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Snap-through transition of 
buckled graphene membranes for 
memcapacitor applications
Ruslan D. Yamaletdinov1,2, Oleg V. Ivakhnenko3,4, Olga V. Sedelnikova1,2,  
Sergey N. Shevchenko  3,4 & Yuriy V. Pershin1,5

Using computational and theoretical approaches, we investigate the snap-through transition of buckled 
graphene membranes. Our main interest is related to the possibility of using the buckled membrane 
as a plate of capacitor with memory (memcapacitor). For this purpose, we performed molecular-
dynamics (MD) simulations and elasticity theory calculations of the up-to-down and down-to-up snap-
through transitions for membranes of several sizes. We have obtained expressions for the threshold 
switching forces for both up-to-down and down-to-up transitions. Moreover, the up-to-down threshold 
switching force was calculated using the density functional theory (DFT). Our DFT results are in general 
agreement with MD and analytical theory findings. Our systematic approach can be used for the 
description of other structures, including nanomechanical and biological ones, experiencing the snap-
through transition.

Memcapacitors1 are an emerging type of circuit elements with memory whose instantaneous response depends 
on the internal state and input signal. Such devices are prospective candidates for applications in information 
storage and processing2,3 technologies as their states can be manipulated by the applied voltages or charges and 
can store information for long intervals of time. Several possible realizations of memcapacitors were suggested 
by using micro-electro-mechanical systems4, ionic transport5, electronic effects6, superconducting qubits7, etc8.

Generally, voltage-controlled memcapacitive systems (memcapacitors) are described by1

=q t C x V t V t( ) ( , , ) ( ), (1)

=x f x V t( , , ), (2)

where q(t) is the charge on the capacitor at time t, V(t) is the applied voltage, C is the memcapacitance (memory 
capacitance), x is a set of n internal state variables, and f is a continuous n-dimensional vector function. In some 
cases, it is more convenient to consider charge-controlled memcapacitors1 such that the charge instead of voltage 
is considered as input.

Among several possible realizations of memcapacitors, the membrane-based memcapacitors4 are of signifi-
cant interest as their geometry makes them intrinsically suitable for non-volatile storage of binary information. 
Indeed, the buckled membrane used as the top capacitor plate (see Fig. 1 for schematics) has two stable buckled 
states corresponding to two distinct values of capacitance. It was suggested4 that the switching between these 
states can be performed using the attractive interaction of oppositely charged capacitor plates. Moreover, it was 
demonstrated theoretically that simple circuits of membrane memcapacitors offer an in-memory computing 
functionality3.

In this work, we consider a possible realization of membrane-based memcapacitor4 employing a single- or 
multi-layer graphene membrane9–13 as its bistable plate (see Fig. 1). Our aim is to understand the basic physical 
processes and parameters underlying the snap-through transition of such membrane including details of the 
membrane dynamics, threshold forces, etc. For this purpose, we perform a combined study using MD, DFT and 
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elasticity theory focusing on a single-layer graphene membrane with clamped boundary conditions. This choice 
of boundary conditions is justified by the typically strong adhesion of graphene to substrates. Our results extend 
our prior DFT investigation14 of the up-to-down snap-through transition of graphene membrane with hinged 
boundary conditions.

The combination of computational/theoretical methods adds breadth and depth to our analysis. Using MD 
simulations, we were able to understand main features of the membrane dynamics in the presence of an external 
force and after the force removal. This understanding has helped us to develop analytical models that resulted 
in compact algebraic expressions for the threshold switching forces. DFT calculations were used to validate MD 
results for the up-to-down transition.

This paper is organized as follows. In Sec. “Molecular Dynamics Simulations” we investigate the snap-through 
transition of graphene membranes using molecular dynamics simulations. In particular, MD simulations of the 
up-to-down and down-to-up transitions are reported in Subsec. “Up-to-down transition” and “Down-to-up tran-
sition”, respectively, while MD simulation details can be found in Supplementary Information (SI) Sec. “MD 
Simulation Details”. The standard elasticity theory is applied to the membrane switching in Subsec. “Buckling and 
snapping-through within the theory of elasticity”. A phenomenological analytical model of the snap-through tran-
sition is presented in Subsec. “Phenomenological elasticity theory” and in SI Sec. “Phenomenological Elasticity 
Theory”. Our DFT calculations are summarized in Sec. “Density Functional Theory”. The results obtained within 
different approaches as well as their implications are discussed in Sec. “Discussion”.

In this paper, the following notations are used:

q - the charge on capacitor (see Eq. (1))
V - the applied voltage (see Eqs (1) and (2))
C - the (memory) capacitance (see Eq. (1))
d - the distance between fixed sides of membrane (see Fig. 1)
h - the distance between the bottom plate and the level of fixed sides (see Fig. 1)
L - the membrane length
w - the membrane width
D = 16 eV - the bending rigidity of graphene
E2D = 340 N/m - the 2D Young’s module
ζ - the deflection of membrane (see Eq. (3))
ζc - the maximum deflection of membrane (see Eq. (7))
θi(s) - the angle that the membrane makes with the horizontal (see Eqs (16) and (17)),
s - the internal coordinate that changes between −1/2 and 1/2 (see Eqs (16) and (17))
Ai and ci - coefficients (see Eqs (16) and (17))
zcm - the center of mass position (see Eq. (19))
 Ub, Ustr, Uext - the bending, stretching and external potential contributions to the potential energy of mem-
brane (see Eq. (18))
F↓ - the up-to-down threshold switching force (see Eqs (12), (20), (21) and (22))
F↑ - the down-to-up threshold switching force (see Eqs (14) and (28))
ε0 - the vacuum permittivity

Molecular Dynamics Simulations
MD simulations are a well established modeling tool frequently employed in studies of nanoscale carbon-based 
materials15–36. We used classical MD simulations to investigate the dynamics of snap-through transition of buck-
led graphene membranes. Zigzag graphene nanoribbons (membranes) of two lengths were considered: the nano-
ribbon A, L = 54 Å (22 rings), and nanoribbon B, L = 103 Å (42 rings). Both nanoribbons were of the same width 
(w = 41 Å). In order to implement the clamped boundary conditions, the first two lines of carbon atoms at shorter 
sides were kept fixed. The buckling was realized by changing the distance between the fixed sides from L to d < L. 
The same external force was applied to each atom in the downward direction to simulate the attractive interaction 
between the plates.

See SI Sec. “MD Simulation Details” for the details of MD simulations.

Up-to-down transition. In order to simulate the up-to-down transition, the double-clamped graphene 
nanoribbon buckled upwards was subjected to the force in the downward direction. The final state of mem-
brane was found using MD simulations as described in SI Sec. “MD Simulation Details”. Figure 2 shows the final 

Figure 1. Schematics of the membrane memcapacitor employing a buckled graphene membrane as its top 
plate4.
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position of a central atom of membrane versus the applied force for several values of d/L and two membrane sizes. 
According to Fig. 2, at fixed L, the up-to-down threshold switching force (the minimal force required for the 
up-to-down transition) is larger for smaller values of d/L. Moreover, at fixed d/L, the threshold switching force 
is smaller for longer membranes. Additionally, some curves in Fig. 2 exhibit a noisy threshold (such as d/L = 0.8 
and d/L = 0.98 in (a)), which can be related to thermal fluctuations of membranes. All these observations are 
intuitively reasonable.

Depending on the force magnitude, the membrane switching occurs either through the symmetric or 
non-symmetric membrane profile (see Fig. 3). Figure 3 was obtained using overdamped simulations of mem-
brane dynamics (additional results of these simulations can be found in SI Sec. “MD Simulation Details”). The 
non-symmetric profile is associated with a smaller energy barrier14 and involved in switching by smaller forces. 
Larger applied forces result in the switching through the symmetric profile. According to our observations and 
previous work14, in all cases, the membrane profile is symmetric at short times. If the force magnitude is suffi-
cient to overcome the energy barrier for the symmetric profile, then, typically, the switching takes place through 
the symmetric path. Otherwise, a symmetry breaking occurs leading to the switching through the lower energy 
barrier associated with the non-symmetric membrane profile. Thermal fluctuations help the symmetry breaking.

Down-to-up transition. It was suggested in ref.4 that the memcapacitor membrane can be set into the buck-
led upwards state 0 (see Fig. 1) by also using the electrostatic attraction between the capacitor plates. When 
the pulled-down membrane is suddenly released, there are conditions such that the membrane overcomes the 
potential barrier and ends up in the buckled upwards state. As the kinetic energy plays an important role in the 
down-to-up transition, this process can not be analyzed using the overdamped dynamics.

Figure 2. Up-to-down transition: the final position (at a time tf) of a central atom of membrane as a function of 
the applied force magnitude for (a) shorter membrane A (22 rings length), and (b) longer membrane B (42 rings 
length). The calculation details are given in the text.

Figure 3. Geometries of membrane B in the process of the up-to-down switching at smaller (F = 0.5 pN/
atom) (a) and larger (F = 1.49 pN/atom) (b) forces. These geometries were obtained using overdamped MD 
simulations for d/L = 0.95 (the simulation parameters are provided in the Supplementary Information). 
The switching occurs through the non-symmetric path at smaller forces (exceeding the threshold) (a), and 
symmetric path at larger forces (b).
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In order to simulate the down-to-up transition, every atom of a double-clamped buckled membrane was sub-
jected to a constant force in -z direction. After an equilibration period, the forces were removed, and the system 
was simulated for a time interval sufficient to reach the steady state. The final position of a central atom of mem-
brane is presented in Fig. 4 as a function of the applied force for several values of d/L.

Figure 4 shows that the threshold forces for the down-to-up transition are larger than those for the up-to-down 
transition (see Fig. 2). Moreover, the threshold forces for the down-to-up transition are larger for the shorter 
membrane A compared to the longer membrane B. It is interesting that the final state of membrane oscillates as 
a function of the applied force (see d/L = 0.98 curves in Fig. 4). Qualitatively, having a high kinetic energy, the 
membrane moves up and down while its energy dissipates. Finally, it gets trapped in one of two stable buckled 
states.

Overall, our MD results indicate the possibility of writing one bit of information into the state of membrane 
memcapacitor. In this interpretation, logic 1 corresponds to the membrane buckled downwards, and logic 0 - to 
the membrane buckled upwards. In addition to 0 → 1 and 1 → 0 transitions presented in Figs 2 and 4, we have 
verified the occurrence of 1 → 1 and 0 → 0 transitions at the same values of forces required for 0 → 1 and 1 → 0 
transitions, respectively. Therefore, logic 0 or 1 can be written into the memcapacitor just by selecting a suitable 
value of the applied force.

In our work, we considered relatively small nanoribbons, which are mechanically rigid. This is an important 
requirement for the memcapacitor application as the mechanical nonvolatile information storage is not possible 
with flexible graphene. From some previous studies37 it is known that local structural corrugations (ripples)38 
disappear in the transition from flexible to rigid graphene. In agreement with this previous work37, our molecular 
dynamics simulations have shown the absence of ripples (spontaneous height fluctuations) in nanoribbons of 
reported sizes and their existence in larger nanoribbons. The latter, however, are not suitable for the memcapac-
itor application because of their flexibility. To summarize, while our simulation tools provide a means for ripples 
detection, we did not observe these in the reported structures that are mechanically rigid.

Theory of Elasticity
Even though the graphene has a thickness of one atom, the graphene membranes are quantitatively good 
described by the theory of elasticity39–42. This allows us, on one hand, to obtain analytical expressions for the 
buckled membranes43–45 and, on the other hand, perform a comparison with MD simulations.

There is a number of publications dealing with buckled beams and membranes under the transverse load (see, 
for example, refs46–49). Such systems are frequently described in the framework of Euler-Bernoulli theory, which, 
however, leads to complex analytically unsolvable equations. Bubnov-Galerkin decomposition is a one of the best 
approaches to find the approximate analytical solution of these equations, although it still requires a complex 
phase-diagram analysis. In particular, using such analysis, the authors of refs46–49 investigated an electrostatically 
loaded double-clamped membrane above a rigid flat electrode and derived cumbersome conditions for the sym-
metric snap-through transition, symmetry breaking, existence of bifurcation and pull-in instability.

In this Section, we derive compact but sufficiently precise expressions for the snap-through switching forces 
based on the theory of elasticity.

Buckling and snapping-through within the theory of elasticity. Description of buckled membranes 
within the theory of elasticity. Consider a 2D membrane within the theory of elasticity40,41,50. The total potential 
energy of membrane is defined by the deflection ζ (along the normal direction z) as

ζ δ ζ= Δ + + .∬ ∬U D S T S SF
2

d ( ) d (3)
2

Here, Δ stands for the 2D Laplacian, T = T0 + δT is the total tensile force, T0 is the force applied by the support 
and δT is the bending tension resulted from the extension,

Figure 4. Down-to-up transition: the final position of a central atom of membrane as a function of the applied 
force magnitude for (a) shorter membrane A (22 rings length), and (b) longer membrane B (42 rings length).
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δ δ δ ζ= = ∇∬T E S
S

S S, d ( ) ,
(4)D2

0

2

S0 = wL, and F is the external force density. The compression of membrane corresponds to T0 < 0.
Given the potential energy, one may also be interested in the dynamics of membrane, which is defined by the 

equation

µ ζ µγ ζ ζ ∆ζ∂
∂

+
∂
∂

− = − ∆∆ +
t t

F D T ,
(5)

2

2

where μ is the 2D mass density.

Eigenmodes and buckling. The spatial harmonics (eigenmodes) of clamped membranes can be written as

ζ =
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where the numbers bn are the solutions of the equation cosh bncos bn = 1. One can find that bn ≈ 3π/2 + nπ (in 
particular, b0 = 4.73 is close to 3π/2 = 4.65). The functions ζn(x) are orthonormal.

Consider a buckled membrane shown in Fig. 1. Its potential energy (Eq. (3)) calculated for the fundamental 
n = 0 mode (taking ζ(x) = ζ0(x) with ζ(d/2) ≡ ζc) is

αζ βζ ζ=− + +U f , (7)c c c
2 4

where α = π2w(|T0| − Tc)/(4d), β = 3π4Dw/(4ε2d3), and f = πFdw/6. Here, Tc = 4π2D/d2 is the critical tension. At 
α > 0, that is at |T0| > Tc, the potential is the double-well potential with minima at symmetric deflections, 
ζ α β= ± /2c , and the potential barrier δU = α2/4β. (We note that a less realistic case of hinged boundary condi-
tions would lead to simpler expressions for eigenmodes, nx dsin( / )π∼ , compared to Eq. (6), making the hinged 
boundary conditions preferable for some calculations. However, this case results in quantitatively different values. 
For example, the critical tension differs four times.)

We note that the nanoribbon length is given by

∫ ζ= + ′ .L xd 1 2 (8)
d

0

Expanding this expression to the second order, one obtains the interrelation between L, d, and the maximal 
deflection ζc:

ζ ≈ . − .
d
L

L L d0 64 ( )
(9)c

8

On the other hand, the maximal deflection of buckled membrane can be inferred from the minima of the poten-
tial energy, Eq. (7):

ζ α
β π

= = − .
L

E
T T

2
2 ( )

(10)c
2

2

2

2D
0 c

Equations (9) and (10) link the tensile force T0 to the parameter d/L, which can be considered as a measure of 
deformation of buckled membrane. These equations can be used to express the tensile force T0 through d/L.

Snap-through transition. Here we present a convenient method to describe the dynamics of membrane sub-
jected to an external force and find the minimal force causing its snap-through transition. The main idea is to 
expand ζ(x, t) in harmonics ζn(x) (given by Eq. (6)) with amplitudes qn(t) as

∑ζ ζ=x t q t x( , ) ( ) ( ),
(11)n

n n

and limit the sum to few first terms. We found that in order to describe the symmetric and non-symmetric tran-
sitions, it is sufficient to consider n = 0,2 and n = 0,1 terms in Eq. (11), respectively. The calculation consists in the 
following. First, we substitute the expansion (11) in Eq. (5). Second, the resulting equation is multiplied by ζm(x) 
and integrated taking into account the orthogonality of harmonics. Here we emphasize that for the harmonics (6), 
the integrals are readily calculated, and instead of the integro-differential equation one obtains a system of differ-
ential equations for the functions qn(t). Inserting the obtained functions qn(t) back into Eq. (11) gives us the 
description of membrane dynamics. In the following, the results of these calculations (performed using the time 
normalized by the membrane characteristic frequency ω μ= L D(1/ ) /c

2  and tc = 1/ωc)51 are analyzed for mem-
brane B.

Consider the results presented in Fig. 5. Figure 5(a) demonstrates the case of fully symmetric switching, when 
the dynamics can be described by n = 0 and 2 harmonics. Next, we introduce a small asymmetry into the problem 
via a small non-symmetric modification of the force (of the order of 0.1%). This results in the non-symmetric 
dynamics of Fig. 5(b), which can be described in terms of n = 0 and 1 harmonics. We note that the force needed 
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for the non-symmetric snap-through transition is smaller than that for the symmetric one, which will also be 
analyzed below in more detail. Finally, in Fig. 5(c) we illustrate a combination of the above regimes found using 
a symmetric force, when a tiny fluctuation in the numerical solution changes the symmetric dynamics to the 
non-symmetric one. Note that this case is close to the one discussed in ref.14.

Figure 6(a) depicts the dependence of the final position of membrane center, ζc(tf), on the applied force F. At a 
certain value of force, F = F↓, the membrane switches from the buckled upwards state to the buckled downwards 
state. Our calculations show that the threshold force is proportional to the initial central-point deflection ζc and 
is different for the symmetric (s) and non-symmetric (ns) dynamics. Namely, this force, being multiplied by the 
membrane area wL, reads

Figure 5. Up-to-down transition within the theory of elasticity. (a) Fully symmetric switching. (b) Non-
symmetric switching caused by a small asymmetry in the applied force. (c) More realistic switching scenario 
based on a symmetric force, where the initial symmetric distortion becomes non-symmetric at longer times. For 
all panels d/L = 0.95.

Figure 6. Numerical simulation of up-to-down transition. (a) The final central-point deflection ζc versus the 
applied transverse force F for several values of d/L. (b) Time-dependence of the first few harmonics’ amplitudes 
qn(t).



www.nature.com/scientificreports/

7ScieNtific RePoRtS |  (2018) 8:3566  | DOI:10.1038/s41598-018-21205-3

ζ
= . =







 −

↓F
F

C
d

C L
d

L
d

2 44 1 ,
(12)

s
s s

,ns

0
,ns

c
,ns

3/8

= = . = . .F Dw
L

C C, 253 4, 359 1
(13)0 2 ns s

Since the non-symmetric transition is energetically favorable, we expect that this value of force is the one to 
be used in the device design/experiment analysis. We note that estimations based on Eq. (12) are in a good agree-
ment with results found by other methods as we discuss later and illustrate in Sec. “Discussion” below. Figure 6(b) 
presents the time-dependence of harmonics’ amplitudes qn(t) in the up-to-down transition. Importantly, the 
dynamics is well described by n = 0, 1, and 2 harmonics, while n = 3 and 4 harmonics amplitudes are negligibly 
small.

Our calculations (similar to the consideration of the up-to-down force above) demonstrate that the minimal 
force needed for the down-to-up transition is proportional to ζc

2 as

ζ
= .











=










 −





↑
↑ ↑F

F
C

d
C L

d
L
d

2 44 1 ,
(14)0

c
2 3/4

= . ⋅ .↑C 8 48 10 (15)4

See also SI Subsec. “Down-to-up transition”, where the down-to-up transition is illustrated graphically.

Phenomenological elasticity theory. In this Section, in order to avoid all complications associated 
with the Bubnov-Galerkin decomposition, we elaborate a different approach describing the up-to-down and 
down-to-up transitions in a compact analytical form.

Ansatz. Following our observation of the existence of the symmetric and non-symmetric membrane profiles in 
the snap-through transition (see Fig. 3), we introduce two simplest polynomial functions to describe such sym-
metric (s) and non-symmetric (ns) shapes of membrane:

θ =


 −



 −s A s s s c( ) 1

4
( ),

(16)s s
2 2

0
2

θ =


 −



 − − .s A s s c s c( ) 1

4
( )( )

(17)ns ns
2

1 2

Here θi(s) is the angle that the membrane makes with the horizontal, s is the internal coordinate that changes 
between −1/2 and 1/2, Ai and ci are coefficients, and i = {s, ns}. Clearly, Eqs (16) and (17) describe the 
double-clamped membrane as θi(±1/2) = 0.

Up-to-down transition. Our goal here is to estimate the minimal force required for the snap-through transition. 
In this subsection, we assume that the snap-through transition is induced by a slowly increasing force such that 
the system always stays in the potential energy minimum. At zero applied force, there are two minima of the 
potential energy corresponding to the two stable states of membrane. The applied force modifies the potential 
energy landscape such that, starting at a certain force, the potential energy has a single minimum. Here, this value 
of force is found and considered as an estimation for the threshold switching force.

In the presence of a constant force F in the downward direction, the membrane potential energy is given by

∫
θ

= + + =





∂
∂







+ +
−

U U U U Dw
L s

s U U
2

d ,
(18)b str ext str ext

1/2

1/2 2

where Ub is the bending energy, Ustr is the stretching energy, Uext is the potential energy due to the applied force. 
Then, using Uext = Fzcm, where zcm is z coordinate of the center of mass, and neglecting Ustr term not important for 
the up-to-down transition (see, e.g., Fig. S1 that indicates the insignificance of Ustr in buckled membrane), we get 
the following equation for the potential energy extrema:

= − = −










−

F U
z

U
c

z
c

d
d

d
d

d
d

,
(19)

b

cm

b

i

cm

i

1

where i = {0, 1} corresponds to {s, ns}, respectively. Equation (19) allows finding c0 and c1 for a given strength of 
the applied force.

The minimal force needed for the snap-through transition corresponds to the maximum of F(zcm) and, for the 
transition through the symmetric shape, is given by
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=
−↓F Dw

L
L d

L
440

(20)s 2

taking place at c0 = 0.3589 (the corresponding membrane profile is presented in Fig. S4). At this value of c0, the 
bending energy is Ub,s = 108Dw(L − d)/L2. Performing the same calculations for the non-symmetric shape, one 
can find that the force needed to support the equilibrium non-symmetric shape decreases with the progress of 
switching. A zero force is reached at = − =c c 1/(2 5 )1 2  that corresponds to the maximum of 
Ub,ns = 90Dw(L − d)/L2. A possible (rough) estimation for the threshold switching force can be obtained taking 
the limit c1 → ∞ leading to

=
−↓F Dw

L
L d

L
281

(21)ns 2

and Ub,ns = 42Dw(L − d)/L2.
In fact, a realistic scenario of the switching through the non-symmetric shape can be imaged as follows. We 

start with a symmetric membrane at F = 0 and slowly increase the force. The symmetry breaking occurs at a 
certain value of force, say, F↓. The dynamics of switching is a complex process significantly relying on thermal 
fluctuations. As the switching dynamics can not be reached within the framework of our model, for estimation 
purposes, we assume that F↓ corresponds to the point where the bending energies and applied forces for the sym-
metric and non-symmetric shapes are the same. One can find that both conditions are satisfied at c0 = 0.4683 and 
c1 = 0.6948, so that Ub = 47.8Dw(L − d)/L2 and

= .
−

.↓F Dw
L

L d
L

263 53
(22)2

Consequently, at F < F↓, the membrane keeps the symmetric shape and switches to the non-symmetric one as 
soon as F reaches F↓. As there is no barrier involved in the non-symmetric switching, no further increase in the 
applied force is required to complete the snap-through transition through the non-symmetric shape.

Down-to-up transition. As the stretching energy Ustr (see Eq. (18)) plays an important role in the down-to-up 
transition, it needs to be taken into account. For our purposes, it is sufficient to approximate Ustr as

= ΔU E w
L

L
2

, (23)str
D2 2

where ΔL is the change in the membrane length. In the approximation of small elongation, Δ L L, one can 
assume that both Ub and the shape of the stretched membrane are not significantly modified compared to F = 0 
case. In this situation, at the threshold of transition, the stretching energy (Eq. (23)) is equal to the difference 
between the maximal and minimal bending energies (the energy conservation condition). Using the energies 
given below Eq. (S8) we find

Δ = − =
−

.
E w

L
L U U Dw L d

L2
161

(24)
D

b
max

b
min2 2

2

Moreover, at equilibrium

= ⋅
Δ

.F z E w
L

L
z

( )
2

d( )
d (25)cm

D

cm

2
2

Under the condition of small Δ L L, the center of mass position of membrane (buckled downwards) can be 
expressed as

= − . − +
Δ

Δ⁎z L L d z
L

L0 3187 ( ) d
d( )

,
(26)cm

cm

with

Δ
= .

−
−

.
z

L
L d

L L d
d

d( )
0 3187 2

2 ( ) (27)
cm

Using Eqs (24) and (27), Eq. (25) can be rewritten as

= .
−
−

.↑F DE w
L

L d
L d

79 62 2
2 (28)D2

We have verified that the threshold switching force for the down-to-up transition given by Eq. (28) is in agree-
ment with our typical MD simulations results. A very good agreement was obtained with MD simulations per-
formed with very small energy dissipations.
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Density Functional Theory
A DFT investigation of the up-to-down transition was performed following the previously reported study of the 
up-to-down switching of buckled graphene membrane14. In the present calculations, we focused on the effects of 
boundary conditions and buckling strength on the up-to-down threshold switching force. DFT computational 
details can be found in SI Sec. “DFT Calculations”.

We investigated a buckled zigzag graphene nanoribbon specified in SI. Two types of boundary conditions 
were examined: (1) hinged boundary conditions (configurations C1 with d/L = 0.96, Fig. 7(a), C2 with d/L = 0.78, 
and C3 with d/L = 0.63), and (2) clamped boundary conditions (configuration D1 with d/L = 0.96, Fig. 7(b,c)). 
The initial geometries of nanoribbons corresponded to the buckled upwards state. In order to simulate the 
up-to-down transition, we used the approach developed in ref.14. Specifically, we performed a series of DFT cal-
culations with the central chain of membrane atoms (marked red in Fig. 7) gradually displaced in −z direction 
from its position in the buckled upwards state. The membrane geometry found at the preceding deformation step 
was used to build its subsequent modification. In contrast to ref.14, in the present calculations only z coordinates 
of the central chain of atoms were constrained.

The deformation energies of buckled graphene are reported in SI. Our force estimation shows that the thresh-
old switching force for the up-to-down transition is about 3.8 pN/atom for C1, 11.1 pN/atom for C2, and 16.4 pN/
atom for C3. Moreover, the non-symmetric switching force for D1 is 3.7 pN/atom and the symmetric one is about 
11.5 pN/atom. As the non-symmetric switching forces for D1 and C1 are close to each other, we use the results for 
C1-C3 for the order-of-magnitude comparison with MD and elasticity theory results.

Discussion
Four methods to describe the snap-through transitions. As the key finding, Fig. 8 presents the 
dependence of the up-to-down threshold switching force (calculated with different approaches) on the membrane 
deformation parameter d/L. In particular, this figure demonstrates that the threshold forces obtained by a number 
of different methods are in good agreement with each other.

We emphasize that:

 (i) MD is widely used approach to describe the dynamics of nanoscale systems. In our work, MD clearly shows the 
possibility of 0 → 1 and 1 → 0 transitions of graphene membrane. We have also verified the occurrence of 1 → 1 
and 0 → 0 transitions at the same values of forces required for 0 → 1 and 1 → 0 transitions, respectively.

 (ii) In the framework of elasticity theory, the membrane is described by means of an integro-differential 
equation for the deflection ζ(x, t). Expanding the function ζ(x, t) into membrane’s harmonics allows 
reducing the integro-differential equation to a system of differential equations. This approach was utilized 
in Subsec. “Buckling and snapping-through within the theory of elasticity”. There it was shown that the 
up-to-down threshold switching force depends linearly on the initial central-point deflection, F↓ ∝ ζc, while 
the down-to-up snap-through force at low dissipation depends quadratically on the initial deflection, 

ζ∝↑F c
2. Besides, we have demonstrated that with a high accuracy, the relevant membrane’s dynamics can 

be described (and visualized) just by two harmonics.
 (iii) The phenomenological approach based on the theory of elasticity has allowed us to obtain analytical 

expressions for the up-to-down and down-to-up switching forces for buckled graphene membrane. The 
forces for 0 → 1 and 1 → 0 transitions are in a good agreement with MD simulations results.

Figure 7. Geometries of membranes C1 (hinged boundary conditions, (a)) and D1 (clamped boundary, (b,c)) 
in the process of the up-to-down switching. The switching occurs through non-symmetric paths (a,b), and 
initially symmetric path (c). These geometries were found using DFT optimization of geometries obtained 
utilizing a progressive displacement of central atoms.
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 (iv) DFT is a non-standard method for studying mechanical properties of membranes. Similarly to other meth-
ods, DFT has shown that the non-symmetric switching pathway is the preferable one. This method also 
provides a consistent estimation for the up-to-down threshold switching force.

Implications for memcapacitor design. From the application point of view, the membrane memca-
pacitor should have a strong ‘memory content’, namely, the device characteristics in its two logic states should 
be sufficiently different so as to provide a significant influence on other elements of electronic circuits52. For 
this purpose, it is desirable that both the distance between the fixed edge of membrane and second electrode 
(h in Fig. 1) and the maximal deflection of membrane (zs(0)) are chosen (much) smaller than the membrane 
length. Moreover, the gap between electrodes should be larger than the maximal membrane deflection, 
h > zs(0) (see Eq. (S2) for the definition of zi(s)). For given capacitances C0 and C1 of the states 0 and 1 (logic 1 
corresponds to the membrane buckled downwards, and logic 0 - to the membrane buckled upwards) such that 
C1/C0 < 3.01, one can find that

= . −
+
−

.h L L d C C
C C

0 3210 ( )
(29)

1 0

1 0

Next, we need an expression for the force applied to the membrane expressed through the input variable of 
memcapacitor such as the applied voltage V (see Eqs (1) and (2)). Since the energy of the plate can be written as

ε
= −

+
U z V A

h z
( )

2( )
,

(30)ext cm
cm

0
2

where ε0 is the vacuum permittivity and A = d · w is the plate area, the force is given by

ε
= −
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h z
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2( ) (31)
cm
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2

2

The overall scheme of memcapacitor switching is schematically presented in Fig. 9. Let us consider first the 
up-to-down transition (path (a–c,f) in Fig. 9). As mentioned in SI Sec. “Phenomenological Elasticity Theory”, the 
smallest threshold force for this transition is associated with the switching through the non-symmetric г state and 
corresponds to = .⁎c 0 69481 . In this way, the buckled upwards membrane (structure (a) in Fig. 9) evolves into the 
buckled downwards state according to (b) and (c) in Fig. 9. After the voltage removal, the membrane remains in 
the buckled downwards state ((e) in Fig. 9). In order to estimate the minimal (threshold) voltage required for this 
transition, Eq. (22) is rewritten accounting for Eq. (31):

ε
+

= .
−

.⁎
V dw

h z c
Dw
L

L d
L2( ( ))

263 53
(32)cm

0
2

1
2 2

Figure 8. Comparison between the up-to-down threshold forces, calculated by four different approaches. 
Green, red, and blue lines were calculated in the non-symmetric, adiabatic and dynamic symmetric switching 
regimes, respectively. The results of our MD simulations are shown with squares for nanoribbon A and circles 
for B. The forces calculated by means of the elasticity theory, Eq. (12), are shown with the magenta solid line for 
the non-symmetric snap-through and with the orange dashed line for the symmetric transition. The DFT results 
are presented by triangles.
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Consequently,

ε
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+
⋅

−
→

⁎
V h z c

L
D

d
L d

L
22 96 ( ) ,

(33)
cm

0 1
1

0

where = . −⁎z c L L d( ) 0 3203 ( )cm 1 . Eq. (33) provides an easy way to find the threshold voltage necessary for the 
up-to-down transition of membrane.

In the down-to-up transition, the initial buckled downwards membrane ((e) in Fig. 9) is first stretched by the 
applied force ((c) in Fig. 9). When the force is removed, the membrane state becomes (d). If the potential energy 
of (d) is sufficient to overcome the potential barrier height symmetrically (f), then the membrane may end up in 
the buckled upwards state (a). These general processes are partially described by Eqs (24) and (25). Because of the 
membrane elongation in (c,d), a refined value of zcm should be used in relevant calculations.

The threshold voltage can be estimated based on the energy conservation (Eq. (24)) and force equilibrium (Eq. 
(25)) conditions accounting for ⁎zcm from Eqs (26) and (27). One can find that
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An additional aspect of membrane dynamics – an estimation of thermally-induced switching time – is considered 
in SI Sec. “Stability of Buckled Membrane”.

Concluding Remarks
We have investigated the snap-through transition of a buckled graphene membrane using a variety of computa-
tional and theoretical tools. The main results of this paper are the expressions for the threshold switching forces 
(Eqs (12 and 22) for the up-to-down transition and Eqs (14 and 28) for the down-to-up one) and corresponding 
voltages (Eqs (33) and (35)). Our analytical results are supported by the results of numerical simulations, MD 
and DFT calculations. We expect that our findings will find applications in the design, fabrication and analysis of 
membrane-based memory devices.
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