately
into account the property of invariance under rotations of the coor-
dinate system. Basing our own approach in Sec. 2 solely on this
invariance property and using the theory of spinor invariants,7,8 we
have derived the generalized representation of the spin singlet
[Eq. (2)] whose fundamental feature is that the spins are in mutu-
ally time-reversed states.

We think that exactly the misunderstanding of the above-
mentioned fundamental feature of the spin singlet is the main
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reason why the problem of time evolution has not been solved in
the available literature. In this regard, it would be in order to point
out that, although the alternative form of the generalized represen-
tation is well-known (at least, in the theory of superconductivity26),
any detailed analysis of the representation, analogous to ours in
Appendix A, has not been undertaken. In particular, the correct
form of the interaction Hamiltonian [our Eqs. (10) and (11)],
which is crucial to the solution of the problem of time evolution,
has not been established.

Our exact solution to the problem of time evolution
[Eqs. (13)–(17)], derived by different mathematical methods in
Sec. 3 and Appendix A, implies the existence of two non-trivial
quantum-mechanical effects, namely: periodic singlet-triplet con-
versions and periodic permutations of the spins within the singlet.
These effects are described in more detail in Sec. 3 itself and Sec. 4
concerned with some applications to the theory of ferromagnetic
superconductors and spin chemistry.

By the way, the theory of ferromagnetic superconductors
provides a very good illustration of the validity of the exact solution
(13)–(17) and its consequences: the quasi-classical expressions
(23) and (25), derived by quantum-mechanical methods in
Appendix B, have as Fourier transforms the well-known13 expres-
sions (22) and (24), respectively. However, applications to the
theory of ferro-magnetic superconductors by no means reduce to
mere restatement of already known results: one of the implications
of the exact solution (13)–(17) is a new mechanism of the destruc-
tion of superconducting correlations by the exchange field, not
reported in previous publications.

As regards applications to spin chemistry,21–23 our exact solu-
tion (13)–(17) yields a natural explanation of the experimentally
observed effect of singlet-triplet conversion in radical pairs in the
presence of external static magnetic fields. This explanation does
not require any assumptions of inequality between the relevant
spin Landé factors, which should be contrasted with typical publi-
cations on this subject:22 see Sec. 4 for more detail. To draw the
line, we think that our results may stimulate further theoretical
studies of the problem of time evolution of the singlet state of two
electrons on the basis of more realistic models than the one
employed in our paper.
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APPENDIX A: Spin singlet as the normalized
metric spinor

We begin by reminding the well-known4 property of the
metric spinor:

gij ¼ gij: (A:1)

This property means that the matrix g can be regarded both as a
covariant and a contravariant spinor of rank two, which is verified
directly. Moreover, the metric spinor satisfies a set of elementary

relations:

gþ¼g�1 ¼ ~g ¼ �g, (A:2)

where the tilde (�) denotes a transposition.
If we now write down explicit expressions for the direct prod-

ucts of the spinors on the right-hand side of (2) we immediately get:

ΨS ¼ 1ffiffiffi
2

p g, ΨS(i; j) ¼ 1ffiffiffi
2

p gij ¼ 1ffiffiffi
2

p gij: (A:3)

(This result is just a manifestation of the fact that any antisymmetric
spinor of rank two is equal to the metric spinor multiplied by a
scalar.4)

It is instructive to check the main properties of the spin
singlet for expression (A.3) independently. The fulfillment of the
normalization condition is evident:

Sp(Ψþ
S ΨS) ¼ � 1

2
Sp(g2) ¼ 1: (A:4)

As is well known from the classical mechanics,27 any rotation of the
Cartesian coordinate system about the origin can be parameterized
by the Euler angles and is represented by a product of three consecu-
tive rotations about certain axes. Therefore, to verify the invariance
of (A.3) under rotations, it is sufficient to consider rotations by
an angle f about an arbitrary axis specified by a unit vector
jmj(jmj ¼ 1). The transformation of spinor components under such
rotations are realized by the unitary transformation matrix4

D(m; f) ¼ exp
i
2
mσ

� �
: (A:5)

To avoid misunderstandings, we note that the matrix D is not a
spinor; therefore, the position of the matrix indices (upper, lower or
mixed) is nonessential for this matrix. Thus, we write:

ΨS(i
0; j0) ¼ Di0

kD
j0

l ΨS(k; l) ;
1ffiffiffi
2

p Di0
k D

j0

l g
kl

¼ 1ffiffiffi
2

p Di0
kg

kl ~D
j0

l ¼
1ffiffiffi
2

p Di0
k[D

�1]
k
l g

l j0

¼ 1ffiffiffi
2

p gi
0 j0 ¼ ΨS(i; j): (A:6)

In the above transformations we have used convention concerning
the repeated indices and employed commutation relations between
the Pauli matrices.

A proof of the fact that the spins of a singlet pair are in mutu-
ally time-reversed states is slightly more involved. Consider a some-
what idealized situation when these spins are separated far apart in
the coordinate space, so that only one of the spins (say, the spin
whose state is specified by the row index of the matrix g) is under
the influence of the perturbation, whereas the second one (whose
state is specified by the column index) is not. In this situation, the
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state of the pair is described by the time-dependent function

Ψrow ¼ 1ffiffiffi
2

p [U(t)]ikg
kj

¼ 1ffiffiffi
2

p gik[~U(�t)]
j
k ¼

1ffiffiffi
2

p [Urev(t)]
j
kg

ik

¼ � 1ffiffiffi
2

p [Urev(t)]
j
kg

ki, (A:7)

where the evolution operators U(t) and Urev(t) are given by Eq. (4)
and Eq. (5), respectively. In the last line of (A.7) the antisymmetric
property of the spin singlet has been used.

Similarly, in the opposite situation, when the role of the spins
is interchanged, we have:

Ψcolumn ¼ 1ffiffiffi
2

p [U(t)]jkg
ik

¼ 1ffiffiffi
2

p [~U(�t)]
i
kg

kj ¼ 1ffiffiffi
2

p [Urev(t)]
i
kg

kj

¼ � 1ffiffiffi
2

p [Urev(t)]
i
kg

jk: (A:8)

A comparison between the first and the last lines of relations
(A.7) and (A.8) proves our time-reversal-symmetry statement.

The above considerations allow us to conclude that in the sit-
uation, when both the spins are under the influence of the pertur-
bation, their state is represented by either the time-dependent
function

Ψ(t) ¼ 1ffiffiffi
2

p [U(t)]ik[Urev(t)]
j
lg

kl ¼ 1ffiffiffi
2

p [U(t)]ikg
kl[~U rev(t)]

j
l

;
1ffiffiffi
2

p U(t)g ~U rev(t), (A:9)

or by its complex conjugate

Ψ*(t) ¼ 1ffiffiffi
2

p [Urev(t)]
i
k[U(t)]jlg

kl

¼ 1ffiffiffi
2

p [Urev(t)]
i
kg

kl[~U(t)]
j
l

;
1ffiffiffi
2

p Urev(t)g ~U(t): (A:10)

Explicitly, these two relations, of course, reproduce relations (13)
and (20) of the main text with ΨS and ΨT ,Sz¼0 in the matrix form:

ΨS ;
1ffiffiffi
2

p g, ΨT,Sz¼0 ;
1ffiffiffi
2

p σz: (A:11)

The symbolic forms of the last lines of relations (A.9) and
(A.10) are convenient for the determination of the probability

amplitude a(t):

a(t) ¼ Sp[Ψþ
S Ψ(t)] ¼ � 1

2
Sp[gU(t)g ~U rev(t)]

¼ � 1
2
Sp[gU(t)gKþ ~U(�t)K] ¼ 1

2
Sp[U(t)KþU(t)K]

¼ 1
2
Sp[Kþ(t)K(0)] ¼ 1

2
Sp[K(�t)Kþ(0)]

¼ 1
2
Sp exp �i

2σzJ
�h

t

� �� �
¼ cos

2J
�h
t

� �
, (A:12)

a(t) ¼ Sp[Ψþ
S Ψ

*(t)] ¼ � 1
2
Sp[gUrev(t)g ~U(t)]

¼ � 1
2
Sp[gKU(�t)gKþ ~U(t)] ¼ 1

2
Sp[KU(�t)KþU(�t)]

¼ 1
2
Sp[K(0)Kþ(�t)] ¼ 1

2
Sp[K(t)Kþ(0)]

¼ 1
2
Sp exp i

2σzJ
�h

t

� �� �
¼ cos

2J
�h
t

� �
: (A:13)

APPENDIX B: The superconducting integral kernel as a
time laplace transform of a classical correlation
function

The kernel of the integral Eq. (21) in the quasi-classical
approximation can be represented in the following form:

K(r, r0) ¼ 2πN(0)jgjTc

�h

X
ωn.0

ðþ1

0

dt exp � 2ωn

�h
t

� �
f (r, r0; t): (B:1)

Here, f (r, r0; t) is a sum of four classical correlation functions times
relevant probability factors and appropriate sign:

f (r, r0; t) ¼ δ(r(t)� r0)δ(r(0)� r)h i p1¼pF ;s1z¼�h
2sign a(t)

ja(t)j
2

sign a(t)

þ δ(r(� t)� r0)δ(r(0)� r)h i p2¼pF ;s2z¼��h
2sign a(t)

ja(�t)j
2

sign a(�t)

þ δ(r(t)� r0)δ(r(0)� r)h i p1¼pF ;s1z¼��h
2sign a(t)

ja(t)j
2

sign a(t)

þ δ(r(� t)� r0)δ(r(0)� r)h i p2¼pF ;s2z¼�h
2sign a(t)

ja(�t)j
2

sign a(�t):

(B:2)

The four terms on the right-hand side of Eq. (B.2) represent
kinematics of the two electrons of a Cooper pair. Thus, for the time
interval 0 � t , π�h

4J , the first and the third terms correspond to clas-
sical motion of electron 1 from the point r to the point r0, with ja(t)j

2
being the probability of a definite spin orientation: see the defini-
tion of a(t) in Eqs. (16) and (18), and the text below Eq. (19). At
t ¼ π�h

4J , the right-hand of Eq. (B.2) goes to zero because of a permu-
tation of spin 1 and spin 2: see the main text. This effect should be
interpreted as the destruction of superconducting correlations (or
Cooper pairs) by the exchange field; hence the reduction of the
transition temperature analyzed, for example, in Refs. 13 and 14.
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As a result of the spin permutation, the function f(r,r0; t) acquires
minus sign in the time interval π�h

4J , t , 3π�h
4J . This process is peri-

odic with the period T ¼ π�h
J .

Given time-reversal symmetry of classical mechanics9 and the
equality a(−t) = a(t), it is clear that all the four terms on the right-
hand side of Eq. (B.2) yield equal contributions. Therefore,
Eq. (B.2) can be rewritten in a more economical form:

f (r, r0; t) ¼ 2 δ(r(t)� r0)δ(r(0)� r)h i p¼pF K(t)Kþ(0)h i, (B:3)

where

K(t)Kþ(0)h i ; 1
2
Sp[Kþ(t)K(0)] ¼ a(t):

[By rewriting the probability amplitude in the form of a correlator
KKþh i we just want to remind that correlators of this kind were
first introduced in de Gennes’ formulation of the theory of super-
conductivity19 to describe the effect of non-time-reversal perturba-
tions of different types. In our case, this correlator is responsible
for the preexponential factors in Eqs. (23) and (25)].

The classical correlator δδh i is well-known19,20 for the two
limiting cases discussed in our paper. Thus, in the “clean” limit, it
reads:

δ(r(t)-r0)δ(r(0)� r)h i p¼pF¼
1
4π

jr� r0j�2δ(jr� r0j � υFt): (B:4)

In the “dirty” limit,

δ(r(t)� r0)δ(r(0)� r)h i p¼pF¼ (4πDt)�
3
2 exp

jr� r0j2
4Dt

� �
: (B:5)

Upon the substitution of relations (B.4) and (B.5) into (B.3) and
carrying out integration over time in (B.4), we arrive at relations
(23) and (25) of the main text.
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