
Eur. Phys. J. B (2020) 93: 49
https://doi.org/10.1140/epjb/e2019-100514-8 THE EUROPEAN

PHYSICAL JOURNAL B
Regular Article

Probabilistic motional averaging?

Denys S. Karpov1,2,a, Vladimir Y. Monarkha3,4, Daniel Szombati3, Alejandro G. Frieiro3,5,
Aleksander N. Omelyanchouk1, Evgeni Il’ichev2,6, Arkady Fedorov3, and Sergey N. Shevchenko1,7

1 B. Verkin Institute for Low Temperature Physics and Engineering, Kharkov, Ukraine
2 Leibniz Institute of Photonic Technology, Jena, Germany
3 ARC Centre of Excellence for Engineered Quantum Systems, St. Lucia, Queensland 4072, Australia
4 Okinawa Institute of Science and Technology Graduate University, Onna, 904-0495 Okinawa, Japan
5 School of Mathematics and Physics, University of Queensland, St Lucia, Queensland 4072, Australia
6 Novosibirsk State Technical University, Novosibirsk, Russia
7 V. N. Karazin Kharkov National University, Kharkov, Ukraine

Received 22 October 2019 / Received in final form 3 December 2019
Published online 11 March 2020
c© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature,

2020

Abstract. In a continuous measurement scheme a spin-1/2 particle can be measured and simultaneously
driven by an external resonant signal. When the driving is weak, it does not prevent the particle wave-
function from collapsing and a detector randomly outputs two responses corresponding to the states of
the particle. In contrast, when driving is strong, the detector returns a single response corresponding to
the mean of the two single-state responses. This situation is similar to a motional averaging, observed in
nuclear magnetic resonance spectroscopy. We study such quantum system, being periodically driven and
probed, which consists of a qubit coupled to a quantum resonator. It is demonstrated that the transmis-
sion through the resonator is defined by the interplay between driving strength, qubit dissipation, and
resonator linewidth. We demonstrate that our experimental results are in good agreement with numerical
and analytical calculations.

1 Introduction

Circuit quantum electrodynamics studies scalable solid-
state quantum systems, behaving analogous to the inter-
acting light and matter, with superconducting qubits
playing the role of artificial atoms. At this point, a number
of quantum phenomena, known from atomic and optical
physics, have been demonstrated in solid-state systems,
such as lasing and cooling of the electromagnetic field
in a resonator [1–6] and Mollow triplet [7–10]. Another
phenomenon, called the motional averaging effect, which
originated from nuclear magnetic resonance spectroscopy
[11], has been also recently demonstrated with a super-
conducting qubit [12]. In that experiment, the qubit was
driven by stochastic pulses. At the same time, a two tone
spectroscopy was performed, which showed that the two
spectroscopic lines (corresponding to two different states)
are converted to a single broadened line for slow jumping
rates, showing an increase of the average jumping rate [11,
12]. Different aspects of the motional averaging were stud-
ied recently, such as classical analogies [13], weighted
averaging [14] and related studies (see Refs. [15,16]).
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Reminiscent of motional averaging can be observed
in a qubit-resonator system where, instead of a noisy
signal, the qubit is driven by a periodic pump, with
frequency ωd and amplitude Ω. The resonator which is
dispersively coupled to the qubit, can be probed through
its own driving term with frequency ω. The resulting
transmission through the resonator exhibits two reso-
nant lines for the weak qubit driving corresponding to
the qubit states and a single line in between for when
the qubit driving is increased, see Figure 1. This was
demonstrated recently for a transmon-based system and
termed quantum rifling [17] due to the lack of measure-
ment back-action on the qubit from the driven resonator
to the strongly driven qubit; see also references [18,19].
In this paper, we do not study measurement back-action
but focus on the motional averaging picture for the res-
onator line and obtain simplified analytical expressions for
resonator transmission.

Interaction of a quantum system with a quantized
electromagnetic field is considered in the frame of the
quantum Rabi model [20–26]. In the situation where the
coupling strength g between the two-level system and
the electromagnetic field is much smaller than the differ-
ence between the qubit ωq and resonator ωr frequencies,
|ωq − ωr| > g, this is known as the Jaynes-Cummings
model [21,27–30].
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Fig. 1. Schematic of probabilistic motional averaging. If driven
by a periodic signal, qubit’s response (the resonator transmis-
sion amplitude A) is defined by the energy-level occupation
probabilities. The height of the two peaks at Ω ∼ Ω1 is defined
by the upper-level occupation probability and their position
is defined by the dispersive shift χ. With increasing Ω, the
two peaks, first, become of equal height and then merge into
one, which we term as a probabilistic motional averaging. The
characteristic frequency Ω1 denotes when the upper-level occu-
pation probability becomes significant and Ω2 is in-between the
two regimes: (i) when the peaks are at ω − ωr = ±χ and (ii)
when they merge into one, at ω = ωr.

Experiments are largely described by the semi-classical
approximation, e.g. references [1,3,5,31–39], when a chain
of equations is restrained by keeping only the first-order
correlators. To describe time-evolution experiments, a
semi-quantum approach is more correct [17,40,41]; com-
parison of the two approaches can be found e.g. in
reference [42]. Note that in practice, to get a spectrum of a
non-linear level structure of the system, one should apply
two signals, to drive the system and a weak probe tone,
which is known as a two-tone spectroscopy [38,43,44].

In this paper, we study measurement of a two-level
system in the Rabi model, which is coupled to a coplanar-
waveguide resonator as a cavity. The response of the sys-
tem is calculated using the master equation for the density
operator both numerically in the semi-quantum approx-
imation and analytically in the semi-classical approxi-
mation. Varying the driving amplitude, we observe two
different regimes, analogously to reference [17]: (i) weak-
driving regime and (ii) strong-driving regime. In the first
one, the weak-driving regime (i), both the ground and
excited qubit states are monitored, displaying their prob-
abilistic energy-level occupations. And when the power of
driving is strong enough, in the strong-driving regime (ii),
the spectral lines converge into a peak centered at the bare
cavity and qubit transition frequencies. We note that the
transition between these regimes can also be referred to
as the driven quantum-to-classical transition [45–47].

2 Model

We study a two-level system which is coupled to a cavity.
The system is driven by two signals: the high-amplitude

driving tone with the frequency ωd and the low-amplitude
probe tone with the frequency ω. The qubit-resonator
system we consider in the circuit-QED realization; specif-
ically, it can be the driven transmon-resonator system
[40,48–50], which is described by the Jaynes-Cummings
Hamiltonian [20] in the two-level approximation:

H = ~ωra
†a+ ~

ωq

2
σz + ~g

(
σ−a

† + σ+a
)

+~ξ
(
a†e−iωt + aeiωt

)
+~Ω

(
σ+e

−iωdt + σ−e
iωdt
)
. (1)

Here, ~ωq is the transition energy between qubit states; σi
and σ± = (σx ± iσy) /2 are Pauli operators; the resonator
has the quantized fundamental mode with frequency ωr;
a†(a) is the creation (annihilation) operator of a single
excitation in the resonator; the coupling strength between
the two-level system and the resonator is defined by ~g;
the probe and drive amplitudes are described by values
ξ and Ω, respectively. Note that the transmon-resonator
coupling constant g relates to the bare coupling g0 as g =
g0
√
Ec/ |∆− Ec| with the detuning ∆ = ~ (ωq − ωr) and

the qubit charging energy Ec, where this renormalization
is due to the virtual transitions through the upper trans-
mon states. In the experiments, e.g. references [35,40,50],
the measured value is the normalized transmission ampli-
tude A. This is related to the photon field 〈a〉 in the cavity
[40,50–52], A = 2V0 |〈a〉|, where V0 is a voltage related to
the gain of the experimental amplification chain [50] and
it is defined as [40] V 2

0 = Z~ωrκ/4 with Z standing for
the transmission-line impedance.

3 Semi-classical approach: analytical solution

To quantitatively describe the system, we first take the
master equation in the form of equation (5) from refer-
ence [40]. This includes the resonator relaxation rate κ
and qubit relaxation and pure dephasing rates, Γ1 and
Γ2 = Γφ + Γ1/2. While the equations can be numerically
solved in their available form, it is more illustrative to
study analytical expressions first. For this purpose, we
consider the steady-state solution in the so-called semi-
classical approximation, where all correlators are assumed
to factorize,

〈
a†σ
〉
≈
〈
a†
〉
〈σ〉, etc. [42] Then from the

Lindblad equation, we obtain the non-linear equations for
〈a〉, 〈σ〉, and 〈σz〉. These can be rewritten for n = |〈a〉|2
and 〈σz〉 = 2P+ − 1, with P+ standing for the qubit
upper-level occupation probability, as follows

n = |〈a〉|2 =
ξ2

[χ (2P+ − 1) + δωr]
2

+ κ2
, (2)

P+ =
1

2

Ω2

Ω2 + Ω2
1(n)

, (3)

Ω2
1(n) =

4

T1T2
+ 4

T2
T1

(δωq + 2χn)
2
. (4)
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Here δωr = ωr − ω, δωq = ωq − ωd, χ = g2/∆ describes
the dispersive shift, and Ω1 can be interpreted from equa-
tion (3), as the characteristic driving amplitude Ω, at
which the excited qubit level becomes significantly occu-
pied. In particular, at resonance (δωq = 0) in the linear
approximation (neglecting the term with n2), we have the
characteristic driving amplitude as in reference [50]: Ω1 =

2 (T1T2)
−1/2

. In general case, the characteristic driving
amplitude Ω1 depends on the measurement amplitude ξ
and is defined by equation (4) together with equations (2)
and (3).

4 Semi-quantum approach: numerical
solution

The system Hamiltonian (1) can be rewritten in a more
illustrative form for large detuning ∆ between a transmon
qubit (in the two-level approximation) and a resonator
mode, ∆ ≡ ~ (ωq − ωr)� g,

H ′ = ~(δωr + χσz)a
†a+ ~

δωq−d + χ

2
σz

+~ξ(a† + a) + ~
Ω

2
(σ + σ†), (5)

where δωq−d = ωq−ωd and δωr = ωr−ω. It is reasonable
to describe the system in the dispersive approxima-
tion of the Jaynes-Cummings Hamiltonian, as in refer-
ences [40,49,53]. Then, following references [40–42], we
obtain equations in the so-called semi-quantum model,
where one assumes factoring of higher order terms and
keeping only the second order correlators as the fol-
lowing: 〈a†aσi〉 ≈ 〈a†a〉〈σi〉 and 〈a†aaσi〉 ≈ 〈a†a〉〈aσi〉.
This allows truncating the infinite series of equations.
From the Lindblad equation, for the expectation val-
ues of the operators 〈σi〉 (i = x, y, z) and the res-
onator field operators 〈a〉 , 〈aσi〉, and 〈a†a〉 we obtain
the system of equations, known as the Maxwell-Bloch
equations:

d

dt
〈σz〉=Ω〈σy〉 − Γ1

(
1 +
〈σz〉
z0

)
, (6a)

d

dt
〈σx〉=−

(
2χ
〈
a†a
〉
+δωq−d +χ

)
〈σy〉 − Γ2

〈σx〉
z0

, (6b)

d

dt
〈σy〉=

(
2χ
〈
a†a
〉

+ δωq−d + χ
)
〈σx〉

−Γ2
〈σy〉
z0
− Ω〈σz〉, (6c)

d

dt
〈a〉=−i (δωr〈a〉+ χ〈aσz〉+ ξ)− κ〈a〉, (6d)

d

dt
〈a†a〉=−2ξ Im 〈a〉+ 2κ

(
Nth − 〈a†a〉

)
, (6e)

d

dt
〈aσz〉=−i (δωr 〈aσz〉+ χ〈a〉+ ξ〈σz〉)

+Ω〈aσy〉 − Γ1 〈a〉 −
(

Γ1

z0
+ κ

)
〈aσz〉, (6f)

Fig. 2. Regimes for the driven and probed qubit and char-
acteristic driving amplitudes Ω1 and Ω2. (a) Normalized
transmission amplitude A as a function of the probe frequency
ω and driving amplitude Ω. The picture is a result of the
steady-state solution of Maxwell-Bloch equations (6). Horizon-
tal colour arrows show position of the cuts, presented in the
next figure. (b) Respective experimental measurement.

d

dt
〈aσx〉=−iδωr 〈aσx〉 −

(
Γ2

z0
+ κ

)
〈aσx〉

−
(
δωq−d + 2χ

(
〈a†a〉+ 1

))
〈aσy〉 − iξ〈σx〉,(6g)

d

dt
〈aσy〉=−iδωr 〈aσy〉 −

(
Γ2

z0
+ κ

)
〈aσy〉

−iξ〈σy〉 − Ω〈aσz〉
+
(
δωq−d + 2χ

(
〈a†a〉+ 1

))
〈aσx〉. (6h)

We have numerically solved the system of equations (6)
and the results are presented in Figures 2–4, where the
normalized transmission amplitude is plotted as a function
of the driving power and probing frequency. For calcula-
tions we take the following parameters, close to the ones
of reference [17]:

ωr

2π
= 7.643 GHz,

ωq

2π
= 6.440 GHz,

χ

2π
= 4.1 MHz,

T1 = 1.55 µs, T2 = 2.65 µs, κ/2π = 1 MHz. (7)
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Fig. 3. Shift of the resonance lines. Numerical semi-quantum
(a) and analytical semi-classical (b) dependencies of the nor-
malized transmission amplitude A on the probing frequency
for several values of driving power Ω , shown by the arrows in
Figure 2. Solid lines relate to regime (i) with two qubit lines
and the dashed lines are for the regime (ii) with one motional-
averaged line. (c) Respective experimental measurement. (d)
Characteristic driving amplitude Ω2 as a function of the pho-
ton number 〈n〉; right scale is for the theoretical points (Ω2 in
MHz) and left scale is for the experimental points (power in
mW); the agreement between the data here could be used for
the calibration of the power.

Fig. 4. The resonant transmission shift. Analytical (a) and
semi-quantum (b) dependencies of the normalized transmission
amplitude A on the probe frequency ω and the drive frequency
ωd. (c) Respective experimental measurement.

5 Experiment

Our sample consists of a transmon qubit (named Qubit
2 in Ref. [17]) with a transition frequency between its
ground and first excited states ωq/(2π) = 6.44 GHz cou-
pled to a superconducting co-planar waveguide resonator
with resonance frequency ωr/(2π) = 7.643 GHz. The qubit
state can be controlled by applying a coherent drive

tone with frequency ωd ' ωq through a separate charge
line. The interaction between the qubit and the resonator
results in a shift of the resonator frequency dependent on
the qubit state. This dispersive shift of χ/(2π) = 4.1 MHz
allows us to perform the read out of the qubit state
by applying a probe tone to the resonator at frequency
ωp ' ωr and by subsequent detection of the transmitted
signal with a standard heterodyne detection scheme (see
Ref. [17]).

6 Results

Numerical and analytical results of the previous two
sections together with the experimental observations are
presented in Figures 2–4. Namely, in Figure 2a we plot
the transmission amplitude A, normalized to its maxi-
mal value A0, as a function of the probe frequency ω and
driving amplitude Ω, which is calculated using the equa-
tions and parameters from the previous section, equations
(6)-(7). Several horizontal cuts of Figure 2a are presented
as Figures 2a–2c, which is the transmission plotted as a
function of the probe frequency ω for several values of the
drive amplitude Ω (see explanations below).

In Figure 2a we can observe two different regimes. Let
us now analyze these regimes in more detail, since these
present the main result of our work here.

(i) Ω� Ω2. This can be called the “fast-measurements”
regime, or equivalently weak-driving regime, or
“quantum” regime. This is because the two qubit
states are visualized with the position of the respec-
tive resonances at δω = ±χ. So, in this regime both
ground and excited qubit states are monitored, with
respective probabilities. Namely, with increasing the
driving amplitude Ω, the probability of finding the
qubit in the excited state increases, left line in
Figure 2a, while the probability of the ground state
(right resonance line) decreases. See also about this,
e.g., in reference [54].

(ii) Ω � Ω2. This can be called the “slow-measure-
ments” regime, or equivalently strong-driving
regime, or “classical” regime. This corresponds to
no frequency shift, with qubit states equally pop-
ulated, which thus can also be referred to as a
“motional averaging”. Similar transitions from a
“quantum” to “classical” regime was observed in
references [12,17,45,46,55].

Figure 3d shows the dependence of the characteristic
driving amplitude Ω2, which separates regimes (i) and
(ii), as a function of photon numbers obtained from our
numerical solution as well as the experimental points. The
theoretical points were calculated for the probe ampli-
tudes ξ from 0.01κ to 2κ. The experimental points were
taken from Fig. S4 of reference [17].

Let us now consider interpretation of the above results
analytically, for the two respective regimes.

Regime (i). This is not described directly by the sta-
tionary solution. To describe this regime we note that in
this case the qubit is found either in the ground state with

https://epjb.epj.org/
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the probability P− or in the excited state with the prob-
ability P+. Then the measured normalized transmission
amplitude can be calculated as following

A = P−A− + P+A+ (8)

with the partial values A± given by equation (2):

A± =
ξ√

[±χ+ δωr]
2

+ κ2
. (9)

With these formulas we plot the solid lines in Figure 3b.
Regime (ii). Under the strong resonant driving, the

qubit levels are equally populated and then equation (2)
with P+ = 1/2 yields

A =
ξ√

δω2
r + κ2

. (10)

With this formula we plot the magenta solid line in
Figure 3a.

Finally we describe both the qubit and resonator fre-
quency shifts. For this, we make use of equation (8) with
the partial transmission amplitudes A± defined by the
respective probabilities, rather than assuming them equal
to 0 or 1 as in equation (9), as following

A± =
ξ√

[χ (1− 2P±) + δωr]
2

+ κ2
. (11)

With this analytical formulas we plot Figure 4b, which
is remarkably in agreement with the numerical result in
Figure 4a and the experiment in Figure 4c.

Note that the advantage of the analytical results, pre-
sented here, is that these are transparent formulas, which
capture the main physics here. Importantly, these results
are confirmed by the numerical calculations, done within
the semi-quantum model, and by comparison with the
experiments.

7 Conclusions

We have studied the interaction between a cavity and
a two-level system in the Jaynes-Cummings model with
dispersive coupling under external drive. We have demon-
strated that there are two different regimes. The quantum
and semi-classical regimes demonstrate detection of the
two energy transitions in the system, while at higher driv-
ing amplitude the two resonance lines merge into one,
making a specific motional-averaging picture, defined by
the qubit energy-level occupation probabilities. We believe
that our analytical and numerical results are useful for
deeper understanding of both experimental realizations
and theoretical description of dynamical phenomena in
circuit quantum electrodynamics.
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