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Within a Ginzburg-Landau formalism we establish analytically the necessary and sufficient conditions to
realize a doubly degenerate superconducting ground state with broken time-reversal symmetry (BTRS) in a
multiband superconductor. Using these results we analyze the ground state of a three-band superconductor
in the cylindrical geometry in an external magnetic field. We show that depending on the interband coupling
constants, a magnetic flux can induce current density jumps in such superconducting geometries that are related to
adiabatic or nonadiabatic transitions from BTRS to time-reversal-symmetric states and vice versa. This unusual
current-induced magnetic flux response can in principle be used experimentally to detect superconducting BTRS
ground states as well as corresponding metastable excited states.

DOI: 10.1103/PhysRevB.96.144513

I. INTRODUCTION

The phenomenon of superconductivity is characterized by
the spontaneous breaking of a gauge symmetry. But in some
cases simultaneously time-reversal symmetry (TRS) can be
broken as well. Because of their unusual properties such
superconductors (SCs) with broken time-reversal symmetry
(BTRS) are attracting a lot of attention. For instance, recently
the formation of new collective modes [1,2] (similar to the
occurrence of Leggett modes in two-band SCs) and new
topological excitations in the form of phase solitons, domains,
and vortices that carry fractional magnetic flux values [3–12]
have been discussed.

So far, BTRS superconductivity has been clearly detected
in only a few cases. The most frequently cited example
is Sr2RuO4 in which the order parameter was identified
to be a triplet chiral (� ∝ px + ipy) [13,14]. Furthermore,
evidence for BTRS superconductivity was reported for the
low-T phase of Th-doped UBe13 [15], UPt3 [16], and in
SrPtAs based on muon measurements [17]. Theoretically
superconductivity with BTRS has also been proposed for other
compounds such as cuprate SCs at low temperature [18,19],
transition-metal dichalcogenides [20,21], NaxCoO2 · yH2O
[22], strongly doped graphene [23], and in some recently
discovered Fe-based superconductors (FeSCs).

The FeSCs are of particular interest as BTRS supercon-
ductivity is anticipated for several dopings as a result of the
multiband electron structure and strong repulsive interband
couplings. Typically the Fermi surface of the non-SC parent
compound consists of two or three hole-like pockets at the
� = (0,0) point and two electron-like pockets around the M =
(π,π ) point. The resulting nesting at the vector Q = (π,π )
connecting the � and M points drives the system to a spin

density wave (SDW) state. With doping the SDW state melts,
giving space for superconductivity. The natural symmetry of
the order parameter in such a situation is given by the so
called s± one, which causes a gap function with opposite
signs at the electron and the hole pockets, respectively. In
Ba1−xKxFe2As2 the hole doping by K substitution leads at x

close to 1 to the vanishing of the electrons pockets and a change
of the symmetry of the superconducting order parameter
to nodal d-wave symmetry for pure KFe2As2 [24–27]. A
BTRS state was proposed for two dopings: for x ∼ 0.7,
when the electron pockets vanish, and for x ∼ 1, when a
transition from s- to d-wave superconductivity is expected.
The proposed intermediate pairing symmetries are s + is and
s + id correspondingly [28,29].

However, as stressed above, still there are only a few
compounds where superconductivity with BTRS was unam-
biguously observed. One of the reasons actually is the lack
of simple experimental tools to identify it. The most common
techniques to establish BTRS in superconductors are μSR and
NMR; both suffer from restrictions related to the the presence
of impurities and other defects even in high-quality single
crystals. In addition NMR requires considerable magnetic
fields which may themselves significantly affect the super-
conducting ground state (GS), especially for low-temperature
SCs, by paramagnetic pair-breaking effects and field-induced
coexisting magnetic phases.

Here we first study in Sec. II the nature of possible
SC ground states in zero magnetic field and the absence
of currents. Within a Ginzburg-Landau approach we clarify
the conditions for BTRS and explicitly show the twofold
degeneracy of the corresponding ground states. We adopt
the simplest model when the BTRS superconductivity,
namely a three-band SC, is described approximately within a

2469-9950/2017/96(14)/144513(7) 144513-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevB.96.144513


YURIY YERIN et al. PHYSICAL REVIEW B 96, 144513 (2017)

Ginzburg-Landau approach [30–35]. For a two-band model
BTRS superconductivity is possible only in special cases such
as dirty materials in the vicinity of the s± → s++ transition
[29].

In Sec. III we investigate the magnetic field response of
superconducting cylinders with a BTRS order parameter and
introduce it as a tool, which has not yet been considered
in the literature to the best of our knowledge, to identify
superconductivity with BTRS. In the three-band framework we
investigate homogeneous current states in such a mesoscopi-
cally one-dimensional system and show that the diamagnetic,
i.e., orbital-dominated, response depends directly on the nature
of the underlying order parameter. Experimental verification
of the characteristics that we predicted here could be used to
identify multiband BTRS superconductivity.

II. GINZBURG-LANDAU APPROACH
TO SUPERCONDUCTIVITY WITH BTRS

To describe the multiband superconductors we employ a
general Ginzburg-Landau (GL) functional, which has been
used previously only for particular cases (e.g., for two
bands or three equivalent bands [36,37]; see the reviews
Refs. [6,7] and references therein). We will provide a rather
general solution for three nonequivalent bands with repulsive
interband interactions being the most relevant case for BTRS
physics in these systems. For the sake of simplicity we address
only homogeneous states and isotropic order parameters. How-
ever, inhomogeneous states containing different topological
defects and an explicit account of spin states can be treated
straightforwardly within the same formalism [38]. The GL
Gibbs energy density and the current density for three-band
superconductors can be written in the following form:

�G =
3∑

i=1

∫ {
1

4mi

∣∣∣∣
(

− ih̄∇ − 2e

c
A

)
ψi
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2

+ ai |ψi |2

+ bi

2
|ψi |4 − Fint

}
+ 1

8π

∫
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and
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∑
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(ψ∗
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i ) − 4e2
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A

∑
i

|ψi |2
mi

. (2)

Here and below we consider the temperature regime below
Tc for the GL approach as valid; i.e., we ignore the region
of strong fluctuations in the very vicinity of Tc or in the
case of very low temperatures. In the first integral in Eq. (1)
the integration is performed over the superconductive region
whereas in the second integral over the cylinder volume.
The term Fint describes the phase-sensitive Josephson-like
interband coupling:

Fint = γ12ψ
�
1ψ2 + γ23ψ

�
2ψ3 + γ31ψ

�
1ψ3 + c.c.

= 2γ12|ψ1||ψ2| cos(φ1 − φ2)

+ 2γ23|ψ2||ψ3| cos(φ2 − φ3) (3)

+ 2γ31|ψ1||ψ3| cos(φ1 − φ3).

Here the order parameter is in general complex, i.e., ψi =
|ψi |eiφi . In contrast, the interaction coefficients γij are real

and can be positive or negative. It was shown for two-band
superconductors that the sign of γ12 fully determines the
symmetry of the order parameter in the clean case. A repulsive
interband interaction constant γ12 < 0 leads to unconventional
symmetry and a ground state with π -phase difference between
the two bands (denoted as s± symmetry), while attractive
interband interactions γ12 > 0 stabilize a ground state with a
zero-phase difference between the their gap functions (denoted
as s++ symmetry). We keep the same sign convention in the
case of three-band SCs considered here.

As a first step we examine the ground state in the absence
of external magnetic fields. Then Eq. (4) can be rewrit-
ten as Fint = sgn(γ12γ23γ31)(F 2

x + F 2
y − γ 2

1 |ψ1|2 − γ 2
2 |ψ2|2 −

γ 2
3 |ψ3|2), where γ1 = √|γ12γ23γ31|/γ23 and the other γi are

obtained by a cycle permutation. The introduced two func-
tions Fx = γ1|ψ1| cos φ1 + γ2|ψ2| cos φ2 + γ3|ψ3| cos φ3 and
Fy = γ1|ψ1| sin φ1 + γ2|ψ2| sin φ2 + γ3|ψ3| sin φ3 do absorb
the complete phase shift dependencies.

Now the minimization of the GL functional with respect
to the phases is reduced to the maximization/minimization
of F 2

x + F 2
y depending on the sign of (γ12γ23γ31). The

geometric meaning of F 2
x + F 2

y is the absolute value of a
sum of three vectors in a 2D space a1 = γ1|ψ1|(cos φ1, sin φ1),
a2 = γ2|ψ2|(cos φ2, sin φ2), and a3 = γ3|ψ3|(cos φ3, sin φ3):
F 2

x + F 2
y = (a1 + a2 + a3)2. One can immediately note that

the BTRS state corresponds to noncollinear vectors ai , while
TRS to collinear ones. For (γ12γ23γ31) > 0 the minimum of GL
corresponds to the maximum of the F 2

x + F 2
y , which is reached

when the vectors ai are collinear. It corresponds to the TRS
phase. For (γ12γ23γ31) < 0 the minimum of GL corresponds
to the minimum of the F 2

x + F 2
y . The minimum F 2

x + F 2
y = 0

can be reached for noncollinear vectors, satisfying the triangle
rule. With this the BTRS GS is realized. If the length of vectors
ai does not satisfy the triangle rule the minimum is reached
for collinear vectors ai , or the TRS state. For the BTRS state
the free energy �FBTRS can be rewritten as

�FBTRS =
∑

i

[(
ai − γ 2

i

)|ψi |2 + bi

2
|ψi |4

]
. (4)

Its minimum corresponds to the order parameter:

|ψi |2 = ( − ai + γ 2
i

)
/bi (5)

and

cos θ = cos(φ2 − φ1) = γ 2
3 |ψ3|2 − γ 2

1 |ψ1|2 − γ 2
2 |ψ2|2

2γ12|ψ1||ψ2| ,

cos φ = cos(φ3 − φ1) = γ 2
2 |ψ2|2 − γ 2

1 |ψ1|2 − γ 2
3 |ψ3|2

2γ13|ψ1||ψ3| .

The dependence of the interband interaction term Fint of the
GL free energy functional as a function of the phase differences
for a fixed set Gi is given in Fig. 1. Here we have introduced
convenient new variables:

G1 = γ12

|γ23|
|ψ1|
|ψ2| , G2 = sgn(γ23), G3 = γ13

|γ23|
|ψ3|
|ψ2| .

A BTRS state exists for zero external magnetic field only
within a relative small volume in the six-dimensional param-
eter space (|ψj |, γij ). The corresponding projected regions
onto the planes G1-G3 are shown in the form of tilted,
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FIG. 1. The surface (a) and the contour plot (b) of the dependence
of the interband interaction term Fint of the GL free energy functional
as a function of the phase differences for the fixed set G1 = 1, G2 =
−1, G3 = 1. Black dashed square limits intervals of consideration
of phase differences. Crosses indicate global maximum values of
Fint within these intervals. The parameters are φ = φ1 − φ2 and θ =
φ1 − φ3. Further details are provided in the Supplemental Material
[39], Fig. S4.

X-shaped regions in Fig. 2. The richness of these and
other figures shown in the Supplemental Material [39] is
a consequence of the high-dimensionality of the parameter
space that is generic for multiband superconductors. We note
that it resembles mathematically to some extent the richness
of the 11-dimensional superstring theory manifested in the
six-dimensional Calabi-Yau manifolds [40,41].

Note that we have found that even in the case of an odd
number of repulsive interband interactions, the degeneracy
of ground states can be removed and the TRS state can be
stable. This means that the presence of one or three repulsive
interband interactions in three-band superconductors does not
provide a necessary and sufficient condition for the occurrence
of a BTRS GS, contrary to some statements found in
the literature [31,42,43]. To gain deeper insight into the nature
of the interband frustration responsible for the appearance
of BTRS in three-band SCs, a rigorous and straightforward
mathematical approach is necessary (for details see the
calculations and results presented graphically in Figs. S1 and
S2 of the Supplemental Material [39]). Correspondingly, for
higher n-band frustrated superconductors one is confronted
with n(n − 1)/2 − 1 mutual phase differences, which can be
considered within the proposed geometrical interpretation.
However, in contrast to the three-band case the bilinear in-
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FIG. 2. Regions of existence of a BTRS ground state in terms
of the two phase variables for φ (a) and θ (b) of a three-band SC.
The BTRS ground states are realized in the narrow, tilted X-shaped
regions with inhomogeneous colors (θ,φ �= 0,π ) only, distinct from
the large homogeneous regions corresponding to TRS ground states.
The parameters are φ = φ1 − φ2 and θ = φ1 − φ3. For more details
see the Supplemental Material [39], Figs. S2 and S3.
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FIG. 3. Sketch of a tube made from a three-band superconductor
with a BTRS ground state in a parallel external magnetic field.

teraction between the superconducting band order parameters
is not enough for unambiguous determination of the phase
differences, and higher order terms have to be considered.

III. BTRS AND TRS SUPERCONDUCTORS
ON A CYLINDER AND IN MAGNETIC FIELD

In order to distinguish readily a three-band SC with a BTRS
ground state from those traditional SCs with a TRS ground
state, we propose to apply a magnetic flux to a (topologically)
doubly connected system. In particular, we consider a long and
thin tube approximated by two concentric cylinders with the
inner and outer radii R1 and R2, respectively (see Fig. 3).
Its symmetry axis is denoted as the z axis in cylindrical
coordinates (r,ϑ,z). An external constant magnetic field H

is thought to be applied along the symmetry axis of such a
cylinder: H = (0,0,H ), where the vector-potential gauge is
chosen as A = (0,Aϑ (r),0), Aϑ (r) = Hr

2 . We assume that the
radius of the tube R and the thickness d satisfy the following
conditions: R � λ,ξ and d 	 λ,ξ , where λ(T ) and ξ (T )
are the London penetration depth and the coherence length,
respectively. The first condition precludes the formation of
magnetic vortices or any domains in the cylinder, while due
the second one the self-induced magnetic fields are small
and can therefore be ignored in our calculations. This means
that we study only homogeneous solutions |ψi | = constant,
while the phase depends only on the polar angle ϑ . In the
considered geometry the phase must fulfill the quantization
condition

∮
�

∇φi = 2πni , where the integral is taken over
an arbitrary closed continuous contour � lying inside the
cylinder and n = 0,±1,±2 are the phase winding (topological)
numbers. Here we assume these winding numbers to be equal:
n1 = n2 = n3.

It is interesting to note that a similar experimental setup
was proposed with the aim to detect a fractional flux plateau
in the magnetization curve of a superconducting loop that
is topologically the same as the one considered here [44].
These authors investigate numerically metastable phase kinks
protected by a large energy barrier within a GL functional
adopting certain special parameter values. The excited states
with BTRS discussed in the following differ significantly from
those solitonic states.
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To illustrate the principle of identifying the BTRS for a
given three-band SC, we consider a simple case and assume
first that the equilibrium values of the order parameters are
given but without adopting thereby the equality for the moduli
of their interband interactions. Second, the strengths of the
interband interactions coincide but, for instance, at least one
of these interactions is repulsive. Since we are interested in a
three-band superconductor with initial BTRS state we control
the selection of parameters of interband interactions numeri-
cally in order to avoid a possible occurrence of nonfrustrated
ground states even for an odd number of repulsive interband
interactions (see Figs. S1–S8 of the Supplemental Material
[39]). Then we can write the GL free energy of the system in
the momentum space (see the Supplemental Material [39]),

�F

πR2L
=

∑
i

(
ai |ψi |2 + 1

2
bi |ψi |4 + κ̄i |ψi |2q2

)

− 2γ12|ψ1||ψ2| cos φ − 2γ13|ψ1||ψ3| cos θ

− 2γ23|ψ2||ψ3| cos (θ − φ), (6)

and the current density is

j =
∑

i

κ̄i |ψi |2q. (7)

Further we will use κi = κ̄i/κ̄1. The superfluid momentum
q depends on the winding number n and the magnetic flux
� as q = 1

R
(n − �/�0) with �0 = πh̄c/e being the flux

quantum. One sees that Eq. (6) can be obtained from the
corresponding equation in zero magnetic field by substituting
ai → ai + κiq

2; i.e., an increase of q acts in the same way as
an increase of temperature. With this remark we can apply the
considered above results for zero magnetic field.

To demonstrate the induced transition from a BTRS to a
TRS state by an external magnetic field we consider a particular
case of equal ai = a, bi = b, but keeping the κi different
and γ12 = γ23 = −γ13 = γ . At zero q a doubly degenerate
BTRS state with φ = 2π − θ = 5π/3 and φ = 2π − θ = π/3
is realized. With increase q first at qc, which is the solution
of the equation cos φc,θc = 1, we get transitions to TRS
states (see Supplemental Material [39]). In the TRS state the
minimization of the GL energy cannot be done analytically.
In this case a numerical procedure must be applied. The
dependence of the GL free energy Eq. (6) on the applied
magnetic flux for different ratios of κi is presented in Fig. 4. We
track the evolution with magnetic flux of one of the ground
states, namely for φ = 5π/3, θ = π/3. The full procedure
can be found in the Supplemental Material [39]. We find
that for a given value of γ̃ the ground state of a three-band
superconductor under consideration exhibits always a BTRS.
This means that despite the value of the trapped flux, by
increasing the flux we will move along the bottom part of
the solid curves (Fig. 4), following the route l0–l1–l2– · · · .
But for a nonadiabatic, fast switched on magnetic flux, the
three-band superconducting system can be excited and can
be flipped to a metastable state with TRS. For instance, the
previous ground state route l0–l1–l2–l3– · · · can be replaced
by the path l0–l1–l1′–l2′–l2–l3– · · · , where the dashed part
l1′–l2′ corresponds to the above-mentioned metastable state
with TRS of the three-band superconducting tube, or to a
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FIG. 4. Dependencies of the GL free energy on the applied
magnetic flux for a three-band superconductor with γ̃ = 1 for
attractive interband interactions between the first and the second,
the first and the third bands and a repulsive one between the second
and the third bands, and for κ2 = 4 and κ3 = 2 (a) and κ2 = 0.25 and
κ3 = 0.5 (b). Solid and dashed lines: GL free energies of a three-
band superconductor with BTRS and without one, respectively, for
different winding numbers n = 0 (brown), n = 1 (red), n = 2 (blue),
and n = 3 (green). The filled circle markers with captions determine
possible ways of evolution for the three-band superconducting long
tube setup shown in Fig. 2 in an external magnetic field (for
explanations, see text).

more complicated route, which will involve more excited
states with TRS. Also we found that if qc < 1/2 then the
transitions between BTRS and TRS states can occur without
any excitation by an external magnetic flux. This means
that solid (BTRS) and dashed (TRS) lines cross before
�/�0 = 1/2 (see the inset in Fig. 5). The phase diagram for a
three-band superconductor, which determines the intervals of
the parameters κi for the transitions from a BTRS to a TRS
state with an excitation and without one, is given in Fig. 5.

Further numerical examinations give that, if κi > 1 (i � 2),
a nonadiabatic switching on of the increase of the magnetic
flux can lead to a transformation of a three-band SC with a
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κ 3
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adiabatic
transitions from
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adiabatic
transitions from
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FIG. 5. Phase diagram of a three-band SC, where transitions from
BTRS to TRS can occur due to an excitation by an external magnetic
flux in the experimental setup shown in Fig. 2 and without any
excitation along an adiabatic path of changing the GS (pink region).
The inset shows the evolution of the GL free energy in dependence
on the applied magnetic flux for a three-band superconductor with
γ̃ = 1 for attractive interband interactions between the first and the
second bands, the first and the third bands and a repulsive one between
the second and the third bands, and for κ2 = 15 and κ3 = 1.5. Black
circles: Critical (final) points for BTRS states (solid lines).
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FIG. 6. Possible evolution of the phase differences φ (blue) and
θ (green) for a three-band superconductor with nonadiabatic [(a),
(b)] and adiabatic (c) transitions between BTRS and TRS states. The
parameters are κ2 = 4 and κ3 = 2 (a), κ2 = 0.25 and κ3 = 0.5 (b),
and κ2 = 15 and κ3 = 1.5 (c).

BTRS GS into an excited state with TRS and an s+++ order
parameter [see Figs. 6(a) and 6(c)], and then it relaxes again to
a BTRS GS. If one or both κi < 1 (i � 2), then the increasing
magnetic flux can transform a three-band SC with BTRS into
an s+± three-band SC and finally again to a BTRS state [see
Fig. 6(b)].

From the experimental point of view transitions from the
BTRS state to a TRS one and vice versa can be detected
following the response of the current density on an applied
magnetic flux (see Fig. 7). We found appropriate jumps in the
j (�/�0) dependencies [see Figs. 7(b), 7(d), and 7(e)] induced
by these transitions. Since in the present geometry changing
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FIG. 7. Current densities vs the applied magnetic flux in the setup
shown in Fig. 3 made employing a three-band SC with γ12 = 1,
γ23 = −1, γ13 = 1 (black line) and with γ12 = 1.1, γ23 = −1, γ13 =
1.2 (blue line), and for κ2 = 4 and κ3 = 2 [(a), (b)], κ2 = 0.25 and
κ3 = 0.5 [(c), (d)], and κ2 = 15 and κ3 = 1.5 (e). The curves (a) and
(c) correspond to a three-band SC without transitions between BTRS
and TRS states. The plots (b), (d), and (e) are for a three-band SC with
transitions between BTRS and TRS states with (b,d) and without (e)
excitation by an external magnetic field, respectively.

of the magnetic field is equivalent to changing temperature,
we expect also special features for the specific heat related
to these BTRS to TRS transitions. Hence accompanying
thermodynamic measurements might provide further support
for identification of the BTRS states.

IV. DISCUSSION AND CONCLUSIONS

Based on these analytical and numerical calculations it is
natural to suggest that such a behavior remains on a qualitative
level the same also for other possible sets of interband
interaction coefficients which admit the existence of frustrated
states in the equilibrium state [45] (see Supplemental Material
[39]) . In other words jumps in the current dependencies in the
magnetic-flux-driven regime can be expected for any three-
band superconductor with a primordial (before switching on a
magnetic field) BTRS state. Moreover with some restrictions
it is reasonable to expect the same behavior also for other
BTRS multiband superconductors, whose electronic structure
and physical properties are described by more than three
order parameters and where frustrated states are global ground
states. Restrictions of the application of such method are
connected with the special case of multiband superconductors
with an even number of bands and all equal repulsive interband
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interactions, where BTRS and TRS states have the same energy
[46–48]. We believe that the presence of such jumps can
be considered as an experimental proof for the detection of
BTRS and frustration in unconventional three- and higher
multiband superconductors. It is important to note that the
detection method proposed here compares favorably with
surface-sensitive techniques (interference or proximity based
contacts) for the detection of properties related to the symmetry
of the order parameter, because it probes the entire volume of
the superconductor under examination. Based on our results
we propose detecting the presence of frustration and BTRS in
experiments with mesoscopic thin rings or tubes made from
unconventional three-band superconductors, by measuring a
generic current response on the applied magnetic flux.

It should be noted that currently the exact location of
the soliton states on the energetic scale of a three-band
superconductor is not known. Knowledge of all possible
topological defects and their energies in the cases of three-
and other multiband superconductors is very important for the
detection of the BTRS phenomenon in order to distinguish the
jumps connected with the presence of BTRS to TRS transitions
and from the transitions from a BTRS ground state to excited
soliton states. If the energy of phase-inhomogeneous solutions
is higher than the homogeneous BTRS and TRS states then
during the excitation one can in principle observe additional
jumps on the current–magnetic flux dependencies due to relax-
ation processes from higher energetic levels (soliton states) to
the ground state via metastable TRS states. Another situation
is realized for solitons, whose energy is within the interval
between homogeneous BTRS and TRS states. In this case
during the excitation process a three-band superconductor can
be promoted to a homogeneous TRS state as an intermediate
state and then relax to the ground state via other intermediate
states of solitonic nature. So also in this case additional jumps
will also appear on the experimental dependencies. The last
possibility can occur if the BTRS state is not a globally stable
state and the ground state of a three-band superconductor
already contains solitons. The realization of such a scenario
was predicted recently for a three-band superconductor [4]
based on nonrigorous stability considerations of phase kinks

for an infinitely extended superconducting system. To the best
of our knowledge a study of topological defects in three-band
superconductors for a doubly connected finite superconducting
system as considered here is still lacking. And it is not clear
whether such solitons in a restricted geometry can also occur
as globally stable phenomena. We will study this interesting
but complex problem in more detail in the future. Another
important and interesting case is when a TRS state is the
ground state of a three-band superconductor. To understand
the character and possible novel features of the diamagnetic
response for possible TRS-BTRS transitions this problem
will be addressed within the time-dependent Ginzburg-Landau
theory in future studies. As a first step the investigation of
soliton metastable states that are important for a more realistic
description must be included. The calculations have been
performed and the corresponding manuscript is now under
preparation. Preliminary results show that soliton states are
thermodynamically metastable and are located at an energy
scale higher then the BTRS and even the TRS states. Also the
cases of imperfect three-band superconductors with impurities
as well as inhomogeneous states due to the presence of
solitonic nonlinear excitations mentioned above all require
a seperate special analysis outside of the scope of the present
paper and be left for future study.
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