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We investigate the Landau-Zener-Stückelberg-Majorana interferometry of a superconducting qubit in a
semi-infinite transmission line terminated by a mirror. The transmon-type qubit is at the node of the resonant
electromagnetic (EM) field, “hiding” from the EM field. We modulate the resonant frequency of the qubit by
applying a sinusoidal flux pump. We perform spectroscopy by measuring the reflection coefficient of a weak
probe in the system. Remarkable interference patterns emerge in the spectrum, which can be interpreted as
multiphoton resonances in the dressed qubit. Our calculations agree well with the experiments.
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I. INTRODUCTION

In recent years, superconducting artificial atoms [1] cou-
pled to an open transmission-line waveguide have been a fast
growing field, called waveguide quantum electrodynamics (w-
QED), which provides a unique platform to investigate atom-
light interactions. The uniqueness of w-QED, as compared
to conventional cavity QED, is that atoms are coupled to
continuum modes of the electromagnetic (EM) field in the
waveguide. Exciting problems in w-QED include resonance
fluorescence of an artificial atom [2], photon-mediated in-
teractions between distant artificial atoms [3], an atom in
front of a mirror [4], time dynamics in atom-like mirrors
[5], photon routing [6], generation of nonclassical microwaves
[7], the cross-Kerr effect [8], amplification without population
inversion [9], the collective Lamb shift between two distant ar-
tificial atoms [10], ultrastrong coupling [11], quantum rifling
[12], probabilistic motional averaging [13], and the dynamical
Casimir effect [14–17].

When a two-level system is driven back and forth around
its resonance frequency, it will produce Landau-Zener-
Stückelberg-Majorana (LZSM) interference. LZSM interfer-
ometry [18–20] has been studied in atomic systems [21],
quantum dots [22,23], charge and spin qubits [24,25], and a
superconducting qubit in a cavity [26–29], among other areas.
However, the effect of LZSM has not been explored with a
single artificial atom in front of a mirror, where the artificial
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atom is coupled to a continuum of modes of the EM field in
the transmission-line waveguide, and the atom interferes with
its mirror image, as in Refs. [4,30].

LZSM interferometry is important for both system descrip-
tion and control [31,32]. However, for this to be realized, one
needs to have the avoided energy-level crossing in the spec-
trum as a function of a controlling parameter. One example
of systems without this are transmon-type superconducting
qubits, where the energy levels are almost independent of the
gate voltage. The way to fix this was studied in Ref. [33],
which studied the qubit by chirping the microwave frequency,
which results in dressed states with avoided-level crossing. In
this work, we study a transmon qubit driven by two fields (see
also Ref. [34]). One of these dresses the qubit and creates the
spectrum with the avoided-level crossing, while the other one
makes the system periodically pass around the avoided-level
point. This allows us to study LZSM interferometry in a qubit
placed in front of a mirror. We could refer to our system as
“mirror, mirror”, because the qubit acts as another mirror.

II. SUPERCONDUCTING QUBIT IN FRONT OF A MIRROR

In this work, we investigate the LZSM interferometry of
a superconducting qubit in a semi-infinite transmission line,
at a distance terminated by a mirror. In particular, the qubit
is located at the node of the resonant EM field, where it is
hiding from the EM field. We then modulate the resonant
frequency of the qubit by applying a sinusoidal wave through
an on-chip flux pump. In addition, the qubit is also coupled to
the microwave probe signal applied to the transmission line.
We then perform the spectroscopy of the system by applying a
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FIG. 1. The experimental setup and device. (a) A conceptual sketch of the device showing the electromagnetic mode (red curve) in the
transmission line. The qubit is located at the node of the resonant mode of the EM field, hiding from the EM field. The qubit is subjected to
a sinusoidal drive along the transmission line with frequency ωp and a flux pump ωpump. (b) A photo of the device. The qubit (shown in the
zoom-in on the left; the two long bright parts form the qubit capacitance, and the gap in the middle between them is bridged by two Josephson
junctions forming a SQUID loop) is placed L � 33 mm from another qubit, which sits at the end of the transmission line (i.e., at the mirror).
Note that the qubit at the end of the transmission line is not in use in this work because it is far detuned. The characteristic impedance of the
transmission line is Z0 � 50 �. By tuning the qubit transition frequency ω10(�), we tune the qubit to the node of the EM field. (c) A sketch of
the setup for the experiment. The qubit frequency ω10 can be tuned by a global magnetic field from a superconducting coil controlled by a dc
voltage V . For measurements, a coherent signal at frequency ωp is generated by a vector network analyzer (VNA) at room temperature and fed
through attenuators (red squares) to the sample, which sits in a cryostat cooled at 20 mK to avoid thermal fluctuations affecting the experiment.
The reflected signal passes a bandpass filter (BPF) and amplifiers and is then measured with the VNA. Here ωpump relates to the flux pump to
modulate the transition frequency of the qubit.

weak probe field along the transmission line and measure the
reflection coefficient. Interesting interference patterns emerge
in the spectrum, which can be explained by multiphoton reso-
nances in the dressed qubit. New features appear, as compared
to conventional LZSM interference; for example, now the
zero-order Rabi sideband vanishes (see also Ref. [35]).

Figure 1 shows (a) a sketch of the device, (b) the image of
the device, and (c) the measurement setup. A transmon qubit
[36–38] is embedded in a semi-1D transmission line with
characteristic impedance Z0 � 50 �, with the ground state |0〉
and the excited state |1〉. The |0〉 ↔ |1〉 transition energy is

h̄ω10(�) ≈
√

8EJ (�)EC − EC, (1)

which is determined by the single-electron charging energy
EC = e2/2C� , where C� is the total capacitance of the
qubit, and the flux-dependent Josephson energy EJ (�) =
EJ,max| cos(π�/�0)|; �0 = h/2e is the magnetic flux quan-
tum. The ratio EC/EJ determines the anharmonicity of the
qubit.

In Fig. 1(c) a probe field of frequency ωp is fed into
the transmission line. The pump field of frequency ωpump

is applied to the on-chip flux line, sinusoidally modulating

the transition frequency of the qubit. The key parameters are
summarized in Table I.

III. THEORETICAL DESCRIPTION

Let us now consider the qubit Hamiltonian, with details
presented in Appendix A. Due to the mirror, the transmission-
line voltage at the point of coupling the qubit, x = L, is
proportional to cos(ωpL/v). When this factor is zero, this
gives the node frequency ωnode, with cos (ωnodeL/v) = 0. For
small frequency offset,

�ω = ωp − ωnode � ωp, (2)

TABLE I. Table of controllable parameters. ωnode = 4.75 GHz 2π .

Value Description Range

ω10 Qubit frequency, ω10 = ω10(V ) �ωnode

δ Pump amplitude; δ = δ(Ppump) ∼0.1 GHz 2π

ωpump Pump frequency <0.1 GHz 2π

ωp Probe frequency �ωnode
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we can expand the cosine into series; then instead of
cos (ωpL/v), we have �ω/ωnode. This means that at �ω = 0
the qubit is “hidden” or “decoupled” from the transmission
line. So we have the Hamiltonian

H = −Bz

2
σz − Bx

2
σx, (3)

of which the diagonal part is the energy-level modulation

Bz/h̄ = ω10 + δ sin ωpumpt, (4)

and the off-diagonal part describes the coupling to the probe
signal

Bx/h̄ = G sin ωpt . (5)

Importantly, here the coupling constant G is proportional to
the frequency offset �ω,

G = G0
�ω

ωnode
, (6)

and G0 is proportional to the probe signal amplitude.
The observable value is the reflection coefficient r, namely,

its deviation from 1. The impact of the qubit is in suppressing
r. Thus, following Refs. [26,27,32], we associate the reflec-
tion coefficient to the qubit upper-level occupation probability
P1. This will be analyzed in the following section.

IV. LZSM INTERFERENCE MEETS MULTIPHOTON
EXCITATIONS

To remove the fast driving from the Hamiltonian, we per-
form the unitary transformation U = exp (−iωpσzt/2) and the
rotating-wave approximation [27,39]. The new Hamiltonian
takes the form

H1 = −h̄�̃ω

2
σz + h̄G

2
σx, (7)

where

�̃ω = �ω + f (t ), (8)

�ω = ωp − ω10, (9)

f (t ) = δ sin ωpumpt . (10)

The eigenstates of the Hamiltonian H1 can be called dressed
states, since they incorporate the microwave driving into the
qubit-like Hamiltonian (7). These dressed states have energy
levels derived from Eq. (7):

Ẽ± =± h̄

2

√
G2 + �̃ω

2
. (11)

These are illustrated in Fig. 2.
The dynamics of the system, implied in Fig. 2, can be

conveniently described in terms of LZSM interference [20].
Being driven by the slow signal f (t ), the system periodically
evolves around �̃ω = �ω. When the system comes around
the avoided-level crossing, where the energy difference �Ẽ =
Ẽ+ − Ẽ− has a minimum equal to h̄G, the system can be
partially excited by means of LZSM transitions. Periodically
traversing the avoided-level crossing produces interference.

FIG. 2. Dressed-state energy levels Ẽ± as a function of the bias
�̃ω. Sinusoidal driving f (t ), shown at the bottom, makes the system
evolve periodically between �ω − δ and �ω + δ. For small energy-
level splitting G and strong driving (with large amplitude δ), the
resonant excitation of the system can equivalently be described either
in terms of sequential LZSM transitions or in terms of multiphoton
excitations, at �ω = kωpump.

This is described by the phase, accumulated by the vector-
state during one period,

ζ =
∫ 2π/ωpump

0
dt�Ẽ/h̄ ≈ �ω

2π

ωpump
. (12)

Here the approximation means the assumption of small split-
ting and strong driving: G � δ. When the phase ζ equals to
2πk, with an integer k, the system is resonantly excited. Then
from ζ = 2πk the resonance condition becomes

�ω = kωpump. (13)

This can be interpreted as a multiphoton excitation, meaning
that the system is resonantly excited when the dressed energy
gap h̄�ω equals the energy of k photons, kh̄ωpump.

Quantitatively, from the stationary solution of the Bloch
equations with the Hamiltonian H1, in the rotating-wave ap-
proximation, for the upper-level occupation probability we
have (see, e.g., Refs. [40,41]):

P1 = 1

2

∞∑
k=−∞

G2
k

G2
k + [�ω − kωpump]2 �1

�2
+ �1�2

, (14)

where the renormalized driving amplitude

Gk = GJk (δ/ωpump), (15)

follows the oscillating Bessel function Jk of the first kind; �1

and �2 = �1/2 + �φ are the relaxation and decoherence rates,
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FIG. 3. Spectroscopy of the system. (a) Amplitude of the reflec-
tion coefficient |r| at a coherent probe power of −130 dBm as a
function of probe frequency ωp and qubit frequency ω10 (controlled
by the voltage V ). The spectroscopy shows how the response dis-
appears when the qubit ends up at a node for the EM field around
ωp = ωnode � 4.75 GHz 2π , denoted by the dashed line marker. The
red dot indicates the qubit bias point in Figs. 4(a) and 4(b) and
Figs. 5(a) and 5(b). The blue dots correspond to the qubit bias
point in Fig. 4(c) and Fig. 5(c), respectively. The inset shows the
calculated qubit upper-level occupation probability P1 as a function
of the probe frequency ωp and the qubit frequency ω10 (both in
GHz 2π ). (b) For a given bias voltage in (a), it is a Lorentzian dip
(data not shown) indicating that the qubit reflects the resonant probe
field. The qubit acts as a mirror, reflect the resonant field. We extract
the resonant frequency ω10, relaxation rate �1, and pure dephasing
rate �φ following Ref. [42], taking into account the effect of the
Rabi frequency. In particular, we convert the probe power to Rabi
frequency at a resonant frequency of 5.05 GHz using calibration data
in Ref. [10] (same sample, but in a different cool down). Moreover,
the Rabi frequency at each resonant frequency is given by Eq. (4).
Finally, we see ω10 ∝ V ; however, in general, for the wide range of
voltage bias, this is not the case; see details of the flux dependence in
Ref. [10].

with the pure dephasing rate �φ being much smaller than �1.
One can see that the maximum of P1 is indeed defined by the
condition (13). With this formula, Eq. (14), we plot theoretical
graphs in Figs. 3, 4, and 5. For details see Appendix B.

V. MEASUREMENTS

We first perform single-tone spectroscopy of the qubit-
mirror system. In Fig. 3 the resonant frequency of the qubit
is tuned by voltage. As the voltage increases, the linewidth of
the qubit decreases from a finite linewidth to zero, and then
increases back to a finite linewidth. At the frequency where
the linewidth vanishes, around ω10 = ωnode � 4.75 GHz 2π ,
the qubit is located at the node of the EM field, as indicated
by the vertical dashed line, where it is hiding from the EM
field.

By using two-tone spectroscopy [10], we know that
EC/h � 324 MHz. For ω10/2π = 4.75 GHz, the correspond-
ing Josephson energy is EJ/h � 9.9 GHz.

After the basic characterization of the system, we want to
study the spectrum as a function of the following parameters:
qubit frequency ω10, pump amplitude δ, pump frequency
ωpump, and probe frequency ωp. For spectroscopy, we always
use the probe power of −130 dBm in experiments.

To start, we set the qubit frequency corresponding to the
node as a working point, where ω10 = ωnode. We then apply a
sinusoidal flux pump at a fixed power to the qubit and sweep
the pump frequency from 1 MHz to 100 MHz. At the same
time, we perform the spectroscopy of the system using a weak
field, with the frequency ωp near the qubit frequency.

We show the amplitude reflection coefficient |r| in
Figs. 4(a) and 4(b) as a function of ωpump and ωp in Fig. 4(a)
for Ppump = −45 dBm and in Fig. 4(b) for Ppump = −38 dBm.
We observed LZSM interference fringes. These interference
fringes can be interpreted as multiphoton resonances in the
dressed qubit. Multiphoton resonances appear at ωp = ω10 ±
k ωpump, where k is the order, as indicated in the figures. The
zero order, where k = 0, is missing, which is a key feature
here, different from conventional LZSM interference fringes.
In Fig. 4(b) we can clearly see the order k up to ±4. We
increase the pump power in Fig. 4 from −45 dBm in Fig. 4(a)
to −38 dBm in Fig. 4(b), and the gap between negative k
and positive k fringes becomes wider. Indeed, the stronger
the pump power, the wider they separate (data not shown).
The power in Figs. 4(a) and 4(b) differs by 7 dB, meaning that
their pump amplitude δ differs by a factor of 2.2. This is also
what happens in the theory calculation plots. In this sense, this
separation can be used to calibrate the pump power.

In Fig. 4(c) we bias the qubit at around 4.58 GHz, red de-
tuned from the node, and we then see asymmetric interference
fringes. At this bias point, when the qubit is pumped in the
negative part of the sinusoidal, the qubit is pumped toward the
larger linewidth regime; see Fig. 3. However, when the qubit
is pumped in the positive part of the sinusoidal, the qubit is
pumped towards the zero-linewidth regime; therefore, we can
see that the interference fringes vanish near ωnode. In addition,
in contrast to Fig. 4(a) and 4(b), the k = 0 zero Rabi sideband
appears in Fig. 4(c) because there the qubit is biased away
from the node.

Next, we keep the pump frequency ωpump constant. We
change the power of the pump Ppump from −70 dBm to
−30 dBm and probe the system with a weak field near the res-
onance frequency of the qubit. In Fig. 5 we show in Fig. 5(a)
and Fig. 5(b) ωpump/2π = 10 MHz and 100 MHz for the qubit
frequency at the node ωnode, and ωpump/2π = 10 MHz for
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FIG. 4. Sinusoidal modulation of the qubit by flux pumping, with the resonance frequency at a fixed pump power Ppump. Amplitude
reflection coefficient |r| for a weak coherent probe as a function of the probe frequency ωp and pump frequency ωpump; panels (a)–(c) are
experimental data, and (d)–(f) are our theoretical calculations. (a) Qubit biased at ωnode = 4.75 GHz 2π ; the flux pump power is fixed at
Ppump = −45 dBm. (b) Qubit biased at the node around 4.75 GHz with Ppump = −38 dBm. (c) Qubit biased at 4.58 GHz, red detuned from the
node, and Ppump = −38 dBm. Note that the k-dependent multiphoton resonances emerge: �ω = kωpump, which are shown by the inclined red
dashed lines. In panel (b) we can see Rabi sidebands for k from −4 to 4. In panels (a) and (b), the k = 0 Rabi sideband disappears, whereas in
panel (c) the k = 0 Rabi sideband appears. For panels (a) and (b) the positive k and negative k fringes are symmetric, whereas in panel (c) the
interference fringes are not symmetric along k = 0. As the fringes approach the node regime, near 4.75 GHz, they become weaker. In panels
(d)–(f) we show the respective calculated qubit upper-level occupation probabilities P1. Experimentally, the pump power reached at the sample
is slightly frequency dependent. The low-frequency flux pumping drive (say, 1 MHz ) has about 1 dB higher power than the high-frequency
flux pumping drive (say, 20 MHz ). Therefore, we see that the ωpump at low frequency has more shift δ in the data.

the qubit frequency red detuned from ωnode in Fig. 5(c).
These plots show the amplitude reflection coefficient |r| as
a function of the probe frequency ωp and the pump power
Ppump. In Figs. 5(a) and 5(b), when the flux pump is weak
(this corresponds to a small change of the qubit resonance
frequency) there are no interference fringes in the interference
pattern. This can be explained using Fig. 3, where the “node
regime” corresponds from 4.7 GHz to 4.8 GHz, and there is
no response for a weak flux pump. When the pump power
increases, this corresponds to larger changes of the resonance
frequency, and we see the Rabi-splitting-like behavior in
Fig. 5(a). In Fig. 5(b) Rabi sidebands at k = −2,−1,+1,+2
appear. These match the condition �ω = k ωpump. The higher

the pump power, the more resolved the sideband k becomes. In
Fig. 5(c), when we bias the qubit frequency away from ωnode,
the interference fringes become weaker as the probe frequency
approaches the node frequency at 4.75 GHz.

VI. CONCLUSIONS

In conclusion, we investigate the LZSM interferometry
of a superconducting qubit in a semi-infinite transmission
line terminated by a mirror. When the qubit frequency is set
to the node of the EM field, after flux pumping the qubit
frequency, remarkable interference patterns emerge, which
can be interpreted as multiphoton resonances in the dressed
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FIG. 5. Sinusoidal modulation of the qubit by flux pumping at the resonance frequency at a fixed pump frequency ωpump. The plots show
the amplitude of the reflection coefficient |r| for a weak coherent probe versus the probe frequency ωp and pump power Ppump. Panels (a)–
(c) correspond to experiments and (d)–(f) to theory. Panels (a) and (b) are at the node around 4.75 GHz with ωpump/2π = 10 MHz and 100 MHz,
respectively. Note the Rabi sidebands at �ω = kωpump, with k = −2, −1, +1, +2. The higher the pump power, the more resolved sidebands
are visible. Note the onset of the Rabi sidebands for k = ±1 and k = ±2, for −45 dBm and −35 dBm, respectively. (c) Red detuned from the
node at 4.56 GHz. In panels (a) and (c), we observe Rabi-like splittings as the pump power increases. In panel (a) we see a symmetric splitting,
whereas in panel (c) there are several asymmetric splittings. In panel (c), as the fringes approach ωnode, they become weaker. In panels (d)–(f)
we show the respective calculated qubit upper-level occupation probabilities P1.

qubit. We see multiphoton resonances up to the fourth order.
Since the qubit interferes with its mirror image, the zero-
order photon resonance disappears. Such an effect would not
appear in the case of an infinite transmission line. One of the
advantages of this atom-mirror arrangement is that we can
effectively manipulate the absorption properties of the two-
level atom, providing a novel way to manipulate the quantum
states.
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APPENDIX A: HAMILTONIAN

In this Appendix we describe how we obtain the
Hamiltonian (3) for a qubit in front of a mirror, schematically
shown in Fig. 6; see also Ref. [43].

The transmission line is described by the voltage V (x, t )
and current I (x, t ):

V (x, t ) = V (x)eiωpt , I (x, t ) = I (x)eiωpt , (A1)

with

V (x) = V+eikx + V−e−ikx, (A2)

I (x) = −V+
Z0

eikx + V−
Z0

e−ikx, (A3)

where k = ωp/v. Due to the mirror at x = 0, we have I (0) =
0, V− = V+, and V (x) = 2V+ cos (kx) for x ∈ (0, L).

The transmon is described by the number 〈n〉 of Cooper
pairs on it, with the number operator n given by the Pauli
matrix [44]

n =
(

EJ

32EC

)1/4

σx. (A4)

If we take here h̄ω10 ≈ √
8ECEJ, we have

n =
√

h̄ω10

EC
σx. (A5)

Then, writing the charges of the respective capacitor plates,
we obtain the island voltage [45]

VI = 2e

C�

n − Cc

C�

V (L, t ), (A6)

where C� = CJ + CB + Cc. With this we can write the Hamil-
tonian of the transmon qubit coupled to the transmission line,

which can be rewritten (omitting c-numbers) as follows:

Hc = 1

2
Cc[V (L, t ) − VI]

2 → CcV (L, t )VI

→ eV+
Cc

C�

√
h̄ω10

EC
cos

(ωp

v
L
)

sin(ωpt )σx. (A7)

For a small frequency offset, �ω = ωp − ωnode � ωp, we
have

cos
(ωp

v
L
)

≈ π

2

�ω

ωnode
, (A8)

with cos (ωnodeL/v) = 0. Then the Hamiltonian (A7) de-
scribes the off-diagonal part of the transmon Hamiltonian (3)
with

G = G0
�ω

ωnode
,

G0(V+) = π

h̄

Cc

C�

√
h̄ω10

EC
eV+. (A9)

This is written in the main text as Eq. (5).
Consider next the diagonal part of the transmon Hamilto-

nian given by the energy-level splitting in Eq. (1).
The flux contains the dc and ac components, � = �dc +

�ac sin (ωpumpt ). Assuming the latter being a small value, we
obtain

h̄ω10 = h̄ω10(�dc) + h̄δ(�ac) sin(ωpumpt ), (A10)

where δ(�ac) ∝ �ac is the driving amplitude. This is written
in the main text as Eq. (4).

APPENDIX B: DETAILS OF THE CALCULATIONS
AND THE ROLE OF NONLINEARITY

For obtaining theoretical graphs (Figs. 3, 4, and 5), we
solve Eq. (14) in each point of the 2D plots. The amplitude δ

was defined from the lowest pump frequency ωpump, where the
first resonance lines vanish, as shown with the yellow double
arrow in Fig. 7(a). We choose this because in the experiment,
the sidebands become shifted at low ωpump. We assume that
the shift is due to the nonlinearity and take this into account
as δ = δ(ωpump) below.

The relaxation rate �1 and the dephasing rate �φ are
estimated from the experimental data in Fig. 3(b). We find
�2 from the expression �2 = �1/2 + �φ . The parameter G0 is
the fitting parameter, and we take this equal to 0.1 GHz h.

In Fig. 7 we show details of how we calculate the inter-
ferograms and compare with the experiments. Figure 7(b) is
the same as Fig. 4(f), in Fig. 7(c) we take into account the
nonlinearity, and in Figs. 7(c)–7(e) we can see a good agree-
ment between the location and relative depth of the resonances
in the experiment (denoted as Expt) and theory (denoted as
Thry) for the high ωpump frequency, but in the area with low
ωpump we can see increasing the space between the sidebands.
In the theory, the location of the sidebands with ωpump = 0 is
defined by the amplitude δ, and these are located at ω10 ± δ.
From this difference we suggested that in the area of low
pump frequency, ωpump → 0, the amplitude δ is increased. We
take such nonlinearity into account and use this dependence
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FIG. 7. (a) Reflection coefficient as a function of the probe frequency ωp and the pump frequency ωpump, as in Fig. 4(c). (b) Upper-level
occupation probability P1, calculated for the same parameters as Fig. 4(f). (c) Similar interferogram with taking into account the phenomeno-
logical nonlinearity, Eq. (B1). (d)–(f) The cross sections taken at different values of the pump frequency, ωpump/2π = 60, 30, 20 MHz,
respectively. Panels (d) and (e) demonstrate agreement of the theoretical calculations (red and green curves) with the experimental data
from (a) (black curves) for high-pump frequency, while (f) demonstrates the deviation of the theory with constant δ (blue curve) from the
experiment. The modified theory, with nonlinear δ′(ωpump), the brown curve, is in much better agreement.

for obtaining a better agreement between the theory and the
experiments in the low pumping frequency regime. For this,
instead of constant δ, we empirically consider

δ′(ωpump) = δ + (1 − ωpump/G0)8δ. (B1)

Then the obtained interferogram [Fig. 7(c)] is in agreement
with the experimental Fig. 7(a). This agreement can also be
seen in Fig. 7(f), where the brown curve is for the modified
theory (denoted as Thry mod).

APPENDIX C: MICROWAVE SIMULATION
OF END CAPACITOR USING HIGH-FREQUENCY

STRUCTURE SIMULATOR

We use the 3D electromagnetic simulation software “High-
Frequency Structure Simulator” to simulate the end capaci-
tance in the transmission line and the phase shift caused by
it. The value of the capacitance (mirror) is about 1.3 fF [see
Fig. 8(b)], and the phase shift caused by the mirror is less than
0.3◦; see Fig. 8(c). As expected, the phase shift is very close
to the phase shift produced by an ideal mirror, which is zero.
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ωp [GHz]/2π

C [fF]    Phase 
[Degree]

ωp [GHz]/2π

FIG. 8. Simulation using High-Frequency Structure Simulator. (a) Electric field distribution of a transmission line with an end capacitor,
acting as a mirror. (b) The capacitance calculated from the simulated input impedance Z , where Z = 1/(ωC). (c) Phase response of the
simulated reflection coefficient caused by the end capacitor.
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