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It is shown that in equilibrium superconducting structures with s-wave pairing, the unique part of

the phase of the complex ordering parameter hw"w#i transforms into the longitudinal component of

the vector potential as in the Abelian Higgs model of relativistic field theory. This analysis is based

on a microscopic Hamiltonian of the system in the presence of an external static magnetic field and

infinitely small Cooper pair sources. Impurities and nonsuperconducting barriers are assumed to be

present, and the quantum nature of the induced electromagnetic field is taken into account.

Quantization of the latter is done under the condition A0¼ 0 (A0 is the scalar potential) that the

invariance with respect to time-independent gauge transformations is not broken. Exact relations

determining the quasi-averages hw"w#i are established. These relations play a key role in the new

derivation of the mean-field equations discussed in this article. A new physical treatment of the

Josephson effect (without a “phase difference”) is proposed on the basis of these results and some

of its consequences are discussed. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4979958]

1. Introduction

The concept1–3 of “soft” generation of gauge fields by

spontaneous violation of local gauge symmetry (the Higgs

mechanism) is one of the cornerstones of modern particle

theory.4–6 Although the fundamental ideas1–3 have been

definitively confirmed only recently in high energy physics

(with the experimental discovery of the Higgs boson7,8), it is

well known4–6,9 that the Higgs mechanism is actually real-

ized at lower energies, in particular, in the phenomenon of

superconductivity.10–14 (According to the definition of Ref.

6, “a superconductor is simply a material in which electro-

magnetic gauge invariance is spontaneously broken.”)

As an example, the Meissner effect, in which an external

static magnetic field does not penetrate into the depth of a

bulk superconductor, is usually invoked.4–6,9 This can be

interpreted as the “acquisition of mass by a photon.” This is

not the only analogy with high energy physics. In particular,

there has recently been a report15 of the experimental detec-

tion of a low-energy analog of the Higgs boson in supercon-

ductors which had been predicted theoretically.16,17 (It

should, however, be kept in mind that in superconductors

there is no fundamental Higgs field, and spontaneous viola-

tion of electromagnetic symmetry takes place dynamically

through the formation of a Cooper pair condensate.12–14)

We want to bring attention to another analog which has

not been noticed before in the literature: the transformation

of the unique part of the phase of the complex superconduct-

ing ordering parameter (the “Goldstone” field of the model of

Ref. 1) into a longitudinal component of the static magnetic

field (the electromagnetic field in the model of Ref. 1). In

order make it easy to grasp the main point of this article, we

recall the key assumptions of the Abelian model,1 which are

of direct concern for the subject of our discussion.

The Lagrangian of the classical Higgs model of a com-

plex scalar field W ¼ W1 þ iW2 (charge q) interacting with

an electric field Al ¼ ðA0;�AÞ; is given by

LH ¼ LH W�;W;Al
� �

�
ð

d3r @l � iqAl rtð Þ
� �

;W� rtð Þ @l þ iqAl rtð Þ½ �W rtð Þ
�

�M2jW rtð Þj2 � jkjjW rtð Þj4 � 1

16p
Fl� rtð ÞFl� rtð Þ

�
; (1)

where M2 is a parameter (positive or negative) and Fl�

¼ @lA� � @�Al is the electromagnetic field tensor. (In this

section we use the metric and four-dimensional notation of

Landau18 but take �h ¼ c ¼ 1:Þ The Lagrangian (1) is invari-

ant with respect to the local gauge transformation

Al ! Al � @lv;

W! Weiqv; W� ! W�e�iqv; v ¼ vðrtÞ: (2)

When M2< 0, however, the ground state of the system

Al � 0; W0 ¼

ffiffiffiffiffiffiffiffiffiffi
�M2

2jkj

s
ei/0 ; /0 ¼ const 2 0; 2p½ Þ ; (3)

does not have this property. In order to understand the conse-

quence of violating the local gauge symmetry, it is conve-

nient to proceed to a polar representation of the field W.

Selecting a ground state (“vacuum”) from the condition

/0 ¼ 0; we write

WðrtÞ ¼ jW0j þ qðrtÞ½ �ei~/ðrtÞ; (4)

where ~/=q has the significant of the “Goldstone” field.

Substituting Eq. (4) in Eq. (1) and transforming to the uni-

tary gauge5,6
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Al ! Al �
1

q
@l

~/; (5)

make it possible to avoid the Goldstone field. Assuming that

the “physical” fields q and Al are small quantities and

expanding the Lagrangian (1) to terms of second order, we

find the corresponding equations of motion

@l@
lqþ m2

Hq ¼ 0; m2
H � 4jkjjW0j 2; (6)

@�F
�l ¼ m2

AAl; m2
A � 8pq2jW0j 2: (7)

Equation (6) describes the massive Higgs boson (mass

mH) and Eq. (7) represents the Proca equation for a massive

vector field (mass mA).5

Solving Eq. (7) for Al requires the additional condition

@lAl ¼ 0; (8)

which is known from classical electrodynamics as the

“Lorentz gauge.”18 The condition (8) makes it possible to

eliminate the scalar potential A0, which is not a dynamic var-

iable, from the discussion. Thus, for spontaneous breaking of

the local gauge symmetry, the vector field A, in addition to

the two independent transverse components (A?) of the free

field, acquires a longitudinal component ðAkÞ owing to the

phase W (the Goldstone phase ~/=q).

In the case of a time-independent field A ¼ AðrÞ, Eq.

(7) and the condition (8) convert to the following:

r�r� A ¼ –m2
AA; (9)

rA ¼ 0: (10)

Equation (9) is formally the same as the fundamental theory

of the phenomenological theory of London12,13 (with the

identification m2
A ! 1=k2

L, where kL is the London penetra-

tion depth). Under this condition (10), which denotes the

vanishing of the longitudinal component of the vector poten-

tial, the conservation law for the superconducting current

has a simple consequence, which has the form j ¼ �A=
ð4pk2

LÞ in the London theory.

Although Eq. (9) correctly reflects the existence of the

Meissner effect, on the whole the London theory does not

provide an adequate description of other aspects of the phys-

ics of superconductivity.

The more refined phenomenological Ginzburg-Landau

theory,19 which holds for temperatures T close to the

superconducting transition temperature Tc, begins with the

free energy functional FGL ¼ FGL½W�;W;A�, where the

complex field W has the significance of a superconducting

order parameter. The functional FGL can be obtained for-

mally from the Lagrangian (1) for the case of time-

independent fields ðW ¼ WðrÞ and A ¼ AðrÞÞ. Setting

q¼ 2e (e is the electron charge) and defining the new

constants

a � T � Tcð Þjaj ¼ M2

4m
; b ¼ jkj

8m2
;

where m is the “electron mass,” we obtain

FGL W�;W;A½ � ¼ �LH
W�

2
ffiffiffiffi
m
p ;

W
2
ffiffiffiffi
m
p ;A

� �
¼
ð
V

d3r
1

4m
jr � 2eAj2 þ ajWj2

�

þ b

2
jWj4 þ r� Að Þ2

8p

#
: (11)

For a given temperature T< Tc, the functional (11) is mini-

mized by the equilibrium values of the fields W ðjWj 6¼ 0Þ
and A, which satisfy the nonlinear Ginzburg-Landau equa-

tion and the Maxwell equation, respectively. Then the super-

conducting current is given by

j ¼ � ie

2m
W�rW�WrW�ð Þ � 2e2

m
jWj2A: (12)

As in the case of the Higgs model (1), in Eqs. (11) and

(12) it is convenient to proceed to the polar representation

WðrÞ ¼ jWðrÞjei/ðrÞ. In a singly-coupled superconducting

phase / ¼ /ðrÞ, there is a unique function of coordinates

(/ ¼~/), so it can be avoided by using the static analogy of

the unitary gauge (5)

A! A� 1

2e
r~/: (13)

Now, however, as opposed to the London model (9), the cur-

rent conservation law rj ¼ 0 does not assume that part of

the vector potential vanishes, since jWðrÞj depends on the

coordinates. In other words, a transformation � 1
2er~/ ! Ak

must take place.

It should be said that the nonphysicality of the single-

valued part of the phase of the order parameter in the

Ginzburg-Landau theory was noted long ago.20 But the fun-

damental question was left unanswered: where did the vari-

able ~/ “disappear” to after the gauge transformation (13)?

Our arguments (by analogy with the model of Ref. 1) require

a strict foundation in terms of a rigorous microscopic theory,

given the dynamic character of the breaking of electromag-

netic symmetry. We strongly emphasize that the validity of

using the transformation (13) can only be proved by taking

into account the quantum nature of the electromagnetic field

induced in a superconductor, since the procedure for quantiz-

ing that field depends substantially on the choice of gauge

condition. In addition, the phenomenological Ginzburg-

Landau theory is not capable of describing the most interest-

ing (in terms of the subject of our article) case of supercon-

ducting structures with a Josephson coupling14,21 and is

clearly not applicable for temperatures T � Tc. The micro-

scopic theory developed in the following sections is free of

these shortcomings.

2. Initial microscopic model

The starting point for our discussion is the microscopic

Hamiltonian in the Heisenberg representation (see the con-

clusion to Appendix A)

H ¼H e þH b þH imp þH BCS þH em; (14)
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H e ¼
ð
V

d3r
1

2m

X
a

rþ ieA rtð Þ þ ieAe rð Þ
� �

wþa rtð Þ
"

� r� ieA rtð Þ � ieAe rð Þ
� �

wa rtð Þ;

H b ¼
ð
V

d3r
X
a;b

wþa rtð Þ Û
b

� �
ab rð Þwb rtð Þ;

H imp ¼
ð
V

d3r
X
a;b

wþa rtð Þ Û
imp

� �
ab rð Þwb rtð Þ;

H BCS ¼ �
1

2

ð
V

d3rjg rð Þj
X

a

wþa rtð Þwþ–a rtð Þw–a rtð Þwa rtð Þ;

H em ¼
1

8p

ð
d3r E2 rtð Þ þ r � Að Þ2 rtð Þ
h i

E rtð Þ ¼ � @

@t
A rtð Þ; r� A rtð Þ ¼ H rtð Þ: (15)

Here H 0 is the Hamiltonian of a system of noninteracting

electrons in an external magnetic field He

r� Ae ¼ He; rAe ¼ 0; (16)

where e and m are the charge and mass of the electron and V
is the volume of the superconducting structure. The field

operators for creation (wþa ) and annihilation (wa) of electrons

with spin a ¼"; # obey the usual anticommutation relations

waðrtÞ;wþb ðr0tÞ
h i

þ
¼ dabd

3ðr� r0Þ;

waðrtÞ;wbðr0tÞ
� �

þ ¼ wþa ðrtÞ;wþb ðr0tÞ
h i

þ
¼ 0;

where ½A;B�þ ¼ ABþ BA, and dab is the Kronecker symbol.

The contributions H b and H imp describe the possible

presence of nonsuperconducting layers (barriers)22 and

frozen-in impurities,23 respectively. If the corresponding

potentials Û
b

and Û
imp

are non-exchange potentials, their

dependence on the spin indices reduces to dab. This assumes

that the matrix elements ½Ûb�ab ¼ Ub
abðrÞ and ½Û imp�ab

¼ Uimp
abðrÞ are smooth functions of the coordinates; see the

example in Fig. 1.

The term H BCS describes the effective electron-electron

attraction leading to pairing.11,14 The interaction parameter

g ¼ gðrÞ; is a smooth function of position, is negative in the

superconducting layers, and equals zero in the nonsupercon-

ducting barriers (see Fig. 2).

The induced electric field A¼A(rt) corresponds to the

Hamiltonian H em. According to the explanation in the

Introduction, the field A must be regarded as quantized. As

the form of H em implies, when A is quantized we assume

a gauge A0¼ 0, the use of which requires an explanation.

In fact, in nonrelativistic solid-state physics problems, a

transverse (Coulomb) gauge rA ¼ 0; is more customary.25

A transverse gauge, however, completely breaks the

invariance with respect to local gauge transformations, so

is entirely unsuitable for the purposes of this article. On

the other hand, the gauge A0¼ 0 leaves the Hamiltonian

invariant with respect to the time-independent local gauge

transformations

AðrtÞ ! AðrtÞ þ rvðrÞ;
waðrtÞ ! eievðrÞwaðrtÞ; wþa ðrtÞ ! wþa ðrtÞe�ievðrÞ: (17)

In addition, despite claims in the literature,26 the gauge

A0¼ 0 does not by any means lead to “loss” of Gauss’ law

(see our explanation in Appendix B).

In the gauge A0¼ 0, the commutation relations for the

electromagnetic field operators have the following form:

@Ai

@t
rtð Þ;Aj r0tð Þ

� �
¼ �i4pdijd r� r0ð Þ;

Ai rtð Þ;Aj r0tð Þ
h i

¼ @Ai

@t
rtð Þ; @Aj

@t
r0tð Þ

� �
¼ 0; i; j ¼ x; y; z:

(18)

Naturally, it is assumed that the electromagnetic field opera-

tors commute with the electron operators wa and wþa . If the

induced electromagnetic field falls off fast enough toward

spatial infinity, the following expansion holds for the opera-

tor A:27

A ¼ A? þ Ak; (19)

where

rA? ¼ 0; rAk ¼ 0;

ð
d3rA? rtð ÞAk rtð Þ ¼ 0;

A? rtð Þ ¼ 1

4p
rr �

ð
d3r0
r � A r0tð Þ
jr� r0j ;

Ak rtð Þ ¼ � 1

4p
rr

ð
d3r0
rA r0tð Þ
jr� r0j :

Given the commutativity of the transverse (?) and lon-

gitudinal (k) components of the operators, the commutation

relations (18) imply that

Fig. 1. Spatial dependence of the matrix element ½Ûb�ab. Here the nonsuper-

conducting barrier is assumed to be homogeneous along the y and z axes and

kF is the Fermi length ðkF � 1=PFÞ. (See Ref. 24 for a method for analyti-

cally constructing functions of the type Ub
ab ¼ Ub

abðxÞ.)

Fig. 2. Spatial dependence of the electron-electron interaction parameter

(ðg 	 0Þ) and the auxiliary function geðge!0 ! gÞ; used in Section 5.
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@A?i

@t
rtð Þ;A?j r0tð Þ

� �
¼ i4pdijd r� r0ð Þ þ i

@

@ri

@

@r0j

1

jr� r0j ;

A?i rtð Þ;A?j r0tð Þ
h i

¼ @A?i

@t
rð Þ; @A?j

@t
r0ð Þ

� �
¼ 0;

@Aki
@t

rtð Þ;Akj r0tð Þ
� �

¼ �i
@

@ri

@

@r0j

1

jr� r0j ;

Aki rtð Þ;Akj r0tð Þ
h i

¼
@Aki
@t

rtð Þ;
@Akj
@t

r0tð Þ
� �

¼ 0;

Aki rtð Þ;A?j r0tð Þ
h i

¼
@Aki
@t

rtð Þ; @A?j

@t
r0tð Þ

� �
¼ @Aki

@t
rtð Þ;A?j r0tð Þ

� �
i; j ¼ x; y; z:

(20)

Since the Hamiltonian H contains equal numbers of elec-

tron creation and annihilation operators, there is an obvious

integral of motion—the total number N of electrons, with

N ;H
� �

¼ 0; N ¼
ð
V

d3rneðrtÞ;

neðrtÞ ¼
X

a

wþa ðrtÞwaðrtÞ; (21)

where neðrtÞ is the number density of the electrons. The

operator N generates the global gauge transformations

U0 ¼ U0ðv0Þ � e�iev0N ; v0 ¼ const :

U0ðv0ÞwaðrtÞU�1
0 ðv0Þ ¼ e�iev0waðrtÞ;

U0ðv0Þwþa ðrtÞU�1
0 ðv0Þ ¼ e�iev0wþa ðrtÞ;

U0ðv0ÞAðrtÞU�1
0 ðv0Þ ¼ AðrtÞ; (22)

which leave H invariant. Using the equation of motion for

the operators in the Heisenberg representation, we obtain the

law of charge conservation

e@ne rtð Þ
@t

þrj rtð Þ ¼ 0; (23)

where

j ¼ j rtð Þ �
X

a

ie

2m
wþa rtð Þrwa rtð Þ � rwþa rtð Þ

� �
wa rtð Þ

� ��
� e2

m
A rtð ÞAe rð Þ
� �

wþa rtð Þwa rtð Þ�; (24)

is the current operator and the Maxwell equations are

r�H ¼ 4pjþ @E

@t
; (25)

r� E ¼ � @H

@t
: (26)

The conservation law (23) and the Maxwell equation

(25) yield

H ;rE� 4pene

� �
¼ 0: (27)

This condition, along with the condition

N ;rE� 4pene½ � ¼ 0; (28)

guarantees the presence of a common system of eigenvectors

for the operators H , N , and rE� 4pene. For the physi-

cally realizable states, we have

N jN;Ek;N;nii ¼NjN;Ek;N;nii;
H jN;Ek;N;nii ¼ Ek;NjN;Ek;N ;nii;
ðrE� 4peneÞjN;Ek;N;nii ¼ �4penijN;Ek;N;nii; ni ¼ niðrÞ:

(29)

The third of Eq. (29) (the coupling equation) represents

Gauss’ law, where ni is a specified density of the distribution

of ionic charge. The dynamic invariant rE� 4pene gener-

ates the local gauge transformation (17) with a c-number

function v ¼ vðrÞ

U1 ¼ U1 v½ � ¼ UA v½ �Uw v½ � ¼ Uw v½ �UA v½ �;

UA v½ � � exp
i

4p

ð
d3rv rð ÞrE rtð Þ

� �
;

Uw v½ � � exp �ie

ð
V

d3rev rð Þne rtð Þ
" #

:

U1 v½ �A rtð ÞU�1
1 v½ � ¼ A rtð Þ þ rv rð Þ;

U1 v½ �wa rtð ÞU�1
1 v½ � ¼ e�iev rð Þwa rtð Þ;

U1 v½ �wþa rtð ÞU�1
1 v½ � ¼ e�iev rð Þwþa rtð Þ; (30)

where the function v ¼ vðrÞ is specified over all space and is

of class C2 (continuous, with all partial derivatives up to the

second order, inclusive) and falls off as jrj ! 1. The math-

ematical conditions formulated here ensure uniqueness of

the function v ¼ vðrÞ, which can be written as the condition

1

2p

þ
C

rv 
 d1ð Þ ¼ 0; (31)

for an arbitrary closed contour C.

If the system is in the normal state (T>Tc), in order to

obtain the full set of equations for the observed quantities we

shall take the average ðh:::iÞ over the grand canonical

ensemble

h:::i � Tr :::qð Þ; q ¼ 1

Z
e�

H �lN
T ;

Z ¼ Tr exp �H � lN
T

� �
¼
X
k;N

exp �Ek;N � lN

T

� �
;

(32)

where l is the chemical potential, Tr is the trace in the effec-

tive space for all the operators, and Z is the grand statistical

sum. Using the identity for operators in the Heisenberg

representation

i
dO

dt

	 

¼ h O;H
� �

i ¼ Tr H ; q 0ð Þ

h i
O

� �
¼ 0;

we quickly find

r� hHi ¼ 4p
c
hji; r� hHi ¼ 0; r� hji ¼ 0;

r� hEi ¼ 0; hEi ¼ 0; (33)

where hHi ¼ hHðrÞi and hji ¼ hjðrÞi. For consistency of

this last equation with Gauss’ law
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rhEi � 4pehnei ¼ �4peni; (34)

it is necessary to satisfy the condition of electrical neutrality

hnei ¼ ni: (35)

Another useful equation for the following is:

hji � Tr jqð Þ ¼ �Tr
dH e

dAe
q

 !
¼ T

Z

dZ

dAe
¼ � dX

dAe
; (36)

where X ¼ �T ln Z is the thermodynamic potential

(X ¼ XðT;P; l; HeÞ).

Since in the normal state, Ohm’s law hji ¼ rhEi must

be satisfied, we also have hHi ¼ 0. Thus, by using the gauge

transformation (30) it is always possible to satisfy the condi-

tion hAi ¼ 0:
It is well known that the superconducting state (T<Tc)

is characterized by the appearance of an anomalous mean

hw#w"i (hw#w"i
� ¼ hwþ" wþ# i) (of the superconducting order

parameter). Recall28 that the anomalous mean cannot always

be calculated by averaging over the grand canonical ensem-

ble q. In fact, because of the invariance of the Hamiltonian

H with respect to the gauge transformations (22) and (30)

with arbitrary v0 and v, we have

Tr w#ðrÞw"ðrÞq
� �

¼ Tr U0ðv0Þw#ðrÞw"ðrÞU�1
0 ðv0ÞU0ðv0ÞqU�1

0 ðv0Þ
h i

¼ Tr U0ðv0Þw#ðrÞw"ðrÞU�1
0 ðv0Þq

h i
¼ expði2ev0ÞTr w#ðrÞw"ðrÞq

� �
¼ 0;

Tr w#ðrÞw"ðrÞq
� �

¼ Tr U1 v½ �w#ðrÞw"ðrÞU�1
1 v½ �U1 v½ �qU�1

1 v½ �
h i

¼ Tr U1 v½ �w#ðrÞw"ðrÞU�1
1 v½ �q

h i
¼ expði2evðrÞÞTr w#ðrÞw"ðrÞq

� �
¼ 0: (37)

As Bogolyubov explained,28 for a correct determination

of similar anomalous averages (or quasiaverages in the ter-

minology of Ref. 28), it is necessary to break the correspond-

ing continuum symmetry by introducing infinitely small

“sources” in the Hamiltonian. This approach was later

greatly generalized to quantum field theory and was widely

used in studies of various mechanisms for and types of spon-

taneous symmetry breaking.6 (We note that in the theory of

ferromagnetism, the “sources” have a real physical sense of

an infinitely small external magnetic field.29)

3. Hamiltonian with Cooper pair sources in the quasi-average

Since the founding paper28 only dealt with the case of a

structurally uniform superconductor without electromagnetic

interactions, the use of the Hamiltonian (14) requires a gen-

eralization of the definition of quasi-average, i.e.,

hw# rð Þw" rð Þi ¼ hwþ" rð Þwþ# rð Þi� � lim
kgk!0

hw# rð Þw" rð Þig;

h:::ig � Tr :::qg At½ �

 �

; qg At½ � ¼
1

Zg
exp �H g At½ � � lN

T

� �
; Zg ¼ Tr exp �H g At½ � � lN

T

� �
;

H g At½ � ¼H At½ � þ
1

2

ð
V

d3r g rð Þwþ" rð Þwþ# rð Þ þ g� rð Þw# rð Þw" rð Þ
h i

; At � Aþ Ae;

H g;N
� �

6¼ 0; H g;rE–4pene

� �
6¼ 0; (38)

where the “source” of Cooper pairs g ¼ gðrÞ is a smooth

complex function of position and kgk ¼ minr2V jgðrÞj. Note

that the limiting transition kgk ! 0 in Eq. (38) is completed

on going to the thermodynamic limit.

In addition, in determining the quantum statistical opera-

tor qg, for convenience in the following we explicitly indicate

the functional dependence on the operator of the full vector

potential At � Aþ Ae. This operator appears in the defini-

tion of H e (see Eq. (15)). Only this term, the original

Hamiltonian H , is subjected to a local gauge transformation.

The definition (38) can be assigned a somewhat different

form if the field operators wa are expanded in terms of

complete system of normalized eigenfunctions of the opera-

tor H e þH b þH imp (on initially setting A¼ 0)

waðrÞ ¼
X

n

cnaunðrÞ; (39)

where cna is the electron annihilation operator in state na.

We have

hw#ðrÞw"ðrÞi ¼
X
n;n0

unðrÞun0 ðrÞhcn#cn0"i

� lim
kgk!0

X
n;n0

unðrÞun0 ðrÞhcn#cn0"ig: (40)
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This clarifies our requirement of smooth potentials in the

definition of the operators H b and H imp: in a polar repre-

sentation for the quasi-average

hw#ðrÞw"ðrÞi ¼ jhw#ðrÞw"ðrÞijei/ðrÞ; (41)

it ensures that the phases / ¼ /ðrÞ belong to class C2.

Although the complex function g¼gðrÞ in the standard

sense is arbitrary (see Section 3), it cannot violate any sym-

metries of the Hamiltonian, except the gauge symmetries.

For example, if H b ¼H imp ¼ 0, gðrÞ ¼ const, and A ¼ Ae

¼ 0, the electron momentum k will be a “good” quantum

number and the “Cooper pair source” is equal to the complex

constant g ¼ jgjei/0 , where jgj and /0 are independent of

position. Thus,

hw#ðrÞw"ðrÞi ¼ hw#ð0Þw"ð0Þi ¼ lim
jgj!0

X
k

hck#c�k"ig:

Since the quasi-average hw#w"i is given by the limiting

value of the mean hw#w"ig, it is useful to begin by studying

the properties of the latter. First of all, we establish the trans-

formation laws for hw#w"ig under the unitary transformations

qg ! U0qgU�1
0 and qg ! UwqgU�1

w (see the definitions (22)

and (30))

hw#ðrÞw"ðrÞig ¼ Tr w"ðrÞw#ðrÞqg At½ �
� �

¼ Tr U0ðv0Þw"ðrÞw#ðrÞU�1
0 ðv0ÞU0ðv0Þqg At½ �U�1

0 ðv0Þ
h i

¼ Tr U0ðv0Þw"ðrÞw#ðrÞU�1
0 ðv0Þqg expð�i2ev0Þ At½ �

h i
¼ expði2ev0ÞTr w"ðrÞw#ðrÞqg expð�i2ev0Þ At½ �

� �
;

hw#ðrÞw"ðrÞig ¼ Tr UwðvÞw"ðrÞw#ðrÞU�1
w v½ �UwðvÞqg At½ �U�1

w ðv1Þ
h i

¼ Tr UwðvÞw"ðrÞw#ðrÞU�1
w v½ �qg expð�i2ev0Þ At �rv½ �

h i
¼ expði2evðrÞÞTr w"ðrÞw#ðrÞqg expð�i2ev0Þ At �rv½ �

� �
:

(42)

We write the source in a polar representation: g ¼ jgjeih,

where jgj¼gðrÞ and h¼hðrÞ. Using the analog of Eq. (41) for

hw#w"ig and Eq. (42), it is easy to establish the following

fundamental equality: /ðrÞ¼hðrÞ. Therefore, the phase

hw#w"ig is fully determined by the phase g of the source.

This quickly yields the important physical result.

We define the “thermodynamic potential in the presence

of sources,”

Xg � �T ln Zg; (43)

and calculate the variational derivative

dXg

d/ rð Þ ¼
ð
V

d3r0hwþ" r0ð Þwþ# r0ð Þig
dg r0ð Þ
d/ r0ð Þ

þ
ð
V

d3r0hw# r0ð Þw" r0ð Þig
dg� r0ð Þ
d/ rð Þ ¼ 0:

On the other hand, Eq. (42) implies that

Xg g; g�;Ae½ � ¼ Xjgj jgj;Ae �
1

2e
r/

� �
: (44)

Using the analog of Eq. (36), we find

dXg

d/
¼ � 1

2e
r

dXjgj
dAe

¼ 1

2e
rhjig ¼ 0: (45)

Equation (45), which is a conservation law for a current in

the presence of sources, is a consequence of two facts: the

equality h¼ /, and the entry of / in the functional argument

Xjgj in the form r/ (the absence of a functional dependence

on the zero Fourier component /0 ¼ 1
V

Ð
V d3r/ rð Þ). The

existence of the conservation law (45) is an indicator of the

internal self-consistency of our theory.

Based on the definition (38), we have

dXjgj
djg rð Þj ¼ jhw# rð Þw" rð Þigj: (46)

Taking the functional Legendre transform, we proceed

from the potential Xjgj ¼ Xjgj jgj;Ae � 1
2er/

� �
to the

“effective potential” X ¼ X jhw#w"igj;Ae � 1
2er/

h i
(com-

pare this with the definition of “effective action” in quantum

field theory:4,6,26

X jhw#w"igj;Ae �
1

2e
r/

� �
¼ Xjgj jgj;Ae �

1

2e
r/

� �
�
ð
V

d3rjhw# rð Þw" rð Þigjj g rð Þð Þj:

(47)

In light of the general properties of Legendre transforms,30

variation of Eq. (47) gives

dX
djhw# rð Þw" rð Þigj

¼ �j g rð Þð Þj: (48)

Given the definition (38), in the absence of sources

(kgk ! 0), we obtain

dX
djhw#w"igj

����
jhw#w"igj¼jhw#w"ij

¼ 0: (49)

In other words, the quasi-average jhw#w"ij satisfies the con-

dition of time independence for the effective potential X.
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If the functional dependence X ¼ X jhw#w"igj;
�

Ae

� 1
2er/� were known exactly, we could find jhw#w"ij from

the condition of time independence (49). Substituting

jhw#w"ij in the effective potential would give the directly

measured thermodynamic potential of the superconducting

structure. Although a determination of the exact functional

dependence X ¼ X jhw#w"ij;Ae � 1
2er/

h i
is impossible in

principle, the problem does allow a simple solution in the

mean field approximation (see Section 5).

4. The “disappearance” of the unique part of the phase of the
quasi-average (the Higgs mechanism)

As should be clear from the previous remarks, the zero

component of the phase /0 of the average hw#w"ig can be

set equal to zero without loss of generality. (In the model of

Eq. (1) this evidently corresponds to a certain choice of

“vacuum” (3).) We now represent the phase / ¼ /ðrÞ of the

average hw#w"ig in the form / ¼~/ þ /s, where ~/ ¼ ~/ðrÞ is

a unique function satisfying

1

2p

þ
C

r~/:dl

 �

¼ 0; (50)

for an arbitrary closed contour C 2 V, while /s ¼ /sðrÞ is a

nonunique function which, on some closed contours Cn 2 V,

satisfies the condition

1

2p

þ
Cn

r/s:dlð Þ ¼ n; n ¼ 61;62; :::: (51)

(Recall12,13 that contours of type Cn exist in supercon-

ducting structures with a multiply connected geometry

and even in single-connected structures in the presence of

Abrikosov vortices.) We emphasize that the choice of

function ~/ ¼ ~/ðrÞ is still arbitrary: this arbitrariness

reflects the invariance of the original Hamiltonian H
with respect to a local gauge transformation U1. On the

other hand, the function /s ¼ /sðrÞ should be considered

given.

Consider the chain of equalities

jhw# rð Þw" rð Þi
g
j ¼ exp �i/ rð Þð ÞTr w" rð Þw# rð Þqg At½ �

� �
¼ exp �i/ rð Þð ÞTr Uw

/
2e

� �
w" rð Þw# rð ÞU�1

w

�
� /

2e

� �
Uw

/
2e

� �
qg At½ �U�1

w
/
2e

� ��
¼ exp �i/ rð Þð ÞTr Uw

/
2e

� �
w" rð Þw# rð Þ

�
� U�1

w
/
2e

� �
qjgj At �

1

2e
r/

� ��
¼ Tr w" rð Þw# rð Þqjgj At �

1

2e
r/

� �� �
: (52)

Let us define a function ak � akðrÞ specified over the

entire space which falls off as jrj ! 1 and coincides with /
for r 2 V. Continuing the transformation (52)

jhw# rð Þw" rð Þigj

¼ Tr w" rð Þw# rð Þqjgj At �
1

2e
r/

� �� �
¼ Tr w" rð Þw# rð ÞUA

ak
2e

� �
qjgj At �

1

2e
r/

� �
U�1

A

ak
2e

� �" #

¼ Tr w" rð Þw# rð Þqjgj At �
1

2e
r/s

� �� �
: (53)

We now explain these calculations. In the first step,

using the unitary transformation Uw under the Tr sign (Eq.

(52)) made it possible for us to avoid the phase / of the

source g in the average hw#w"ig. However, in the

Hamiltonian H e, the operator At is replaced by the combi-

nation At � 1
2er/ (see the definitions (14) and (38)). In the

second stage, we have used the unitary transformation UA as

a result, in the Hamiltonian H 0 instead of the combination

At � 1
2er/ only the combination At � 1

2er/s remains with a

nonunique (physical) part of the phase.

In order to understand where the unique part of the

phase / from the last row of Eq. (53) has “gone,” we exam-

ine the quantityehAðrÞijgj, defined as the average over the

quantum statistical ensemble qjgj At � 1
2er/

� �
(see the last

row of Eq. (52)). We have

ehA rð Þijgj � Tr A rð Þqjgj At �
1

2e
r/

� �� �
¼ Tr UA

ak
2e

� �
A rð ÞU�1

A

ak
2e

� �
UA

ak
2e

� �
qjgj

�
� At �

1

2e
r/

� �
U�1

A

ak
2e

� ��
¼ Tr UA

ak
2e

� �
A rð ÞU�1

A

ak
2e

� �
qjgj At �

1

2e
r/s

� �" #

¼ Tr A rð Þqjgj At �
1

2e
r/s

� �� �
þ 1

2e
rak

� hA rð Þijgj þ
1

2e
rak: (54)

On the other hand, we have still not used the gauge free-

dom remaining in the choice of ~/ ¼ ~/ðrÞ. Given the repre-

sentation (19), we writeehA rð Þijgj ¼ehA rð Þijgj þehA rð Þijgj

� Tr A? rð Þqjgj At �
1

2e
r/

� �� �
þ Tr Ak rð Þqjgj At �

1

2e
r/

� �� �
¼ Tr UA

ak
2e

� �
A? rð ÞU�1

A

ak
2e

� �
qjgj At �

1

2e
r/s

� �" #

þ Tr UA

~~v
2e

� �
Ak rð ÞU�1

A

~~v
2e

� �
UA

~~v
2e

� �
qjgj

�
� At �

1

2e
r/

� �
U�1

A

~~v
2e

� �#

¼ hA? rð Þijgj þ Tr Ak rð Þqjgj At �
1

2e
r /�~~v

 �� �� �

þ 1

2e
r~~v �ehA rð Þijgj þ

eeehAk rð Þi jgj þ
1

2e
r~~v ; (55)
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where the invariance UAA?U�1
A ¼ A? is used. SinceeeehAk rð Þi jgj can be written in as the gradient of a scalar, it is

always possible to choose ~~v ¼ ~~vðrÞ so that the equalityeeehAk rð Þi jgj þ
1
2er~~v ¼ 0: is satisfied in the last row of Eq.

(55). (This choice of ~~v means complete elimination of the

remaining gauge freedom.)

This result should be compared with the result of the last

row of Eq. (54), which is valid for an arbitrary choice of ~/.

From this, we find

hA rð Þijgj ¼ hA? rð Þijgj �
1

2e
rak;

or, on taking the limit kgk ! 0;

hA rð Þi ¼ hA? rð Þi � 1

2e
rak � hA? rð Þi þ hAk rð Þi: (56)

Equation (56) is the major result of our analysis. It

means that the unique part of the phase of the superconduct-

ing order parameter is “exchanged” for the longitudinal com-

ponent of the vector potential induced over the entire space,

in complete analogy with what happens in the Higgs’

Abelian model (1).

We now elaborate on the significance of the average in

Eq. (56). According to the definitions given above

hA rð Þi¼ lim
kgk!0

Tr A rð Þqjgj At�
1

2e
r/s

� �� �

qjgj At�
1

2e
r/s

� �
¼ 1

Zjgj
exp

H kgk At�
1

2e
r/s

� �
�lN

T

0@ 1A
;

Zjgj ¼exp

H kgk At�
1

2e
r/s

� �
�lN

T

0@ 1A
;

H jgj At�
1

2e
r/s

� �
¼H At�

1

2e
r/s

� �
þ1

2

ð
V

d3rjg rð Þj

� wþ" rð Þwþ# rð Þþw# rð Þw" rð Þ
h i

;

H At�
1

2e
r/s

� �
¼H e At�

1

2e
r/s

� �
þH bþH imp

þH BCSþH em: (57)

Given the invariance of A with respect to the global gauge

transformation (U0AU�1
0 ¼ A) in Eq. (57), we can switch

the operations lim and Tr. As a result, we obtain

hA rð Þi ¼ Tr lim
kgk!0

A rð Þqjgj At �
1

2e
r/s

� �� �
¼ Tr A rð Þq At �

1

2e
r/s

� �� �

q At �
1

2e
r/s

� �
¼ 1

Z
exp �

H At �
1

2e
r/s

� �
� lN

T

0@ 1A
;

Z ¼ Tr exp �
H At �

1

2e
r/s

� �
� lN

T

0@ 1A
;

(58)

where the Hamiltonian H At � 1
2er/s

� �
is defined by the

last row of Eq. (57).

It is perfectly obvious that averaging of the remaining

electrodynamic operators (ne, j, H, and E) for T< Tc also

reduces to averaging over the grand canonical ensemble

q At � 1
2er/s

� �
. Thus, Eqs. (33)–(35) remain valid. In partic-

ular, despite a contrary claim in the literature,31 the strict

equality hEi ¼ 0 uniquely implies the absence of any kind

of static electric potentials in equilibrium superconducting

systems.

5. The mean-field approximation

As usual,10–14 the closed system of equations of the the-

ory of superconductivity can be obtained only in the mean-

field approximation. The exact results of Sections 3 and 4

can be used to derive these equations in a strict and consis-

tent manner. We begin with the mean-field approximation

for the quantities H jgj ¼H jgj At � 1
2er/s

� �
and Xjgj ¼ Xjgj

At � 1
2er/s

� �
.

Given that the quantum fluctuations in the induced vec-

tor potential A are small on the scale of a small ratio vF

c (vF is

the Fermi velocity and c is the speed of light), in the term

H e At � 1
2er/s

� �
of the Hamiltonian H jgj At � 1

2er/s

� �
we

make the replacement

H e !H MF
e : Aþ Ae ! hAi � hAi? þ hAik; (59)

where the averages h:::i are defined by Eq. (56). Since the

vector potential of the external field Ae satisfies the conti-

nuity condition rAe ¼ 0, here and in the following we

consider it to be included in the definition of hAi?. We

omit the energy H em of the electromagnetic field. (Here

we assume, of course, that Maxwell’s equation (33) are

satisfied.)

In the term H BCS we first replace the real electron-

electron interaction parameter g ¼ gðrÞ by the auxiliary

function ge ¼ geðrÞ (see Fig. 2) and the limiting transition

e! þ0 will be taken in the equations for the mean field.

Then we consider the elementary identity

wþ" w
þ
# þw#w" ¼ ðwþ" wþ# � jhw#w"igjÞðw#w" � jhw#w"igjÞ

þðwþ" wþ# þ w#w"Þjhw#w"igj � jhw#w"igj
2:

(60)

Given that the first term on the right of Eq. (60) is “small” in

a certain sense, we arrive at a quadratic (in terms of the elec-

tron creation and annihilation operators) approximation for

H BCS

H BCS !H MF
BCS ¼

ð
V

d3rjgeðrÞj jhw#ðrÞw"ðrÞigj
MF

h i2

�
ð
V

d3rjgeðrÞjjhw#ðrÞw"ðrÞigj
MF

� wþ" ðrtÞwþ# ðrtÞþw#ðrtÞw"ðrtÞ
h i

: (61)

In order to determine the average jhw#w"igj
MF

, we

require Eqs. (46)–(49) in the mean-field approximation. We

introduce the definitions
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XMF
jgj ¼�T lnZMF

jgj ; ZMF
jgj ¼Trexp

�H MF
jgj �lN

T

 !
: (62)

Equations (46)–(49) will be retained if the potential XMF
jgj is

independent of jhw#w"igj
MF

, i.e.,

dXMF
jgj

djhw# rð Þw" rð Þigj
MF ¼ 0: (63)

From here, we arrive at the self-consistency condition

jhw# rð Þw" rð Þigj
MF

¼ 1

2ZMF
jgj
��
e¼0

Tr wþ" rð Þwþ# rð Þþw# rð Þw" rð Þ
h i24

� exp �
H MF
jgj je¼0 � lN

T

 !35; (64)

where we have taken the limit e! þ0: on the right hand

side of Eq. (64). (The role of the auxiliary function g2 is

clear from the above derivation of the self-consistency con-

dition: this function is necessary in order to be able to take

the variational derivative (63) over the entire region V,

including the nonsuperconducting barriers.)

The above discussion leads to the equality

XMF jhw#w"ij
MF; hAi � 1

2e
r/s

� �
¼ XMF

jgj¼0 jhw#w"ij
MF; hAi � 1

2e
r/s

� �
¼ XMF

jgj¼0 hAi �
1

2e
r/s

� �
;

XMF
jgj¼0 ¼ �T ln ZMF;

ZMF � ZMF
jgj¼0 ¼ Tr exp �

H MF
jgj

���
e¼0
� lN

T

 !
; (65)

where jhw#w"igj
MF � jhw#w"ij

MF
satisfies the self-consistency

condition in the absence of sources (kgk ! 0), with

jhw# rð Þw" rð ÞijMF

¼ 1

2ZMFje¼0

Tr wþ" rð Þwþ# rð Þþw# rð Þw" rð Þ
h i24

� exp �
H MF
jgj je¼0 � lN

T

 !35: (66)

Before taking the trace with respect to the electron fields

in Eqs. (65) and (66), a slight generalization of these results is

appropriate. To do this, we introduce a real, continuous, and

non-negative function j ~Fj ¼ j ~FjðrÞ, where r 2 V. Without tak-

ing the limit e!þ0 and rejecting the self-consistency condi-

tion (66), we now determine the nonequilibrium effective

potential X ¼ X j ~Fj; hAi � 1
2er/s

h i
using the formula

X j ~Fj; hAi � 1

2e
r/s

� �
¼ XMF

jgj¼0 j ~Fj; hAi �
1

2e
r/s

� �
: (67)

In a state of thermodynamic equilibrium, we shall have

dX

djgFðrÞj
����
j ~Fj¼jFj

¼ 0; jF rð Þj ¼ jhw# rð Þw" rð ÞiMFj: (68)

The trace with respect to the electron fields, which fig-

ures in the right hand side of Eq. (67), is easily calculated by

functional integration.4–6,26,32,33 As a result, we obtain

X j ~Fj; hAi � 1

2e
r/s

� �
¼
ð
V

d3rjge rð ÞjjgFðrÞj2 � T

2
Tr ln

^̂G
�1

þ 1

4
Tr 1̂ þ ŝ

3


 �̂
1

^̂H jgj�0

h i
; (69)

^̂G
�1

r;r0; s�s0ð Þ¼ �^̂
1
@

@s
� ^̂H jgej rð Þ

� �
d r�r0ð Þd s�s0ð Þ;

^̂H jgej rð Þ¼�lŝ31̂� 1

2m
^̂
1rþ i

2
r/s rð Þ�2ehA rð Þi
� �

ŝ31̂

� �2

ŝ31̂

þ1

2
1̂þ ŝ3


 �
Û rð Þ�1

2
1̂� ŝ3


 �
Û

t
rð Þ

� ŝ2r̂2 jge rð Þjj ~F rð Þj;

Û rð Þ� Û
b

rð ÞþÛ
imp

rð Þ; 0<s<
1

T
: (70)

Here ŝi; r̂i ði ¼ 1; 2; 3Þ are the Pauli matrices in Gorkov-

Nambu space and spin space, respectively; 1̂ is the 2� 2 unit

matrix;
^̂
1 is the 4� 4 unit matrix; and ŝir̂k and ŝi1̂; 1̂r̂i must be

understood as the right product of the corresponding matrices

ŝ1r̂2 �
0̂ r̂2

r̂2 0̂

 !
�

0 0 0 �i

0 0 i 0

0 �i 0 0

i 0 0 0

0BBBB@
1CCCCA;

ŝ31̂ � 1̂ 0̂

0̂ �1̂

 !
�

1 0 0 0

0 1 0 0

0 0 �1 0

0 0 0 �1

0BBBB@
1CCCCA etc:

The last term on the right of Eq. (69) arises from the

need to symmetrize the electron creation and annihilation

operators before taking the functional integral.33

The spectrum of the integral (in the sense of the theory

of generalized functions) operator
^̂
G
�1

, defined by Eq. (70),

does not contain a zero, so that this operator has a uniquely

determined inverse operator Ĝ, the kernel
^̂
Gðr; r0; s� s0Þ of

which satisfies the conditionsðb
0

ds1

ð
V

d3r1
^̂G
�1

r;r1;s� s1ð Þ ^̂G r1;r
0;s1� s0ð Þ

¼
ðb
0

ds1

ð
V

d3r1
^̂G r;r1;s� s1ð Þ ^̂G

�1

r1s1;r
0;�s1� s0ð Þ

¼ ^̂
1dðr� r0Þdðs� s0Þ;

^̂G r;r0;sþ 1

T

� �
¼� ^̂G r;r0sð Þ; ^̂G r;r0;s� s0ð Þ

¼ Ĝ r;r0;s� s0ð Þ F̂ r;r0;s� s0ð Þ
F̂
þ

r;r0;s� s0ð Þ � Ĝ r0;r;s0 � sð Þ
� �t

" #
:

(71)
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The conditions (71) mean that the kernel
^̂Gðr; r0; s� s0Þ is a

matrix thermodynamic Green function that satisfies equa-

tions of the Gorkov type (the first row of Eq. (71)).11

The time-independence condition (68) now yields

jF rð Þj ¼ T

2
jSp ir̂2F̂ r; r; 0ð Þ
� �

j; (72)

where Sp denotes taking the trace over the spin indices. In

addition, varying Eq. (69) with respect to hAi gives the

observed curren

hj rð Þi ¼ � dX
dhA rð Þi

¼ ie

2m
T lim

r0!r
rr0 � rrð ÞSp Ĝ r; r0;�0þ


 �
� e2hA rð Þi

m
TSp Ĝ r; r0;�0þ


 �
: (73)

The functions F̂ and Ĝ are found by solving Eq. (71), in

which it is first necessary to go to the limit e! þ0: Thus,

Eqs. (71)–(73), supplemented by the Maxwell equations

r� hHi ¼ 4phji; and hHi ¼ r � hAi and the appropriate

boundary conditions, form a complete and closed system

and can be used to solve any problem in the theory of equi-

librium superconductivity. In particular, in the simplest case

of a structurally uniform superconductor without impurities

and electromagnetic interactions, Eq. (69), together with the

self-consistency conditions (72), yields the well-known

expression13 for the thermodynamic potential obtained by

the Bogolyubov grand canonical transformation method.34

6. The Josephson effect without a “phase difference”

The theory developed in the previous sections of this

paper applied in varying degrees to structurally uniform

superconductors and to arbitrary types of superconducting

structures containing Josephson junctions (provided, of

course, that the correlation between the electrons with anti-

parallel spins is not disrupted inside the nonsuperconducting

barriers; see Section 7). Here, however, the fundamental

interest is in the question of how the interpretation of the

Josephson effects changes when the customary “phase dif-

ference” of the literature14,21,35 is absent.

Without significant loss of generality, it is enough to study

a singly connected Josephson structure in the presence of

fields and currents. More specifically, let us examine (Fig. 3) a

plane-parallel Josephson structure that is uniform along the z
axis and has a low-transparency tunnel barrier of thickness d
ðx 2 ½�d=2; d=2�Þ and width Lðy 2 ½�L=2; L=2�Þ. An exter-

nal magnetic field He is applied along the z axis. A transport

current I flows along the x axis. It is required to determine the

distribution of the magnetic field inside the barrier, hHðx; yÞi
¼ hHð0; yÞi � hHðyÞiðx 2 ½�d=2; d=2�Þ, and the maximum

transport current, Ic ¼ IcðHeÞ:
If the magnetic field He and current I depend weakly on

jFj (the superconducting order parameter), then the follow-

ing approximation is sufficiently accurate:32

Ĝðr;r;xnÞhAi � Ĝðr;r;xnÞhAi¼0 exp ie

ðr
r0

ðdl 
 hAðlÞiÞ

264
375; (74)

where the integral is taken along the straight line joining the

points r and r0. Given the geometry of the problem,

hHi ¼ ð0; 0; hHiÞ. Let the magnetic field hHi penetrate into

the interior of the superconducting shores (along the x axis)

to a depth k given by

k ¼ 1

hH0i

ðþ1
0

dxhH xð Þi: (75)

Since I ¼
Ð L=2

�L=2
dyjJðyÞ, where jJðyÞ � hjxð0; yÞi—is the

Josephson current through the junction, we begin by calcu-

lating jJ . Using Eq. (74) and the method of Refs. 36 and 37,

we find

jJ ¼ jc sin U yð Þ;

U yð Þ ¼ �2e

ðx0;yð Þ

�x0;yð Þ

dnhAx n; yð Þi

¼
ðx0;yð Þ

�x0;yð Þ

dn
@ak n; yð Þ
@n

� 2ehA?x t; yð Þi
� �

;

¼ ak x0; yð Þ � ak �x0; yð Þ � 2e

ðx0;yð Þ

�x0;yð Þ

dnhA?x n; yð Þi; (76)

where jc >0—is the critical current14,21 and x0 � k (see

Fig. 3).

In order to find the dependence hH0i ¼ hH0ðyÞi, we use

the general definition

hH x; yð Þi ¼
@

@x
hAy x; yð Þi �

@

@y
hAx x; yð Þi

¼ @

@x
hA?y x; yð Þi �

@

@y
hA?x x; yð Þi: (77)

Integrating Eq. (77) over the interval x 2 ð�x0; x0Þ and

assuming that 2k � d, we find

Fig. 3. The geometry of a plane-parallel tunnel Josephson junction (sche-

matic). Here He¼ (0,0, He) is the external magnetic field, k is the penetra-

tion depth of the field into the depth of the superconducting shores, d is the

thickness of the tunnel barrier (d � 2k), L is the width of the barrier

(0<L<1), and I¼ (I, 0, 0) is the specified transport current.
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ðx0;yð Þ

�x0;yð Þ

dnhH n;yð Þi� 2khH0 yð Þi¼ hA?y x0;yð Þi�hA?y �x0;yð Þi

�
ðx0;yð Þ

�x0;yð Þ

dn
@hA?x n; yð Þi

@y
: (78)

Now we note that at the points ðx0; yÞ and ð�x0; yÞ there is

no component of the superconducting current parallel to the

tunnel barrier, so that

hAyðx0; yÞi ¼ hAyð�x0; yÞi ¼ 0: (79)

Thus,

hA?y x0; yð Þi ¼
1

2e

@ak x0; yð Þ
@y

;

hA?y �x0; yð Þi ¼
1

2e

@ak �x0; yð Þ
@y

: (80)

Now we calculate 1
2e
@U
@y using Eq. (80)

1

2e

@U yð Þ
@y

¼ 1

2e

@ak x0; yð Þ
@y

� 1

2e

@ak �x0; yð Þ
@y

�
ðx0;yð Þ

�x0;yð Þ

dn
@hA?x n; yð Þi

@y

¼ hA?y x0; yð Þi � hA?y �x0; yð Þi

�
ðx0;yð Þ

�x0;yð Þ

dn
@hA?x n; yð Þi

@y
: (81)

On comparing this with Eq. (78), we obtain Josephson’s

result35

hH0 yð Þi ¼
1

4ek

@U yð Þ
@y

: (82)

(Our derivation of Eq. (82) should be compared with the

literature.21,35)

Substituting Eq. (82) in the Maxwell equation r� hHi
¼ 4phji, we obtain the well-known Ferrel-Prange equation21

d2U
dy2
¼ 1

k2
J

sin U; k2
J ¼

1

16pjejkjc
; (83)

where kJ� is the Josephson penetration depth for the mag-

netic field along the tunnel barrier. A complete, rigorous

solution of this equation for the external conditions formu-

lated above has been obtained elsewhere.38–40

In the case of small junctions (L � 2kJ) without an

eternal field, the intrinsic field of the Josephson current can

be neglected39 and Eq. (76) reduces to Josephson’s classical

result

jJ ¼ jc sin akðx0; 0Þ � akð�x0; 0Þ
� �

; (84)

which is interpreted in terms of a “phase difference.”14,21,35

If a superconducting structure with a tunneling barrier has a

doubly coupled geometry (the case of SQUIDs), the general

expression for the Josephson current (76) remains valid, but

now U(y) has a more complicated form

UðyÞ ¼ akðx0; yÞ � akð�x0; yÞ

�2e

ððx0;yÞ

ð�x0;yÞ

dnhA?xðn; yÞi þ /sðx0; yÞ � /sð�x0; yÞ;

(85)

where /s ¼ /sðx; yÞ is the nonsinusoidal function of posi-

tion, defined in Section 4, and has the significance of an

external condition.

7. Discussion and some concluding comments.

It has been shown here that the unique part of the phase

of the superconducting order parameter (quasi-average)

hw#w"i transforms into the longitudinal component of the

vector potential of the induced magnetic field over the entire

space. Thus, a complete analogy has been established

between the Meissner effect in the physics of superconduc-

tivity12–14 and the Higgs mechanism1 in high-energy

physics.

The starting point for our analysis (Section 2) was the

microscopic Hamiltonian of the system in the presence of

impurities, nonsuperconducting barriers, and a static, external

magnetic field (14). (The justification for the Hamiltonian

(14) is given in Appendix A.) The distinctive feature of our

approach (compared to those in the literature10–14,21) is

accounting for the quantum nature of the induced electromag-

netic field in the Hamiltonian.14 The latter is quantized under

the condition A0¼ 0 (A0 is the scalar potential) without

destroying the invariance with respect to the time-

independent gauge transformations. (The gauge A0¼ 0 is

compared with the “traditional” noncovariant gauge rA ¼ 0

in Appendix B.)

In Section 3, we moved from the Hamiltonian (14) to

the corresponding Hamiltonian with external “Cooper pair

sources” (Eq. (38)) and gave a strict definition of the super-

conducting order parameter hw#w"i as a quasi-average which

generalizes Bogolyubov’s definition for the spatially uniform

case.28 In that section, a rigorous proof was obtained for the

conservation of the superconducting current (Eq. (45)) and it

was shown that hw#w"i satisfies the condition of time inde-

pendence for the thermodynamic potential (Eq. (49)). Using

the unitary transform (30) under the trace which appears in

the definition of the quantum-statistical averages hw#w"i and

hAi, we obtained an algebraic proof of the occurrence of the

Higgs mechanism (Section 4).

The rigorous results of Sections 2–4 served as the

basis of a new variational formulation of the mean-field

approximation in Section 5. The formulas in that section

contain only the quantities with physical significance

jw#w"j, hAi, and ð1=2eÞr/s, while the variational method

itself is equally applicable to structurally uniform super-

conductors and to systems containing nonsuperconducting

barriers.

In Section 6, a new, field theoretical interpretation of the

Josephson effect is proposed which does not use the tradi-

tional14,21,35 concept of a “phase difference” and several

examples are discussed. These examples show that, despite
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the change in the physical interpretation (the appearance of a

longitudinal component of the induced vector potential

instead of a “phase difference”), the major physical results

concerning Josephson structures with nonferromagnetic bar-

riers (calculations of the critical current,14,21 the critical field

for penetration of Josephson vortices,38–40 oscillatory effects

in SQUIDs,21 etc.) are unchanged. (The special case of

Josephson contacts with ferromagnetic barriers, where corre-

lations between electrons with antiparallel spins may be

destroyed,41 requires a separate discussion.)

Our analysis clearly shows, however, that the argument

of the sine on the right hand side of Eq. (76), which is a clas-

sical quantity by definition, is purely of classical origin for

any Josephson structures, with barriers of arbitrary type

(including ferromagnetic41). In addition, given the assumed

smoothness of the potentials g ¼ gðrÞ and Û
b ¼ Û

bðrÞ
(Section 2) for existence of a linear integral when determin-

ing UðyÞ with Eq. (76), it is necessary and sufficient that the

superconducting order parameter jhw#w"ij not go to zero

anywhere in the region of the barrier. (This last statement

can be regarded as a rigorous mathematical formulation of

the necessary and sufficient condition for the existence of a

Josephson junction between the shores of a contact.)

The author thanks all the participants in the

experimental seminar of A. N. Amel’yanchuk and the

theoretical seminar of L. A. Pastur for constructive

discussions.

APPENDIX A: THE “CLASSICAL” LAGRANGIAN AND
HAMILTONIANS

We determine the “classical” Lagrangian of a supercon-

ducting structure with s-wave pairing in an arbitrary gauge

using the following formulas:

L ¼ Le þ Lb þ Limp þ LBCS þ Lem þ e

ð
V

d3rA0ðrtÞniðrÞ;

(A1)

Le ¼
ð
V

d3r
X

a

iw�a rtð Þ @
@t
þ ieA0 rtð Þ

� �
wa rtð Þ

"

� 1

2m
rþ ieA rtð Þ þ ieAe rð Þ
� �

w�a rtð Þ

� r � ieA rtð Þ � ieAe rð Þ
� �

wa rtð Þ
�
; (A2)

LbþLimp ¼�
ð
V

d3r
X
a;b

w�aðrtÞ Ub
abðrÞ þUimp

abðrÞ
� �

wbðrtÞ;

(A3)

LBCS ¼
1

2

ð
V

d3rg rð Þ
X

a

w�a rtð Þw��a rtð Þw�a rtð Þwa rtð Þ; (A4)

Lem¼
1

8p

ð
V

d3r rA0 rtð Þþ@A rtð Þ
@t

� �2

� r�A rtð Þ½ �2
" #

: (A5)

Here Al ¼ ðA0;�AÞ—is the classical 4-vector potential of

the induced electromagnetic field; wa and w�a are the

“classical” Grassman fields which obey the anticommutation

relations

waðrtÞ;wbðr0tÞ
� �

þ ¼ w�bðrtÞ;w�bðr0tÞ
h i

þ

¼ waðrtÞ;w�bðr0tÞ
h i

þ
¼ 0: (A6)

Let us assume that the fields Al and wa, w�a are specified

over a finite time interval t 2 ½t1; t2� and the following

boundary conditions are satisfied:

Alðrt2Þ ¼ Alðrt1Þ; waðrt2Þ ¼ �waðrt1Þ;
w�aðrt2Þ ¼ �w�aðrt1Þ: (A7)

The last term on the right of Eq. (A1) describes the electro-

magnetic interaction with the ion “background” in a “jelly”

model.13 All the other notation Eqs. (A1)–(A5) becomes

clear upon comparison with the corresponding notation of

Section 2.

The density of the Lagrangian (the integrand in Eqs.

(A1)–(A5)) is invariant with respect to the global gauge

transformation

wa ! eiev0wa; w�a ! e�iev0w�a; A! A; v0 ¼ const:

(A8)

This property leads to the charge conservation law

e@ne

@t
þrj ¼ 0; (A9)

where

ne rtð Þ ¼
X

a

w�a rtð Þwa rtð Þ;

j rtð Þ ¼
X

a

ie

2m
w�a rtð Þrwa rtð Þ � rw�a rtð Þ

� �
wa rtð Þ

� ��
� e2

m
A rtð Þ þ Ae rð Þ
� �

w�a rtð Þwa rtð Þ
�
: (A10)

Without the last term on the right of Eq. (A1), the den-

sity of the Lagrangian is also invariant with respect to the

local gauge transformation

wa ! eievwa; w�a ! e�ievw�a;

A! Aþrv; A0 ! A0 �
@v
@t
; v ¼ v rtð Þ: (A11)

In general, only the action S ¼
Ð t3

t1
dtL will be invariant with

respect to the transformation (A11) (because of the boundary

conditions (A7)).

We now find the momenta pw; pw� and pA0
; pA which

are canonically conjugate to the fields w; w� and A0; A

pwa
¼ dL

d
@wa

@t

¼ iw�a; pw�a ¼
dL

d
@w�a
@t

� 0;

pA0
¼ dL

d
@A0

@t

� 0; pA ¼
dL

d
@A

@t

¼ 1

4p
rA0 þ

@A

@t

� �
¼ � E

4p
;

(A12)

where the symbols d
d@wa
@t

and d

d
@w�a
@t

denote the left and right vari-

ational derivatives, respectively.5 Using Eq. (A12) and the

definition
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H �
ð
V

d3r
X

a

pwa
rtð Þ@wa rtð Þ

@t

" #
þ
ð
V

d3rpA rtð Þ@A rtð Þ
@t
�L;

we arrive at the “classical” Hamiltonian in an arbitrary gauge:

H ¼H e þH b þH imp þH BCS þH em

þ
ð
V

d3r
E rtð ÞrA0 rtð Þ

4p
þ e ne rtð Þ � ni rð Þ
� �

A0 rtð Þ
� �

;

(A13)

H e ¼
ð
V

d3r
1

2m

X
a

rþ ieA rtð Þ þ ieAe rð Þ
� �

w�a rtð Þ
"

� r� ieA rtð Þ � ieAe rð Þ
� �

wa rtð Þ�; (A14)

H bþH imp¼
ð
V

d3r
X
a;b

w�a rtð Þ Ub
ab rð ÞþUimp

ab rð Þ
� �

wa rtð Þ

(A15)

H BCS¼
1

2

ð
V

d3rg rð Þ
X

a

w�a rtð Þw��a rtð Þw�a rtð Þwa rtð Þ; (A16)

H em ¼
1

8p

ð
d3r E2 rtð Þ þ r � Að Þ2 rtð Þ
h i

;

E ¼ �r� A0 �
@A

@t
: (A17)

It is useful to note that, ongoing to the noncovariant

quantization scheme for H , the last term on the right of Eq.

(A13) can be neglected. In fact, the first term in the square

brackets can be integrated by parts, and the integrated sur-

face term vanishes because it has been assumed that the field

E falls off rapidly toward infinity. The remaining expression

is identically equal to zero in the A0¼ 0 gauge, as in the $A

¼ 0 gauge (because of the operator Gauss law).

APPENDIX B: COMPARISON OF THE GAUGE
CONDITIONS $A 5 0 AND A0 5 0

When the rA ¼ 0 gauge is used, the quantized Maxwell

equations (23)–(26) are supplemented further by the Gauss

law in operator form

rE ¼ 4peðne � niÞ: (B1)

Equation (B1) makes it possible to eliminate the scalar

potential A0

A0 rtð Þ ¼ e

ð
V

d3r0 ne r0tð Þ � ni r0ð Þ
� �
jr� r0j : (B2)

Thus, the quantum Hamiltonian in this gauge has the form

H rA¼0 ¼H e A? þAe½ � þH b þH imp þH BCS þH em;

(B3)

where

H e A?þAe½ �
ð
V

d3r
1

2m

X
a

rþ ieA? rtð Þþ ieAe rð Þ
� �"

�wþa rtð Þ r� ieA? rtð Þ� ieAe rð Þ
� �

wa rtð Þ
�
; (B4)

and the electromagnetic energy breaks up into two components

H em ¼H em? þH C ¼
1

8p

ð
d3r E2

? rtð Þ þ r � A? rtð Þ½ �2
h i

þ e2

2

ð
V

d3r

ð
V

d3r0
ne rtð Þ � ni rð Þ
� �

ne r0tð Þ � ni r0ð Þ
� �

jr� r0j ;

E? ¼ �
@A?
@t

: (B5)

The operators A? and @A?/@t, in Eqs. (B4) and (B5) obey

the commutation relations in the first two lines of Eq. (20).

The remaining terms in the Hamiltonian (B3) are the same

as in the Hamiltonian of Eq. (14).

We now show that the quantum Hamiltonian H in an

A0¼ 0 gauge (Eq. (14)) used in this paper leads to the same

value of the grand statistical sum (32) as the quantum

Hamiltonian H rA¼ 0 (Eq. (B3)) introduced above. We

begin with the definition of the energy levels Ek,N

Ek;N ¼ hN;Ek;N; nijH jN;Ek;N ; nii;

where the operators in H are assumed to be time indepen-

dent (i.e., specified in the Schroedinger representation).

We expand the vector potential A and electric field E

into transverse and parallel components (cf. Eq. (19))

A ¼ A? þ Ak; E ¼ E? þ Ek;

where A ¼ AðrÞ and E ¼ EðrÞ. Given thatð
V

d3rE?ðrÞEkðrÞ ¼ 0;

and the eigenvalue equation

ðrE� 4peneÞjN;Ek;N ; nii ¼ �4penejN;Ek;N; nii;

we obtain

Ek;N ¼ hN;Ek;N; nij ~H jN;Ek;N; nii;

where

~H ¼H e þH b þH imp þH BCS þH em? þH C;

with

H e¼
ð
V

d3r
1

2m

X
a

rþie A? rð ÞþAk rð Þ

 ���

þieAe rð Þ�wþa rð Þ r�ie A? rð ÞþAk rð Þ

 ��

�ieAe rð Þ�wa rð Þ�;

H bþH imp¼
ð
V

d3r
X
a;b

wþa rð Þ Ub
ab rð ÞþUimp

ab rð Þab
h i

wb rtð Þ;

H BCS¼�
1

2

ð
V

d3rjg rð Þj
X

a

wþa rð Þwþ�a rð Þw�a rð Þwa rð Þ;

H em?þH C¼
1

8p

ð
d3r E2

? rð Þþ r�A? rð Þ2
h ih

þe2

2

ð
V

d3r

ð
V

d3r0
ne rð Þ�ni rð Þ½ � ne r0ð Þ�ni r0ð Þ

� �
jr�r0j

35:
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It can be seen that the energy levels Ek;N can be represented

as averages of the new Hamiltonian ~H , in which the longi-

tudinal part of the electric field energy
Ð

V d3rE2
kðrÞ is

replaced by the Coulomb energy H C. The definition of H e

contains a longitudinal variable Ak that commutates with all

the operators contained in the Hamiltonian ~H , d can be

eliminated with the aid of the unitary transformation

Uw �½ � ¼ exp ie

ð
d3rv rð Þne rð Þ

� �
;

v rð Þ ¼ � 1

4p

ð
V

d3r0
rA r0ð Þ
jr� r0j ; Uw;N

� �
¼ 0:

We finally obtain

Ek;N ¼ hN;Ek;N;nijU�1
w �½ �Uw �½ � ~HU�1

w �½ �Uw �½ �jN;Ek;N;nii
¼ hN;Ek;NjH rA¼0jN;Ek;Ni;

where the Hamiltonian H rA¼0 is given by Eq. (B3) (with

time-independent operators).

As pointed out in Section 2, the gauge A0¼ 0 is prefera-

ble for physical reasons. In fact, if we used the condition

rA ¼ 0, in all the equations of Section 5 instead of the com-

bination hAi � 1
2er/s, this would yield the combination

hA?i �
1

2e
r/; (B6)

which contains a nonphysical unique part of the phase ~/
(/þ ~/ þ /s). In addition, Eq. (B6) would contradict the

physical interpretation of the Meissner effect as the

“acquisition of mass by a photon,”4,5,9 since the full vector

potential would only contain two independent components

(hAi ¼ hA?i).
Finally, we note that the electrical neutrality condition

(35) in the rA ¼ 0 gauge does not follow automatically

from averaging E ¼ �rA0 � @A=@t over the grand canoni-

cal ensemble. This condition must be specified additionally

in order to match the result with the situation when A0 ¼ 0.
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