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Ultra-fast vortex motion in a direct-write Nb-C
superconductor
O. V. Dobrovolskiy 1,2✉, D. Yu Vodolazov 3,4, F. Porrati 5, R. Sachser5, V. M. Bevz2, M. Yu Mikhailov 6,

A. V. Chumak 1 & M. Huth 5

The ultra-fast dynamics of superconducting vortices harbors rich physics generic to none-

quilibrium collective systems. The phenomenon of flux-flow instability (FFI), however, pre-

vents its exploration and sets practical limits for the use of vortices in various applications. To

suppress the FFI, a superconductor should exhibit a rarely achieved combination of proper-

ties: weak volume pinning, close-to-depairing critical current, and fast heat removal from

heated electrons. Here, we demonstrate experimentally ultra-fast vortex motion at velocities

of 10–15 km s−1 in a directly written Nb-C superconductor with a close-to-perfect edge

barrier. The spatial evolution of the FFI is described using the edge-controlled FFI model,

implying a chain of FFI nucleation points along the sample edge and their development into

self-organized Josephson-like junctions (vortex rivers). In addition, our results offer insights

into the applicability of widely used FFI models and suggest Nb-C to be a good candidate

material for fast single-photon detectors.
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The dynamics of vortices at large transport currents is of
major importance for the comprehension of vortex matter
under far-from-equilibrium conditions and it sets practical

limits for the use of superconductors in various applications1–9.
The physics of current-driven vortex matter is getting
especially interesting when the vortex velocity exceeds the velocity
v ≈ 3 km s−1 of other possible excitations in the system, allowing
for the Cherenkov-like generation of sound10,11 and spin12,13

waves by moving fluxons, which opens up novel routes to excite
waves in magnon spintronics14,15. Furthermore, there is currently
great interest in the interplay of Meissner currents and magnetic
flux quanta with spin waves in the rapidly developing domain of
magnon fluxonics16,17.

The maximal current a superconductor can carry without
dissipation is determined by the pair-breaking (depairing) current
Idep. However, a highly resistive state in real systems is usually
attained at much smaller currents due to the presence of regions
in which superconductivity breaks down long before Idep is
reached. Namely, in a vortex-free state, the earlier breakdown of
superconductivity is due to spatial variations of the order para-
meter caused by structural imperfectnesses and the sample
geometry18,19. In the vortex state, fast-moving vortices are known
to lead to a quench of the low-dissipative state at I*≪ Idep as a
consequence of the flux-flow instability (FFI) associated with the
escape of quasiparticles (normal electrons) from the vortex
cores20,21. Accordingly, to achieve Ic≲ Idep and high vortex
velocities v≳ 5 km s−1, a high structural homogeneity and fast
cooling of quasiparticles (governed by the quasiparticles’ energy
relaxation time τϵ and the escape time of nonequilibrium pho-
nons to the substrate τesc) are both required. However, while
short τϵ is inherent to disordered superconducting systems22,23,
few of them have Ic ≲ Idep in conjunction with weak volume
pinning needed to maintain long-range order in the fast-moving
vortex lattice. Variation in the local pinning forces induced by
uncorrelated disorder (volume pinning) leads to a broader dis-
tribution of v and thereby prevents the exploration of vortex
matter at high velocities24–27.

Recently, two approaches were used to demonstrate ultra-fast
vortex motion at v≳ 5 km s−1. In the first case, a clean Pb bridge
with both, an edge barrier for vortex entry and a high demag-
netization factor (so-called geometrical barrier) was studied6. In
the used geometry there was a strongly nonuniform current
distribution both across and along the bridge due to a small Pearl
length 2λ2/d≪w, where d and w are the film thickness and
width, respectively. A weak pinning and a short electron–phonon
relaxation time τep in Pb28 allowed one to diminish none-
quilibrium effects and achieve the regime with ultra-fast
Abrikosov–Josephson vortices6. In the second case, an array of
ferromagnetic Co nanostripes on top of a superconducting Nb
film led to a dynamic ordering of flux quanta guided by the
nanostripes and allowed to achieve a narrow distribution of their
velocities29. In both of these approaches, specially designed,
locally nonuniform structures were used. At the same time, a
close-to-ideal uniform system where the fast heat removal from
electrons rather than the finite width of the v distribution
becomes the limiting factor for ultra-fast vortex dynamics was
never investigated experimentally. Theoretically, however, it was
recently predicted that dirty superconductors with weak volume
pinning and strong edge barrier for vortex entry should also allow
for ultra-fast vortex dynamics30. Extremely dirty superconductors
are known to have a short electron–electron inelastic scattering
time τee which leads to a decrease of τep31. This diminishes
nonequilibrium effects and may lead to an increase of the critical
velocity of vortices. One of the most important requirements for
the observation of an edge-controlled FFI is a spatially homo-
genous edge in conjunction with a weak pinning in the

superconductor’s volume30. The presence of a strong edge barrier
in such superconductors leads to a current gradient near the edge
where vortices enter the superconductor and where FFI is actually
nucleating.

Here, we demonstrate experimentally the phenomenon of
edge-barrier-controlled FFI in direct-write superconductors with
a close-to-perfect edge barrier and deduce vortex velocities up to
15 km s−1 from their current–voltage curves (I–V). The investi-
gated system is the recently synthesized Nb-C superconductor
fabricated by focused ion beam induced deposition (FIBID)32,
with a very high resistivity ρ= 572 μΩcm. This implies a large
effect of the inelastic electron–electron scattering with the char-
acteristic times τee≲ τep which speeds up the relaxation of dis-
equilibrium. The Nb-C microstrips have a rather low depinning
current and their critical current is controlled by the edge barrier
for vortex entry. In contrast to ref. 6, in our system λ2/d≫w,
which means a negligible demagnetization factor (no geometrical
barrier) and a uniform current distribution across the strip at zero
magnetic field. The spatial evolution of the FFI is described in
terms of the edge-barrier-controlled FFI model recently devel-
oped by one of the authors30, implying a chain of FFI nucleation
points along the sample edge and their development into self-
organized Josephson-like junctions (vortex rivers) evolving to
normal domains which expand along the entire sample. In
addition, our results offer insights into the applicability of widely
used FFI models and render Nb-C to be a good candidate
material for fast single-photon detectors.

Results
System under investigations. We study the vortex dynamics in a
direct-write Nb-C superconducting microstrip fabricated by
FIBID32. The microstrip is characterized by a transition tem-
perature of Tc= 5.6 K and close-to-depairing values of the zero-
field critical current Ic ≈ 0.7− 0.74Idep above 0.5Tc. The dimen-
sions of the microstrip are: thickness d= 15 nm, width w= 1 μm,
and length l= 6.6 μm, see Fig. 1 for the geometry. The microstrip
is characterized by the coherence length at zero temperature ξ
(0) ≈ 6.5 nm, the penetration depth λ(0) ≈ 1060 nm, and the Pearl
length 2λ2(0)/d ≈ 150 μm, that is 2λ2(0)/d≫w≫ ξ(0). The
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Fig. 1 Experimental geometry. Scanning electron microscopy images of the
superconducting Nb-C-FIBID microstrip before (a) (the scale bar is 300
nm) and after (b) (the scale bar is 1 μm) covering it with an insulating Nb-
C-FEBID layer shown by the green false color. The current and voltage leads
are indicated with I+, I−, V+, and V−. c Atomic force microscopy image of a
part of the fabricated structure. The scale bar is 1 μm.
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perpendicular-to-film-plane magnetic field with induction B=
μ0H populates the microstrip with a lattice of Abrikosov vortices.
The applied dc current exerts a Lorentz force on the vortices that
causes their motion with velocity v across the microstrip. The
associated voltage drop V along the microstrip is recorded as a
function of the applied current I in the current-biased mode. The
microstrip is capped with an insulating Nb-C layer fabricated by
focused electron beam induced deposition (FEBID)32,33. Further
details on the sample fabrication and its structural properties are
given in the “Methods” section.

Current–voltage characteristics. Figure 2 displays the I–V curves
measured at 4.2 K (0.75Tc) and 5.04 K (0.9Tc) for a series of
magnetic fields between 30 and 240 mT. With increase of the
current, a series of different resistive regimes can be identified, as
indicated in the I–V curves: the pinned regime (I), the nonlinear
flux-flow regime (II), and the FFI (III) causing abrupt onsets of
the normal state (IV). Of especial interest for the following is the
regime of high vortex velocities just before the FFI (III) with the
I–V sections enlarged in Fig. 2c, d.

From the last points before the voltage jumps, referring to
Fig. 2c, d, the vortex instability velocity v* is deduced by the
relation v*=V*/(BL). The resulting dependence v*(B) is presented
in Fig. 3a. Remarkably, v* is between 5 and 10 km s−1 at larger
fields B≳ 100mT and it is between 10 and 15 km s−1 at B < 100
mT. The temperature dependence v*(T) is presented in Fig. 3b for
two magnetic field values. The field 50 mT is exemplary for a
relatively sparse vortex lattice (vortex lattice spacing a ≈ 220 nm)
while a ≈ 110 nm at 200mT for the assumed triangular vortex

lattice with a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Φ0=

ffiffiffi
3

p
H

q
, where Φ0 is the magnetic flux

quantum. At both fields, the experimental data nicely fit the law
v* ~ (1− t)1/4, where t= T/Tc, with v*(0.6Tc, 50 mT)= 12 km s−1

and v*(0.6Tc, 200mT)= 7.7 km s−1, while a deviation of v*(B)
from the B−1/2 dependence is observed at B≲ 50mT in Fig. 3a.
The decreasing dependence of v*(B) below about 10 mT due to the
decreasing vortex density (the so-called low-field crossover in the
v*(B) dependence34) is beyond our consideration, as we are
especially interested in the regime of very high vortex velocities.

Influence of the edge barrier on the vortex dynamics. The
magnetic field dependence of the critical current at 4.20 K is
presented in Fig. 3c. At smaller fields, Ic(B) decreases linearly with
B, while at larger fields the decrease of Ic becomes nonlinear and
slower. This behavior can be explained by the presence of some
threshold field Bstop, which demarcates the Meissner (vortex free)
and the mixed states of a superconducting stripe35. Namely, the
dependence Ic(B) in the Meissner state (B < Bstop) is linear
and it is described by the expression Ic(B)= Ic(0 T)(1− B/2Bstop),
where Bstop in the Ginzburg–Landau model36 is given by
Bstop ¼ Bs=2 ¼ Φ0=ð2

ffiffiffi
3

p
πξðTÞwÞ. Here, Bs is the field value at

which the surface barrier for vortex entry is suppressed at I= 0, ξ
is the superconducting coherence length, and w is the microstrip
width. The definition of Bstop following from Ic(2Bstop)= 0 is
illustrated in Fig. 3c. For 10 mT ≲ B≲ 100 mT, the dependence of
the critical current is described well by the dependence Ic(B)=
Ic(0 T)Bstop/2B, and Ic(B) exhibits a linear decrease at low fields.
At larger fields, B≳ 100 mT, a further crossover at B* to a slower
decrease of Ic(B) as B−0.5 is observed. The totality of our
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Fig. 2 Current–voltage curves of the Nb-C-FIBID microstrip. a, b I–V curves of the microstrip in a series of magnetic fields at temperatures as indicated in
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experimental data indicates the dominating role of the edge
mechanism37 of vortex pinning in the studied sample at B≲
100 mT, as is further commented in Supplementary Note 1.

Influence of an edge defect on the vortex dynamics. An addi-
tional reference measurement has been made for a microstrip
with an artificially fabricated edge defect. The defect (notch) was
milled by focused Ga ion beam at one edge of the microstrip and
it has a shape of an equilateral triangle with a side of about 100

nm, see the inset in Fig. 4a. For a direct comparison of the edge-
barrier effects on the vortex entry from different sides of the
microstrip, the Ic(B) and I*(B) curves are presented for both field
and current polarities in Fig. 4. For the microstrip with even
edges, the I*(±B) curves fall onto one another in the entire range
of magnetic fields in Fig. 4a and the Ic(B) dependence in Fig. 4b is
symmetric with respect to the B reversal. By contrast, for the
microstrip with the notch, the maximum in Ic(B) in Fig. 4b is
shifted to +8 mT, in agreement with previous experiments on
microstrips with defects (holes) close to one of their edges38. At
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negative fields, the notch locally suppresses the edge barrier and
thereby facilitates the entry of (anti)vortices. This leads to a small
reduction of Ic(B) up to larger field magnitudes at which the role
of the volume pinning increases. At positive fields, when vortices
enter the microstrip from the opposite side, the notch does not
affect the vortex entry and this is why Ic is not affected by the
presence of the notch at B≳ 15 mT. Remarkably, when vortices
enter the microstrip via the edge with the notch, I*(B) at 20 mT≲
B≲ 100 mT decreases by up to about 10% in comparison with I*

(B) when vortices enter from the opposite side, which is in line
with the calculations39. Importantly, due to the nonlinear upturns
of the I–V curves just before the instability jump, a decrease of I*

by about 10% leads to a stronger decrease of the instability
velocity v*. This provides a direct evidence of the decisive role of
the edge barrier on the FFI, as will be detailed next.

Discussion
We first compare the experimental results with the widely used
Larkin–Ovchinnikov (LO) FFI model21,40 with the modifications
introduced by Bezuglyj and Shklovskij (BS)41 and Doettinger
et al.42. Although edge-barrier effects are not considered in these
models21,40–42, it is still interesting to check what quasiparticle
energy relaxation time τϵ values, related to the instability velocity,
can be deduced from fitting of the experimental data to these
models.

Within the framework of the LO theory21,40, the microscopic
mechanism of FFI is the following. When the electric field
induced by vortex motion raises the quasiparticle energy above
the potential barrier associated with the order parameter around
the vortex core, quasiparticles leave it and the core shrinks. The
shrinkage of the vortex cores leads to a reduction of the viscous
drag coefficient and a further avalanche-like acceleration of the
vortex, eventually quenching the low-resistive state. The original
LO theory was developed in the dirty limit near Tc and in neglect
of heating of the superconductor. To account for quasiparticle
heating due to the finite heat-removal rate of the power dissipated
in the sample, the LO theory was extended by BS41. In the BS
generalization, the latter effect was considered in the framework
of the kinetic equation LO approach, which assumes a non-
thermal (non-Fermi–Dirac) electron distribution function, while
Joule heating was taken into account using a thermal distribution
function and the electron temperature Te was determined from

the heat conductance equation. In contrast to the B-independent
instability velocity v* in the LO model, a v*(B) variation is
expected in the BS model41 and takes the form:

v� / hð1� tÞ1=4B�1=2; ð1Þ
where h is the heat removal coefficient. While the magnetic field
dependence v*(B) nicely fits Eq. (1) at B≳ 50 mT, a notable
deviation of v*(B) toward smaller values is observed in Fig. 3a at
B≲ 50 mT. This deviation will be commented in what follows. In
all, the complete set of the instability parameters deduced from
Fig. 2 nicely fits the BS scaling law, see Supplementary Fig. 1.
However, if one associates τϵ with the electron–phonon scattering
time τep in the LO model, the deduced τϵ is at least one order of
magnitude smaller than one could expect from τϵ found in similar
low-Tc highly disordered superconductors43–45, see Supplemen-
tary Discussion.

In the LO model modified by Doettinger et al.42[,46, the qua-
siparticle energy relaxation time can be found from the following
equation:

v� ¼ ð1� tÞ1=2D½14ζð3Þ�1=2
πτϵ

" #1=2
1þ affiffiffiffiffiffiffiffi

Dτϵ
p

� �
: ð2Þ

In Eq. (2), the term a=
ffiffiffiffiffiffiffiffi
Dτϵ

p
, where a is the intervortex distance,

has been added to incorporate the necessary condition of spatial
homogeneity of the nonequilibrium quasiparticle distribution
between vortices at relatively small magnetic fields. The calcula-
tion results by Eq. (2) are shown by solid lines in Fig. 3a where
the energy relaxation time has been varied as the only fitting
parameter. The best fits are achieved with τϵ= 16 ps which could
be considered as a more accurate estimate for the energy
relaxation time in the Nb-C-FIBID superconductor. We note that
with this τϵ estimate, the quasiparticle diffusion length
lϵ ¼

ffiffiffiffiffiffiffiffi
Dτϵ

p
≈ 28 nm is much smaller than the intervortex distance

a at all used magnetic fields and, importantly, lϵ≲ 2ξ(T) with 2ξ
(0.75Tc) ≈ 25 nm and 2ξ(0.9Tc) ≈ 38 nm.

The edge-barrier-controlled FFI scenario30 is different from the
FFI scenario of LO and BS. Indeed, LO and BS considered a
moving periodic vortex lattice in an infinite superconductor in
the Wigner–Seitz approximation and hence could not take into
account the collective effects related to the transformation of the
vortex lattice and edge-barrier effects. In contrast, in the edge-
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p
ξð0Þ ¼ 8:2 nm. The electric field is measured in units of E0= kBTc/(2eξc) and

the current in units of Idep.
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barrier-controlled FFI model30 a nonuniform distribution of
vortices is taken into account, as well as the local Joule heating
and cooling (due to the time variation of the magnitude of the
superconducting order parameter ∣Δ∣) depending on the vortex
position. The edge-barrier-controlled FFI model allows for
studying a “local” instability and collective effects in the vortex
dynamics relying upon the solution of a heat conductance
equation for the electrons and a modified time-dependent
Ginzburg–Landau equation for Δ(r, t). In this model, it was
shown that, in the low-resistive state, there is a temperature
gradient across the width of the microstrip with maximal local
temperature near the edge where vortices enter the sample30. The
higher temperature at the edge is caused by the larger current
density in the near-edge area due to the presence of the edge
barrier for vortex entry and, hence, the locally larger Joule dis-
sipation. With increase of the current, there is a series of trans-
formations of the moving vortex lattice. In Fig. 5, we show
examples of the calculated I–V curves and snapshots of ∣Δ∣(r) for
the parameters of the superconductor as in ref. 30. Similar
transformations connected with reorientations of the moving
vortex lattice in the insets 1–2 in Fig. 5b were experimentally
observed47 and theoretically analyzed48 previously.

At currents just below I*, localized areas with strongly sup-
pressed superconductivity and closely spaced vortices appear near
the hottest edge (left edge in the insets in Fig. 5). Upon reaching
I*, these areas begin to grow in the direction of the opposite edge
and form a highly resistive Josephson SNS-like link (vortex river)
along which vortices move3,6,30,49. These vortices are of the
Abrikosov–Josephson type, as they are moving in areas with
suppressed order parameter. Due to the increasing dissipation,
vortex rivers evolve into normal domains which than expand
along the microstrip. In consequence of this, a jump to the highly
resistive state occurs at I*. In all, the simulation results demon-
strate that transformation of the moving vortex array is a col-
lective phenomenon, which involves correlated changes in the
motion of many vortices with increase of the current and, at I*,
results in the appearance of Josephson-like SNS links known as
vortex rivers3,6,49.

In the edge-controlled FFI model30, the current I* increases
linearly with the width of the strip, while V* does not depend on
w as it does in the LO and BS models. This result holds at B≫
Bstop when a is much smaller than the microstrip width w and a
becomes smaller than the width of the vortex-free region near the
edge of the microstrip. This means that despite the nucleation of
FFI points occurs near the edge where the local temperature and
the current densities are maximal, far from the edge where the
current density is uniform, the vortices should move at relatively
high velocities. Otherwise the FFI will not develop across the
whole microstrip and one has only origins of the vortex rivers, as
it can be seen from Fig. 5 in30 at I≲ I*. The linear scaling of I*(w)
with the microstrip width w is corroborated by the experimental
observation in Fig. 6a, where the I–V curves for two microstrips
with the widths w= 1 μm and 500 nm are shown at T= 4.2 K and
B= 50 mT.

In the edge-barrier-controlled FFI model30, the energy relaxa-
tion time depends not only on the electron–phonon relaxation
time τep (as in the LO model) but also on the escape time of
nonequilibrium phonons to the substrate τesc and the ratio of the
electron and phonon heat capacities, Ce and Cp, respectively. At
T≃ Tc and for a small deviation from equilibrium one has:

τϵ ’ τE þ τescð1þ CeðTcÞ=CpðTcÞÞ; ð3Þ
where τE≃ τep/4.5 is the electron–phonon relaxation time renor-
malized due to fast electron–electron inelastic scattering. Here, τep
is the electron–phonon relaxation time used in the LO model.
Following the arguments of ref. 42, one can claim that the

instability occurs at the velocity v* ~ a/τϵ when the intervortex
distance is a≲

ffiffiffiffiffiffiffiffi
Dτϵ

p
. This condition leads to a dependence of v*

(B), which was revealed in numerical calculations30. One impor-
tant difference between the modified LO model42 and the edge-
controlled FFI model is that in the latter30, a ~ B−1/2 only at
relatively large magnetic fields, when the intervortex distance at I
~ Ic and I ~ I* is almost the same despite the change in the
structure of the moving vortex lattice. At relatively small magnetic

fields, a in the vortex rows is smaller than ð2Φ0=B
ffiffiffi
3

p Þ1=2 at I ~ I*
and, thus, the number of vortices is smaller than follows from the
simple estimate nΦ0= BS, see Fig. 5a. Altogether, this leads to a
weaker experimental dependence v*(B) than follows from the
“global” instability model with v* ~ B−1/242. Qualitatively, it is this
behavior which is observed in the experiment, see Fig. 3a.

The large v* values observed in our system should be attributed
not only to τE < τep but, also, to a small τesc in Eq. (3). Indeed, due
to the insulating Nb-C-FEBID layer on top of the microstrip,
there seems to be no phonon bottleneck which could exist due to
an acoustic mismatch between a thin dirty superconductor and a
substrate44. As an estimate, for our system we deduce τesc ~
4d/u ≈ 24 ps, where u ~ 2.5 km s−1 is the mean sound velocity.
This value is larger than τε ~ 16 ps deduced from the experimental
data using the modified LO model. We have to stress that
numerical coefficients in the LO model are strictly valid only
rather close to Tc (when Δ(T)≪ kBTc, i.e., at T≳ 0.9Tc) and in the
case when τee≫ τep and τesc= 0. Therefore these coefficients may
be different in our dirty system with τϵ ~ τesc and at temperatures
further away from Tc.

Finally, we would like to note that, unfortunately, there is no
analytical relation between v* and τϵ in the edge-barrier-
controlled FFI model30. Accordingly, a discussion of the rela-
tion between v* and τϵ has to remain on a qualitative level. From
Eq. (3) it follows that a change of τE, τesc, and Ce/Cp leads to a
change of the relaxation time τϵ. To illustrate this, in Fig. 6b we
present a series of calculated I–V curves at different τesc values,
while the other parameters are kept fixed. Indeed, with increasing
τesc the critical velocity v* ~ E* decreases, but it decreases slower
than τ�1

ϵ or τ�1=2
ϵ . Qualitatively, the same tendency is found if one

increases the ratio Ce/Cp for a given τesc value. Specifically, with
an increase of τesc/τE by two orders of magnitude, E/E0 decreases
by only about a factor of three. In the inset of Fig. 6b, one can also
see that with the increase of τesc, the time-averaged temperature
in the center of the superconducting microstrip increases, which
indicates an increased contribution of Joule dissipation to the FFI.
The increased temperature also affects v* because of the tem-
perature dependence τE ~ 1/T3 and Ce/Cp ~ 1/T2 in the used
model30.

We would like to outline an applications-related aspect of the
superconducting properties of the studied Nb-C-FIBID micro-
strip. Namely, the small diffusivity D ≈ 0.49 cm2 s−1 and the low
transition temperature Tc= 5.6 K suggest that Nb-C-FIBID may
be a candidate material for superconducting single-photon
detectors (SSPDs). We refer to Table 1 for a comparison with
parameters of some typical SSPDs and to ref. 31 for a further
discussion. In this regard, it should be mentioned that for about a
decade SSPDs were made of meandering nanostrips with widths
in the range 50–150 nm as it was empirically found that the use of
wider strips leads either to the loss of the single-photon nature of
the response or to a decrease of the detection efficiency50. This
observation was in line with a “geometric-hot-spot” detection
model, in which the width of the supercurrent-carrying strip
should be comparable with the diameter of the normal region
where the superconducting state is suppressed due to the
absorption of the photon.

Recently, a “photon-generated superconducting vortex model”
was proposed31,51. It was revealed that the efficiency of the photon
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detection is not determined by the geometry, as long as the initial
current density is uniform and close to the critical pair-breaking
current Idep. It was emphasized that even several micron wide
dirty superconducting stripes should be suitable to detect single
near-infrared or optical photons if their critical current Ic≳
0.7Idep31. The only requirement for the width of the strip is that it
should be smaller than the Pearl length Λ= 2λ2/d that ensures the
uniformity of the supercurrent across the superconductor width.
Recently, this condition was satisfied in wide and short NbN52 and
MoSi53 bridges, whose photon response was consistent with the
vortex-assisted mechanism of initial dissipation51. In this way,
given the superconducting properties of our samples, which
drastically differ from much cleaner Nb-C films prepared by
pulsed laser ablation in ref. 54, Nb-C-FIBID appears to be a good
candidate for fast single-photon detection. A further enhancement
of the critical current in Nb-C-FIBID can be expected for tapered
current leads52,53 which should minimize the reduction of Ic in
consequence of undesired current-crowding effects19, and addi-
tional advantages of easy on-chip55 or on-fiber56 integration are
provided by the direct-write nanofabrication technology. Fur-
thermore, the ability to control the thickness of individual FIBID/
FEBID layers with an accuracy better than 1 nm57,58 should allow
for the fabrication of superconductor/insulator superlattices for
studying quantum interference and commensurability effects59 as
well as photonic crystals with superconducting layers60.

To summarize, we have experimentally demonstrated ultra-fast
vortex dynamics at velocities up to 15 km s−1 in a uniform

superconducting microstrip fabricated by FIBID. A stable flux
flow at such high velocities is a consequence of the combined
effects of a strong edge barrier against a background of weak
volume pinning, close-to-depairing critical currents, and fast
quasiparticles relaxation in the investigated system. The distinctive
feature of the direct-write Nb-C superconductor is a close-to-
perfect edge barrier which orders the vortex motion at large
current values and allows for the description of the spatial evo-
lution of the FFI relying upon the edge-barrier-controlled FFI
model. The observed high vortex velocities in Nb-C-FIBID make
accessible studies of far-from-equilibrium superconductivity61 and
vortex matter driven by large currents, opening prospects for
Cherenkov-like generation of other excitations by the fast-moving
vortex lattice in ferromagnet/superconductor hybrid structures. In
addition, the small electron diffusion coefficient D ≈ 0.5 cm2 s−1,
the low superconducting transition temperature Tc= 5.6 K, and
high Ic values exceeding 70% of the depairing current render Nb-
C-FIBID to be an interesting candidate material for fast single-
photon detectors.

Methods
Sample fabrication and its structural properties. Superconducting microstrips
were fabricated by FIBID in a dual-beam scanning electron microscope (FEI Nova
Nanolab 600). The substrates are Si (100, p-doped)/SiO2 (200 nm) with litho-
graphically defined Au/Cr contacts for electrical transport measurements62. FIBID
was done at 30 kV/10 pA, 30 nm pitch and 200 ns dwell time employing Nb
(NMe2)3(N-t-Bu) as precursor gas. The as-deposited Nb-C-FIBID microstrips have
well-defined smooth edges and an rms surface roughness of <0.3 nm, as deduced
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Fig. 6 Current–voltage curves of the microstrips. a Experimental I–V curves of the two Nb-C-FIBID microstrips with the widths w= 1 μm and 500 nm at
T= 4.2 K and B= 50mT in the double log representation. Inset: the same data in the linear scale. Source data are provided as a Source Data file. b
Calculated I–V curves of a superconducting microstrip with the width w= 50ξc at T= 0.8Tc, B= 0.01B0 for different τesc values, as indicated, for Ce(Tc)/
Cp(Tc)= 0.57, τE= 12.5 ps, and τE(0.8Tc)≃ 2τE(Tc). Inset: time-averaged electronic temperature Te in the center of the microstrip as a function of the
normalized current.

Table 1 Nb-C-FIBID as a candidate material for single-photon detectors.

Material MoSi53 NbRe69 NbN52 NbN70 Nb-C52 Nb-C-FIBID

d, nm 3.3 15 5.8 14.4 23.3 15
Tc, K 3.85 6.77 8.35 15.25 11.2 5.6
ρn, μΩcm 175 145 400 281 25 572
D, cm2s−1 0.47 0.56 0.31 0.6 4.45 0.49
λ(0), nm 708 483 450a 290a 156a 1060
ξ(0), nm 8.7 4.8 5.4 5.4 na 6.5
Ic/Idep ≃0.7 na na 0.65–0.9 na 0.7–0.74
Leads Tapered Straight Tapered Straight Straight Straight

d: stripe thickness; Tc: superconducting transition temperature; ρn: resistivity just above Tc; λ(0): estimate for the penetration depth at zero temperature; ξ(0): zero-temperature estimate for the
coherence length.
na: not available.
aAn estimate which was made on the basis of the reported data.
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from atomic force microscopy scans in the range 1 × 1 μm. Right after the
deposition, without breaking the vacuum, the microstrips were covered with a 10-
nm-thick insulating Nb-C layer prepared focused by FEBID33,63, see Fig. 1 for the
geometry. While Nb-C-FEBID structures are amorphous, Nb-C-FIBID deposits
have an fcc Nb-C polycrystalline structure, with grains about 15 nm in diameter32.
The typical elemental composition in the Nb-C-FIBID microstrips is 43% at. C,
29% at. Nb, 15% at. Ga, and 13% at. N, as inferred from energy-dispersive X-ray
spectroscopy on thicker replica of the fabricated structures. Experiments were done
on a series of four samples. In the manuscript, we report typical data for one
microstrip. An additional reference measurement has been made for a microstrip
with an artificially fabricated edge defect. The defect (notch) was milled by focused
Ga ion beam at a beam voltage of 30 kV and a beam current of 10 pA64.

Superconducting properties of the Nb-C-FIBID microstrip. The resistive prop-
erties of the microstrip are summarized in Fig. 7. The resistivity temperature
dependence ρ(T) is shown in Fig. 7a, where the ρ(T) curve exhibits a transition
from weak localization65 to superconductivity at Tc= 5.6 K. Here, the transition
temperature Tc is determined using the 50% resistance drop criterion, as illustrated
in Fig. 7b. The resistivity at 7 K is ρ7K= 572 μΩcm and the width of the super-
conducting transition, defined as the temperature difference between the 10 and
90% resistivity values at the transition, amounts to ΔTc ≈ 0.6 K. Application of a
magnetic field B leads to a decrease of Tc and a transition broadening, and we use
the same 50% resistance drop criterion to deduce the temperature dependence of
the upper critical field Bc2(T) shown in Fig. 7c. Near Tc, the critical field slope
dBc2=dTjTc

¼ �2:24 T K−1 corresponds, in the dirty superconductor, to the elec-
tron diffusivity D ¼ �4kB=½πeðdBc2=dTjTc

Þ� � 0:49 cm2 s−1. The coherence length
and the penetration depth at zero temperature are estimated52 as
ξð0Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

_D=Δð0Þp ¼ 6:5 nm and λð0Þ ¼ 1:05 � 10�3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ7K=Tc

p � 1060 nm. By
employing the 100 μV voltage drop criterion, from the I–V curves, we deduce the
critical currents at zero field Ic(0.75Tc)= 58 μA and Ic(0.9Tc)= 16 μA. We assume
that the temperature dependence of the depairing current can be described by the

expression IdepðTÞ ¼ Idepð0Þð1� ðT=TcÞ2Þ
3=2

with the prefactor Idep(0)= 0.74w[Δ
(0)]3/2/(eR□ℏD), which is justified for dirty superconductors52,66,67. Here, Δ(0) is
the superconducting energy gap at zero temperature, e the electron charge, and R□
the sheet resistance. With the assumed BCS ratio Δ(0) ≈ 1.76kBTc, we obtain
Idep(0) ≈ 268 μA. The calculated dependence Idep(T) is compared with the

experimentally measured Ic(T) in Fig. 7d. We note that Ic varies between 0.7Idep≲
Ic≲ 0.74Idep in the temperature range 0.5 < t < 1, where τ= T/Tc is the reduced
temperature.

Time-dependent Ginzburg–Landau simulations. To study the evolution of the
superconducting order parameter, we numerically solve the modified TDGL
equation31:

π_

8kBTc

∂

∂t
þ 2ieφ

_

� �
Δ ¼ ξ2mod ∇� i

2e
_c

A

� �2

Δþ 1� Te

Tc
� jΔj2
Δ2
mod

� �
Δþ

þ i
ðdivjUss � divjGLs Þ

jΔj2
eΔ_D

σn
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ Te=Tc

p ;

where ξ2mod ¼ π
ffiffiffi
2

p
_D=ð8kBTc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Te=Tc

p Þ, Δ2
mod ¼ xðΔ0 tanhð1:74

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Tc=Te�1

p ÞÞ2=
ð1� Te=TcÞ, A is the vector potential, φ is the electrostatic potential, D is the
diffusion coefficient, σn= 2e2DN(0) is the normal-state conductivity with N(0)
being the single-spin density of states at the Fermi level, and jUss and jGLs are the
superconducting current densities in the Usadel and Ginzburg–Landau models:

jUss ¼ πσn
2e_

jΔj tanh jΔj
2kBTe

� �
qs;

where qs=∇ϕ− 2eA/ℏc, ϕ is a phase of Δ= ∣Δ∣eiϕ, and jGLs ¼ πσn jΔj2
4e_kBTc

qs . It should

be noted that at Te not very close to Tc the Ginzburg–Landau expression for the
superconducting current is not valid quantitatively and one needs to use the Usadel
expression for jUss . In this case, one should also modify the TDGL equation since
the ordinary TDGL equation leads to divjGLs ¼ 0 in the stationary case, while one
needs divjUss ¼ 0. Accordingly, by adding the term divðjUss � jGLs Þ in the TDGL
equation we provide divjUss ¼ 0. At Te→ Tc the modified TDGL equation reduces
to the ordinary TDGL equation and divðjUss � jGLs Þ goes to 0.

The electron and phonon temperatures, Te and Tp, respectively, are found from
the solution of following equations:

∂
∂t

π2k2BNð0ÞT2
e

3 � E0EsðTe; jΔjÞ
� �

¼ ∇ks∇Te � 96ζð5ÞNð0Þk2B
τ0

T5
e �T5

p

T3
c

þ jE;

∂T4
p

∂t ¼ � T4
p �T4

τesc
þ γ 24ζð5Þ

τ0
15
π4

T5
e �T5

p

Tc
;
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where E0 ¼ 4Nð0ÞðkBTcÞ2, E0EsðTe; jΔjÞ is the change in the energy of electrons
due to the transition to the superconducting state, ks is the heat conductivity in the
superconducting state:

ks ¼ kn 1� 6

π2ðkBTeÞ3
Z jΔj

0

ϵ2eϵ=kBTedϵ

ðeϵ=kBTe þ 1Þ2
 !

;

kn ¼ 2Dπ2k2BNð0ÞTe=3 is the heat conductivity in the normal state, the term jE
describes Joule dissipation, and τesc is the escape time of nonequilibrium phonons

to the substrate. The parameter γ is defined as γ ¼ 8π2
5

CeðTcÞ
CpðTcÞ, where Ce(Tc) and

Cp(Tc) are the heat capacities of electrons and phonons at T= Tc, and the
characteristic time τ0 controls the strength of the electron–phonon and
phonon–electron scattering31. It should be noted that the electron–photon
scattering time enters the TDGL equation indirectly via the electron temperature Te

whose dynamics is governed by τe–ph ~ τ0 in the heat conductance equation. This is
rather similar to the LO approach, where τe–ph enters the kinetic equation for the
electron distribution function f(E) (in our case this is the heat conductance
equation for Te) and f(E) enters the GL equation in the LO model20,21.

To find the electrostatic potential φ, we also solve the current continuity
equation:

divðjUss þ jnÞ ¼ 0;

where jn=−σn∇φ is the normal current density.
Values of the parameters γ= 9 and τ0= 925 ns used in the calculations are

estimates for NbN. Their variation only leads to quantitative changes in the I–V
curves.

At the edges where vortices enter and exit the microstrip, we use the boundary
conditions jn∣n= js∣n= 0 and ∂Te/∂n= 0, ∂∣Δ∣/∂n= 0 while at the edges along the
current direction Te= T, ∣Δ∣= 0, js∣n= 0, jn∣n= I/wd. The latter boundary
conditions model the contact of the superconducting strip with a normal reservoir
being in equilibrium. This choice provides a way "to inject” the current into the
superconducting microstrip in the modeling. The modeled length of the microstrip
is L= 4w.

In the considered model, the penetration length of the electric field LE is about
the coherence length ξ(T), which is a consequence of τee≪ τep. If τee≳ τep, then LE
can be considerably larger than ξ(T). In general, LE stipulates the stability of the
phase slip process in 1D superconducting wires at larger currents68. In the case of
vortex rivers (phase slip lines with vortices) it should also lead to their stability at
larger currents, providing a critical velocity of Abrikosov vortices close to the
velocity of Josephson vortices, which could explain the experimentally observed v*

≳ 10 km s−1. Within the framework of the considered model, a larger LE can be
modeled by a smaller numerical coefficient at the time derivative ∂Δ/∂t. This
simultaneously leads to a decrease of the relaxation time of ∣Δ∣, which also leads to
an increase of v*. For instance, a fivefold decrease of this coefficient (that
corresponds to an increase of LE by a factor of �

ffiffiffi
5

p
) results in a twofold increase

of V* and v* and a small decrease of I* at B= 0.1B0. One can also see that in this
case vortex rivers are well formed at I= I* and Abrikosov vortices are closer to
Abrikosov–Josephson vortices because of the stronger suppression of the order
parameter along the vortex river, leading to higher instability velocities.

Data availability
The authors declare that the data supporting the findings of this study are available
within the paper and its supplementary information files. The source data underlying
Figs. 2, 4a, 6, and 7 are provided as a Source Data file. Source data are provided with
this paper.
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