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It is shown that superconducting charge and flux quantum bits (qubits) can be classified as memory
capacitive and inductive systems, respectively. We demonstrate that such memcapacitive and meminductive
devices offer remarkable and rich response functionalities. In particular, when subjected to periodic input,
qubit-based memcapacitors and meminductors exhibit unusual hysteresis curves. Our work not only
extends the set of known memcapacitive and meminductive systems to qubit-based devices, but also
highlights their unique properties potentially useful for future technological applications.
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I. INTRODUCTION

There has recently been drastically increasing interest in
electronic circuit elementswithmemory, namely,memristive
[1,2], memcapacitive, and meminductive [3] systems (for a
recent review, see Ref. [4]). In these resistive, capacitive, and
inductive devices, the instantaneous response depends on
the history of the signals applied. While prominence has
been given to memristive devices, memcapacitive and (less
frequently) meminductive devices are also investigated.
However, with few rare exceptions [5–7], attention has been
focused on devices operating in the classical regime.
Therefore, it is intriguing to find quantum realizations,
especially of memcapacitive and meminductive systems,
since these are not currently known.
In this regard, superconducting devices [8] are attractive

from several points of view. First of all, the past decade has
witnessed great progress in the area of superconducting
qubits [9–11], which operate in the quantum regime.
Second, the relevance of classical superconducting devices
to the area of memory circuit elements has already been
established. Examples include (i) phase-dependent con-
ductance, interpreted as a memristive phenomenon [12,13];
(ii) the voltage-history dependence of the inductance (for
more information on this meminductance, see Appendix A
and Ref. [12]); (iii) various hystereses in different settings,
such as, for example, the average voltage-current hysteresis
in the capacitively and resistively shunted junction (CRSJ)
model [8,14], which can be interpreted as a memristive
phenomenon. In Appendix A, the meminductance of the
Josephson junction is considered in detail to better explain
some novel aspects of the Josephson effect.
Surprisingly, it is not necessary to look very far to find

examples of quantum superconducting memory devices.

Indeed, the natural candidate (a superconducting qubit
[9–11]) is a quantum two-level system that, depending
on the setting, offers a memcapacitive or meminductive
response. The goal of the present paper [15] is to demon-
strate the correspondence between superconducting qubits
and memory circuit elements. An interesting distinctive
feature of these quantum memory devices (compared to the
traditional ones such as considered in Ref. [17]) is their rich
internal dynamics, stemming from the quantum internal
dynamics of qubits. In the past, many of such dynamical
properties were demonstrated experimentally, including
coherent Rabi oscillations, Landau-Zener tunneling, etc.
[9–11,18]. We emphasize that while we consider super-
conducting qubits, our approach can be extended to other
types of qubits.
Mathematically, memory circuit elements are defined

by [3]

yðtÞ ¼ gðx; u; tÞuðtÞ; ð1Þ

_x ¼ fðx; u; tÞ: ð2Þ

Here, uðtÞ and yðtÞ are complementary constitutive circuit
variables denoting the input and the output of the system, g
is the generalized response function, x is the set of variables
describing the internal state, and f is the vector function
defining the evolution of x.
To be more specific, voltage-controlled memcapacitive

systems [3] are described by

QðtÞ ¼ CMðx; V; tÞVðtÞ; ð3Þ

_x ¼ fðx; V; tÞ; ð4Þ
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where the memcapacitance CM is given by the relation
between the charge Q and voltage V. Current-controlled
meminductive systems [3] are given by

ϕðtÞ ¼ LMðx; I; tÞIðtÞ; ð5Þ

_x ¼ fðx; I; tÞ; ð6Þ

where the meminductance LM defines the relation between
the flux linkage ϕ≡ R

Vdt and the current I. We note that
Eqs. (3) and (4) and Eqs. (5) and (6) are particular cases of
Eqs. (1) and (2).
In what follows, we show that the above equations

match the equations for certain expectation values calcu-
lated for qubit-based memcapacitors and meminductors.
In other words, the suggested devices behave on average as
classical memcapacitors and meminductors in some simple
circuits studied in this work. In what follows, quantum-
mechanically averaged values are denoted with angular
brackets. At the same time, the individual measurements of
the output of our devices will exhibit quantum uncertainty.
This uncertainty is a clear manifestation of the nonclassical
(quantum) nature of our devices. This issue is also
addressed in Ref. [19], where a driven quantum system
is described by the respective average voltages and cur-
rents, of which the relation is studied for the description
of the quantum memristor operation. Additionally, in more
complex circuits than the ones considered here, several
qubit-based devices may form various nontrivial quantum
states (such as, e.g., entangled states) that would require a
quantum approach to describe the circuit dynamics. In any
case, in this work the qubit-based memcapacitors and
meminductors are considered as quantum systems capable
to store quantum information.
This paper is organized as follows. In Sec. II, we present

descriptions of charge and flux qubits as memory circuit
elements, showing that their electrical response can be
formulated in the form of Eqs. (3) and (5), respectively.
Then, in Sec. III, we discuss the dynamics of the internal
state variables of qubits. We show that the equations of
motion for the internal state variables can be written in the
form of Eqs. (4), (6). Simulation results are described in
Sec. IV, which presents various types of hysteretic loops.
Finally, we conclude in Sec. V. Details of calculations
and some supplementary results are presented in
Appendixes A–C. Moreover, the quantum uncertainty of
measurements is discussed in Appendix D.

II. QUBITS AS MEMORY DEVICES

We will focus on charge and flux qubits, showing that
they belong to the general classes of memcapacitive and
meminductive systems. For this purpose, we cast the qubit
equations in the form of Eqs. (3) and (4) and Eqs. (5) and
(6), respectively, thus identifying the internal state varia-
bles, response, and evolution functions. It is interesting that

the equations for charge and flux qubits can be written
exactly in the same form, when we treat these structures as
memory circuit elements. The circuit elements and nota-
tions are summarized in Fig. 1 and Table I.
Below, we use a semiclassical approach, where the

quantum-mechanical evolution of the qubit is considered
in the presence of the classical input uðtÞ. The system
output yðtÞ is calculated as an expectation value. Such a
model assumes the input and output to be described by
coherent states, involving many photons. For more detail
on the semiclassical approximation, see, e.g., Ref. [20].
In what follows, we consider both the case when the

dissipative environment can be disregarded (good isolation;
the system can be described by the Liouville equation), and
also the case with significant dissipation (which is intro-
duced phenomenologically and may include the effect of
the measurement apparatus; in this case, the system is
described using the dissipative Bloch equation). The Bloch
equation includes the effect of nonzero temperature T as
well as the relaxation and decoherence rates, Γ1 and Γ2.

M

I

V Φ

CM

LM

=

=

V

Q(a)

(b)

FIG. 1. Superconducting qubits as memory circuit elements.
(a) The charge qubit implements a memcapacitive system. (b) A
coil inductively coupled to a flux qubit forms an effective
meminductive system. The crossed boxes denote Josephson
junctions, the circuit symbols of memcapacitor (top) and mem-
inductor (bottom) are shown on the right.

TABLE I. Charge and flux qubits as memcapacitive and
meminductive systems.

Charge qubit Flux qubit

uðtÞ VðtÞ IðtÞ
yðtÞ Q ϕ ¼ R

Vdt

g CM ¼ Cgeom − eCg

VCΣ
hσzi LM ¼ L − MIp

I hσzi
x ðX; Y; ZÞ⊤ ðX; Y; ZÞ⊤
f B × x − Γðx − x0Þ B × x − Γðx − x0Þ
Type Memcapacitive system Meminductive system
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We note that neglecting these rates, Γ1 ¼ Γ2 ¼ 0, reduces
the Bloch equation to the Liouville equation.

A. Charge qubit

Consider first the superconducting charge qubit, Fig. 1(a).
Its main part, the so-called Copper-pair box, is formed by a
gate capacitor Cg and a Josephson junction with a capaci-
tance CJ. The superconducting island between these two
capacitors has the total capacitance CΣ ¼ Cg þ CJ, and is
characterized by the average charge−2ehni, where−e is the
electron charge and hni is the number of Copper pairs on the
island. The island is assumed to be biased by a voltage,
which, in general, contains both time-dependent, VðtÞ, and
dc, Vdc, components. From electrostatic considerations, one
finds the charge on the external plate of the gate capacitor

QðtÞ ¼ CgCJ

CΣ
½VðtÞ þ Vdc� −

Cg

CΣ
2ehni: ð7Þ

In the two-level approximation [21–23], the charge qubit
Hamiltonian is written as

H ¼ −
Δ
2
σx −

ε

2
σz; ε ¼ ε0 þ ε1ðtÞ; ð8Þ

where the energy bias ε ¼ ECð2ng − 1Þ is defined by the
island charging energy EC ¼ ð2eÞ2=2CΣ and the dimen-
sionless gate voltage ng ¼ CgV=2e. The tunneling ampli-
tude Δ ¼ EJ is given by the Josephson energy of the
contact, and the σi stand for the Pauli matrices in the charge
representation. Using n ¼ ð1þ σzÞ=2 for the charge oper-
ator, Eq. (7) can be written in the form [24]

Q ¼ CgeomV −
eCg

CΣ
hσzi≡ CMðx; VÞV; ð9Þ

where Cgeom ¼ CgCJ=CΣ, and x stands for the set of
parameters describing the time evolution of the charge in
the Cooper-pair box [through the hσzi term]. In Eq. (9), for
the sake of clarity, we have eliminated the time-independent
terms, by choosing the dc bias such that CJVdc=e ¼ 1.
Clearly, Eq. (9) is equivalent with Eq. (3). In this way, the
charge qubit can be considered as a memcapacitive system.
Assuming a periodic input signal of amplitude VA,

Eq. (9) can be presented in the dimensionless form as

QðtÞ
CgeomVA

¼ VðtÞ
VA

−
e

CJVA
hσzi: ð10Þ

In particular, taking VðtÞ ¼ VA sinωt, one can find
ε1ðtÞ ¼ A sinωt, where A ¼ 2eCgVA=CΣ.

B. Flux qubit

Next, we consider the flux qubit coupled via the mutual
inductance M to the inductor L biased by the current I,
Fig. 1(b). In this arrangement, the electrical response of the
coil depends on the qubit state. As the qubit state has a

memory on the history of signals applied (to the coil), it is
natural to describe the entire system as an inductor with
memory, namely, a meminductive system [3] operating in
the quantum regime. Previously, it was demonstrated [5]
that an RCL contour inductively coupled to an inductor
represents a classical meminductive system.
The flux qubit is a superconducting ring with three

Josephson junctions [9,25]. The two qubit states corre-
spond to persistent currents in the ring in the clockwise
and counterclockwise directions. The persistent current
amplitude is Ip. The ring is pierced by a magnetic flux
Φ with both ac, Φac, and dc, Φdc, components. The former
is introduced by the ac current in the inductor L, and the
latter can be created by the dc current in the same or in a
separate inductor. In the two-level approximation [9,25],
the flux qubit is also described by the Hamiltonian (8),
where now the parameters have the following meaning:
Δ is the tunneling amplitude, σi are the Pauli matrices
in the flux representation, ε0ð1Þ ¼ 2IpΦ0fdcðacÞ is the
constant (time-dependent) part of the bias defined by
the dc (ac) component of the magnetic flux through the
qubit loop, Φ0 ¼ h=ð2eÞ is the magnetic flux quantum,
fdc ¼ Φdc=Φ0 − 1=2, and fac ¼ MIðtÞ=Φ0.
The electromotive force in the coil is given by

E ¼ − _Φc − _Φq, where Φc and Φq are the magnetic fluxes
through the inductor L due to the current I in the coil and
due to the qubit’s current Iq, respectively. This can be
rewritten for the voltage across the coil

V ¼ L_I þM _Iq: ð11Þ
Integrating Eq. (11) over time and using Iq ¼ −Iphσzi one
obtains the expression for the flux linkage ϕ in the form of
Eq. (5)

ϕ ¼ LI −MIphσzi≡ LMðx; IÞI: ð12Þ
We note that Eq. (12) also nominally coincides with Eq. (9)
(see also the generalized notations in the Table I). In
Eq. (12), the vector x stands for a set of parameters defining
the qubit state through hσzi.
Finally, let us assume that the ac component of the

current is IA sinωt. Then, facðtÞ ¼ MIA sinωt=Φ0, so that
ε1ðtÞ ¼ A sinωt with A ¼ 2MIpIA. In the dimensionless
form, Eq. (12) can be written as

ϕðtÞ
LIA

¼ IðtÞ
IA

−
MIp
LIA

hσzi: ð13Þ

III. DYNAMICS OF THE INTERNAL
STATE VARIABLES

In the previous section we obtained relations for the
memcapacitance and meminductance, Eqs. (9) and (12), in
the form of Eq. (1) with gðx; u; tÞ defined by hσzi. The
dimensionless forms of these expressions, Eqs. (10) and
(13), can be written in a unified form

QUBIT-BASED MEMCAPACITORS AND MEMINDUCTORS PHYS. REV. APPLIED 6, 014006 (2016)

014006-3



yðtÞ
y0

¼ uðtÞ
u0

− ϰhσzi; ð14Þ

where, comparing with Eqs. (10) and (13), one can easily
identify y0, u0, and ϰ for the respective two cases. Let
us now clarify what are the variables that form the vector x
and define hσzi.
Previously, the Hamiltonians and Pauli matrices σi were

defined in the physical bases, which are the charge basis for
the charge qubit and the current basis for the flux qubit.
In these bases, hσzi provides the difference between the
probabilities of the two charge states and of the two current
directions for the charge and flux qubits, respectively. In
order to describe the quantum dynamics of a qubit, one has
to take into account the dissipative processes. This can be
done in the framework of the Bloch equation [9,25,26].
Since the Bloch equation defines the relaxation in the
energy representation, one has to change to this basis (see
Appendix B for more details).
Let the qubit density matrix in the energy representation

be parametrized as ρ ¼ 1
2
ð1þ xσÞ with x ¼ ðX; Y; ZÞ⊤

being the so-called Bloch vector. The Bloch vector thus
plays the role of the internal state variables of qubits.
Changing from the physical representation to the energy
one, we obtain

hσzi ¼ −
Δ
ΔE

X þ ε0
ΔE

Z; ð15Þ

with ΔE≡ ℏωq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þ ε20

p
. Equation (15) describes

how the response function g in Eqs. (9) and (12) depends
on the components of the Bloch vector x. Moreover, for the
sake of simplicity, we assume that the two phenomeno-
logical relaxation rates entering the Bloch equation are the
same (see Appendix B), namely, Γ2 ¼ Γ1 ≡ Γ. In this way,
one can write the Bloch equation as

_x ¼ fðx; uÞ≡B × x − Γðx − x0Þ; ð16Þ

where

B ¼ ðBx; 0; BzÞ⊤; x0 ¼ ð0; 0; Z0Þ⊤; ð17Þ

Bx ¼
Δ
ΔE

ε1ðtÞ
ℏ

≡ 2Ωð0Þ
R sinωt; ð18Þ

Bz ¼ −ωq −
ε0
Δ
Bx; Ωð0Þ

R ¼ ΔA
2ℏΔE

; ð19Þ

and Z0 ¼ tanhðΔE=2kBTÞ describes the equilibrium
energy-level populations.
Equation (16) corresponds to the generic equation (2)

and, together with Eqs. (9) and (12) [which are in the form
of Eq. (1)], completes the model of qubit-based systems as
realizations of memory circuit elements.

IV. ILLUSTRATIVE EXAMPLES

Frequency-dependent pinched hysteresis loops are the
most pronounced signatures of memory circuit elements
[2–4]. In this section, we consider qubit-based memcapa-
citors and meminductors subjected to a periodic input,
ε1ðtÞ ∝ uðtÞ ¼ u0 sinωt. The examples presented below
highlight the unusual dynamical features of these quantum
devices.
We emphasize that Figs. 2–4 illustrate hysteresis curves

for both charge and flux qubits. For the charge qubit:
u ¼ V, u0 ¼ VA, y ¼ Q, and y0 ¼ CgeomVA. For the flux
qubit: u ¼ I, u0 ¼ IA, y ¼ ϕ, and y0 ¼ LIA.

A. Rabi oscillations

Consider the situation when the applied frequency is close
to the resonance frequency, so that δω≡ ω − ωq ≪ ω. If the
relaxation time Γ−1 is quite long, one can ignore the
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FIG. 2. y versusu hysteresis curves in theRabi oscillation regime
for (a) commensurate and (b) incommensurate frequencies. This
plot is obtained using Eq. (23) and the following set of parameter

values:ω ¼ ωq, ϰ ¼ 2,Ωð0Þ
R =ω ¼ 1 [solid curve in (a)],Ωð0Þ

R =ω ¼
1=2 [dashed curve in (a)], Ωð0Þ

R =ω ¼ 1=
ffiffiffi
2

p
(b). (b) presents the

curve corresponding to about 16 periods of the sinusoidal input.
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relaxation and find an analytical solution for the problem
(see Appendix B for details). In particular, precisely at the
resonance (ω ¼ ωq), we obtain

hσzi ¼
ε0
ΔE

cosΩð0Þ
R t −

Δ
ΔE

sinΩð0Þ
R t cosωt; ð20Þ

where Ωð0Þ
R is given by Eq. (19). Equation (20), describing

the Rabi oscillations, can be further simplified, at both the
avoided-level crossing and far from this point:

ε0 ¼ 0∶ hσzi ¼ − sinΩð0Þ
R t cosωt; ð21Þ

jε0j ≫ Δ∶ hσzi ¼ sgnðε0Þ cosΩð0Þ
R t: ð22Þ

The case of ε0 ¼ 0 and δω ¼ 0 corresponds to the
excitation by uðtÞ ¼ u0 sinωqt. Using Eq. (14) we find
the system response in this case:

yðtÞ
y0

¼ sinωtþ ϰ sinΩð0Þ
R t cosωt: ð23Þ

The shape of the hysteresis curve (23) is defined by the

commensurability of ω and Ωð0Þ
R . In particular, if the ratio

of these frequencies is a rational number, Ωð0Þ
R =ω ¼ n=m

(here, n and m are integers), then the hysteresis curve is a
closed loop. One can show that the period of such a

loop is T� ¼ nTR ¼ mTω, where TR ¼ 2π=Ωð0Þ
R and Tω ¼

2π=ω are periods of the Rabi oscillations and periodic
input, respectively. In the opposite case of an irrational ratio

Ωð0Þ
R =ω, the curve is not closed. Both cases are illustrated

in Fig. 2.
We note that Fig. 2 is obtained using Eq. (23) found in the

rotating-wave approximation (see Appendix B). However, at
high driving amplitudes, the resonant frequency is shifted
according to the Bloch-Siegert expression [27–30]. The
corrected resonant frequency can be found numerically
by solving the Liouville equation. For the selected set of
parameter values, an “8-shaped” closed hysteresis loop
[as in Fig. 2(a)] is obtained for Ωð0Þ

R =ω¼ 1.045, instead of

Ωð0Þ
R =ω ¼ 1 as predicted in the rotating-wave approximation.
An important feature of the qubit-based memory devices

is that their characteristic operational frequencies ωq
belong to the gigahertz region. Such frequencies make
the devices controllable by microwaves, on short time
scales.

B. Two-photon excitation

Next, we consider a different excitation regime, when the
driving frequency is at half the qubit frequency, ω ¼ ωq=2.
This is the two-photon process [31] as two photons are
required to excite the qubit. The two-photon process is
characterized by its own Rabi frequency (see Ref. [20] for
more details) that, together with the excitation frequency ω
(and possibly some other frequencies) defines the system
response.
In particular, at zero offset ε0 ¼ 0, the two-photon Rabi

frequency is zero [20]. The excitation at the two-photon
resonant frequency accounted for the Bloch-Siegert shift
(ω ¼ 1.013ωq=2) results in a closed “8-shaped” hysteretic
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FIG. 3. Time dependencies of (a) the input u and output y, and
(b) the generalized response g for the case of two-photon
excitation. (c) y versus u hysteresis curves. These plots are
obtained using the following parameter values: ω ¼ 1.013ωq=2,
ε0 ¼ 0, ϰ ¼ 2, Γ ¼ 0, and A ¼ 0.2Δ. The narrow hysteresis
curve in (c) is found at a different value of ϰ ¼ 0.2. The inset
shows the hysteresis curve found at a different value of
ω ¼ ωq=2. The inset curve corresponds to five periods of the
input oscillations.
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curve depicted in Fig. 3(c), demonstrating the periodicity
defined by ω. Figures 3(a)–3(b) show the time dependen-
cies of the input, output, and generalized response function
(plotted in units of g0 ¼ y0=u0) found in the same calcu-
lation by solving the Bloch equation. The shift in the
excitation frequency from the resonant one introduces a
new periodicity in the response, as shown in the inset of
Fig. 3(c). The origin of this modification most probably
could be related to a shift of the two-photon Rabi frequency
from zero.

C. Delayed response

In the previous subsections, we considered the resonant
excitations in which the driving frequency is an integer
number of the qubit frequency ωq, and ε0 ¼ 0. Here, we
consider the opposite case, when the excitation frequency is
small and far from the resonance. In this situation, the qubit
demonstrates a lag, the finite time needed for the qubit to
come into equilibrium. Because of large detuning, there are
no Rabi oscillations in this regime.
In order to demonstrate the lagging effect, we select the

driving frequency ω comparable to the relaxation rate, for
which we choose Γ ¼ 0.01Δ, and solve the Bloch equa-
tions (16) numerically. Figure 4 shows selected results of
these calculations. We found that the largest size hysteresis
is observed when the input frequency ω is of the order of
Γ=2. This feature was discussed in detail in Refs. [32–36].
The insets in Fig. 4 demonstrate that at lower and higher

driving frequencies (compared to Γ) the hysteresis van-
ishes. Indeed, if the frequency is high, the system does not
have enough time to relax to equilibrium. At very low
frequencies, the system stays very close to the equilibrium

at every instant of time, so that the hysteresis is not
observed.
Let us finally discuss the effect of the temperature, which

has been ignored so far. The temperature enters the Bloch
equation through the factor Z0 ¼ tanhðΔE=2kBTÞ as well
as through the temperature dependence of the decoherence
and relaxation rates. Neglecting the latter, the red thin
line in Fig. 4 illustrates that a significant temperature,
T ∼ Δ=kB, changes the shape of the curve and reduces the
width of the hysteresis loop. At T ≫ Δ=kB, this width tends
to zero and the dependence becomes linear. So, in order to
ignore the temperature in this context, it should be much
smaller than Δ=kB, which is usually the case in the
experimental realizations of qubit-based systems.

D. General picture

In order to better understand the features of the hysteretic
response, we plot the hysteresis of X in different cycles of
the sinusoidal input calculated as
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values: Γ ¼ 0.01Δ=ℏ, A ¼ Δ, ϰ ¼ 1, and ε0 ¼ 0. The values of ω
are indicated on the plot. All curves are calculated for zero
temperature, except for the thin red curve, which illustrates the
effect of the temperature, with T ¼ 0.5Δ=kB.
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ΔXn ¼ Xð3Tω=8þ nTωÞ − XðTω=8þ nTωÞ; ð24Þ

where n is the number of the cycle, and Tω ¼ 2π=ω is the
period of the input signal. Figure 5 presents an example
of such a calculation. In particular, in Fig. 5(a) at ω=ωq

slightly less than unity, one can clearly recognize the Rabi
oscillations corresponding to the solid line in Fig. 2(a). At
lower frequencies [see 5(b)] one can distinguish several
horizontal lines of a fixed-size hysteresis. These likely
correspond to the k-photon processes at ω=ωq ≈ 1=k,
similarly to the two-photon case with k ¼ 2 considered
above.
Few other plots of hysteresis in X found at different

parameter values are provided in Appendix C.

V. CONCLUSION

We demonstrate that several qubit-based structures
belong to the class of memory circuit elements [3]. It is
shown that when subjected to a periodic input, such qubit-
based memcapacitive and meminductive systems exhibit
frequency-dependent hysteresis curves. Note that the
quantumness of superconducting qubits requires special
care in performing and interpreting experiments with such
devices. In particular, in addition to the basic components
considered in this work, realistic experimental setups
include an additional apparatus for measuring the quantum
subsystem state. For the sake of simplicity, this issue is not
addressed here, since our aim is to demonstrate the aspects
of the qubit dynamics relevant to memory devices. Various
measurement techniques are discussed, e.g., in Ref. [9].
Our work not only extends the set of memory circuit

elements with novel components featuring an unusual
and rich quantum dynamics of their internal states, but
may also result in novel applications of qubit-based
structures beyond the ones traditionally considered for
superconducting qubits.
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APPENDIX A: MEMINDUCTANCE OF A
JOSEPHSON JUNCTION

Here, we present several results which allow interpreting
a Josephson junction as a memory device. From the
original work by Josephson, it is known that the resistance

of the junction contains a phase-dependent term [8,37],
which can be treated as a memristance [12]. This was
recently studied in Ref. [13]. In addition to this, the well-
known Josephson inductance can be treated as a mem-
inductance. From this perspective, according to Ref. [12],
the correct model for a Josephson junction should include a
resistor R, a capacitor CJ, a memristor RM, and a mem-
inductor LJ, as shown in Fig. 6, left upper inset. These
aspects deserve special attention. So, qubits, let us describe
here the Josephson meminductance. For simplicity, we will
not address here either the phase-dependent memristance,
or other aspects, which result in hysteretic dependencies.
Note that the phase-dependent memristance in a related
context was studied both in the classical [13] and quantum
[19] regimes.
It is known that a Josephson junction can be described as

a Josephson inductance. This directly follows from the two
Josephson relations, which relate the current I and the
voltage V with the order parameter phase difference φ:

IðtÞ ¼ Ic sinφðtÞ; ðA1Þ

VðtÞ ¼ Φ0

2π
_φ; ðA2Þ

where Ic is the critical current of the junction and
Φ0 ¼ h=2e is the flux quantum. These can be rewritten as

-1 0 1

-1

0

1

V(t)/V
A

di
/d

τ

-1 0 1
-1

0

1

FIG. 6. Josephson junction as a meminductor. Left upper inset:
model of a Josephson junction which describes the Josephson
inductance LJ as the meminductance and also includes the
memristance RM. Main panel: dependence of the current time
derivative on the applied voltage. The voltage VðtÞ is normalized
by its amplitude VA; the dimensionless current is i ¼ I=Ic
and time τ ¼ ½ð2eVAÞ=ℏ�t. The thick and thin lines are plotted
for ½ðℏωÞ=ð2eVAÞ� ¼ 2 and 20, respectively,while the right bottom
inset is plotted for this value being0.01. For all three curveswehave
taken φ0 ¼ π=4.
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VðtÞ ¼ Φ0

2π cosφ
_I ≡ LJðφÞ _I ; ðA3Þ

so that the proportionality term is used for the definition of
the inductance LJ. This inductance is often referred to as
the nonlinear inductance. Strictly speaking, to be non-
linear, this must be a function of the voltage V, namely, it
must be determined by the instantaneous value of the
voltage. Instead, the inductance depends on the phase
difference φ, defined by the voltage history. That is why,
following Ref. [12], we argue that it would be more correct
to call this a memory inductance, or meminductance.
Indeed, integrating Eq. (A2), one obtains

φðtÞ ¼ φ0 þ
Φ0

2π

Z
t

0

Vðt0Þdt0: ðA4Þ

Consequently, the inductance of the Josephson junction
LJðφÞ is precisely the memory inductance, since the phase
φ has a memory of the voltages applied in the past.
One can introduce the generalized flux as

Φ ¼
Z

t

0

Vðt0Þdt0; ðA5Þ

which relates it to the phase difference φ in Eq. (A4). Then
we can rewrite the above expressions, so that the Josephson
junction is obviously a flux-controlled meminductive sys-
tem with the control parameter x ¼ 2πðΦ=Φ0Þ:

_I ¼ L−1
J ðΦÞV; ðA6Þ

_Φ ¼ V: ðA7Þ

We note that for a nonlinear element there are different
possibilities to introduce the inductance [8], and Eq. (A6) is
one possibility. For an alternative definition, see Eq. (5),
which is obtained from Eq. (A6); then LM ¼ R

_ILJdt=I.
To further explore these relations, let us now consider a

junction biased by the alternating voltage VðtÞ ¼ VA cosωt.
In Fig. 6 we plot the dependence of the current derivative on
the voltage. This hysteretic dependence is plotted for three
values of the frequency. This is shown in the thin-line narrow
hysteresis for high frequency; the optimal hysteretic loop
for the intermediate case, shown by the thick line; and the
complicated hysteretic curve for the low frequency, which is
presented in the right bottom inset.

1. Hysteresis in the CRSJ model

Consider now the CRSJ model as described above, but
with the resistance R and capacitance CJ taken into account
explicitly. For definiteness, consider the voltage-biased
regime with the applied voltage VðtÞ ¼ VA cosωt. The
current is given by the extended version of Eq. (A1),

IðtÞ ¼ Ic sinφðtÞ þ
VðtÞ
R

þ CJ
_VðtÞ; ðA8Þ

which reflects the Kirchhoff law for the circuit shown in
Fig. 6. There, for simplicity, we disregard the memristance,
to accentuate on the meminductance. With φðtÞ given by
Eq. (A4), the dimensionless version of Eq. (A8) reads

di
dτ

¼ cos

�
φ0 þ

sinwτ
w

�
coswτ −

Ω
Q
sinwτ − Ω2 coswτ:

ðA9Þ
Here, we introduce the dimensionless values

i ¼ I
Ic
; w ¼ ℏω

2eVA
; τ ¼ ωt

w
; Ω ¼ ω

ωp
;

ðA10Þ

-1 0 1

-1

0

1

(a)

V(t)/V
A

di
/d

τ

Q  =     100     1   

 0.01  (divided by 10)

                                 0.1

Ω  = 0.1

-1 0 1

-1

0

1

(b)

V(t)/V
A

di
/d

τ

Ω =    0.1      1

                 0.5      3  (divided by 10)

Q  = 100

FIG. 7. Impact of the resistance R (upper panel) and capaci-
tance (bottom panel): Dependence of the current time derivative
on the applied voltage. The dimensionless current is i ¼ I=Ic and
the reduced time τ ¼ ωt=w. The parameters used here are w ¼ 2
and φ0 ¼ π=4; the resistance (i.e., Q) and capacitance (i.e.,
Ω ¼ ω=ωp) are varied, as shown in the legends.
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with the Josephson plasma frequency ωp and the quality
factorQ defined by the capacitanceCJ and the resistanceR,
respectively, as follows:

ω2
p ¼ 2eIc

ℏCJ
¼ 2ECEJ

ℏ2
; Q2 ≡ β ¼ 2e

ℏ
IcR2CJ: ðA11Þ

Here, the plasma frequency is also expressed with the
characteristic charging, EC ¼ ð2eÞ2=2CJ, and Josephson,
EJ ¼ ℏIc=2e, energies of the contact, and β is the Stewart-
McCumber parameter.
In Fig. 7 we explore the impact of the resistance R and

the capacitance CJ on the hysteresis considered previously
in Fig. 6; note that Fig. 6 corresponds to Q → ∞ and
Ω → 0. Our numerical calculations demonstrate that there
is a pinched hysteresis loop for Q≳ 100 and Ω≲ 0.1. For
realistic junctions, it seems that there is no problem both
with the former condition of weak damping (β ≫ 1) and
with the latter condition (ω ≪ ωp) of neglecting the
displacement current next to the Josephson one [8].

APPENDIX B: DYNAMICS OF THE
TWO-LEVEL SYSTEM

Consider now the dynamics of a two-level system, which
we consider here, for clarity, for the meminductive case
with the flux qubit. The generalization to other cases, such
as the one of the charge qubit, is obvious.
The current in the qubit loop is defined [9,25] by its

operator, given by −Ipσz. In order to take into account
relaxation processes, one has to consider the energy
representation. Let the qubit density matrix in this repre-
sentation be parametrized as follows: ρ ¼ 1

2
ð1þ xσÞ.

Changing from the flux representation to the energy
representation is executed by means of the matrix S ¼
ð cos ζ=2
− sin ζ=2

sin ζ=2
cos ζ=2Þ with tan ζ ¼ −Δ=ε0. Then the qubit current

becomes

Iq ¼ −Iphσzi ¼ Ip

�
Δ
ΔE

X −
ε0
ΔE

Z

�
: ðB1Þ

One can see that in the ground or excited state, X ¼ 0
and Z ¼ �1: Iq ¼ ∓Ip½ε0=ðΔEÞ�, with zero current at the
avoided-level crossing, for ε0 ¼ 0, and with Iq ¼ �Ip far
from it, at jε0j ≫ Δ.
The qubit current in Eq. (B1) is defined by the difference

between the probabilities of the currents in the two
directions hσzi, which is calculated by solving the Bloch
equation [9,25,26]:

_X ¼ −BzY − Γ2X;

_Y ¼ BzX − BxZ − Γ2Y;

_Z ¼ BxY − Γ1ðZ − Z0Þ: ðB2Þ

Here, Γ1;2 ¼ T−1
1;2 is the energy and phase relaxation rates,

Z0 ¼ tanhðΔE=2kBTÞ corresponds to the equilibrium
energy-level populations, and

Bx ¼
Δ
ΔE

ε1ðtÞ
ℏ

≡ 2Ωð0Þ
R sinωt; Ωð0Þ

R ¼ ΔA
2ℏΔE

; ðB3Þ

Bz ¼ −ωq −
ε0
Δ
Bx: ðB4Þ

These equations can also be written in vector form (to
better correspond to the theory of memory devices [3,4]):

_x ¼ fðx; IÞ≡B × x − Γ2x∥−Γ1ðx⊥ − x0Þ; ðB5Þ

x¼

0
B@

X

Y

Z

1
CA; B ¼

0
B@

Bx

0

Bz

1
CA; x0¼

0
B@

0

0

Z0

1
CA; ðB6Þ

BxðIÞ ¼
Δ
ΔE

2MIp
ℏ

I; BzðIÞ ¼ −ωq −
ε0
ΔE

2MIp
ℏ

I:

ðB7Þ

Here, the longitudinal and transversal components of
the vector are given by x∥ ¼ ðxexÞex þ ðxeyÞey and
x⊥ ¼ ðxezÞez, respectively. This can be simplified, if
Γ2 ¼ Γ1 ≡ Γ, then Eq. (B5) becomes Eq. (16).
In the case of free evolution, when A ¼ 0, with long

relaxation times, the Bloch equation can be written for
the diagonal and off-diagonal density matrix components,
respectively, ρ00 ¼ 1

2
ð1þ ZÞ and ρ10 ¼ 1

2
ðX þ iYÞ:

_ρ10 ¼ −iωqρ10;

_ρ00 ¼ 0: ðB8Þ

The solution is described by the constant energy-
level populations (defined by the initial condition)
and the beating, with frequency ωq, of the off-diagonal
components:

ρ00ðtÞ ¼ ρ00ð0Þ ¼ const;

ρ10ðtÞ ¼ ρ10ð0Þ exp ð−iωqtÞ: ðB9Þ

Consider now another situation, when the transition
between the qubit energy levels is induced by means of
the Rabi oscillations under resonant driving, when
δω≡ ω − ωq ≪ ω. Then we make the transformation

~ρ10 ¼ ρ10 exp ðiωtÞ≡ ~X þ i ~Y ðB10Þ

(the diagonal component Z is left unchanged) and use the
rotating-wave approximation, i.e., neglect the fast-rotating
terms, and from (B2) we obtain
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_Z ¼ −Ωð0Þ
R

~X − Γ1ðZ − Z0Þ; ðB11Þ

_~ρ10 ¼ ðiδω − Γ2Þ~ρ10 þ
1

2
Ωð0Þ

R Z: ðB12Þ

The latter equation can be rewritten as

_~X ¼ −δω ~Y þ Ωð0Þ
R Z − Γ2

~X; ðB13Þ

_~Y ¼ δω ~X − Γ2
~Y: ðB14Þ

The system of equations [(B11), (B13), (B14)] can be
solved analytically in two cases: for the stationary case, at
times t ≫ T1, T2 and for the case of long relaxation rates,
T1, T2 → ∞. The former solution is obtained by simply
assuming the lhs of those equations being zero. Consider

now in more detail the latter solution to see how Rabi
oscillations emerge. In this case, we ignore the relaxation
terms, and then look for the partial solutions of the
differential equations. Let us write down the solutions
here for the initial condition of the qubit being in the ground
state with ~Xð0Þ ¼ ~Yð0Þ ¼ 0 and Zð0Þ ¼ 1:

~XðtÞ ¼ Ωð0Þ
R

ΩR
sinΩRt; ðB15Þ

~YðtÞ ¼ δωΩð0Þ
R

Ω2
R

ð1 − cosΩRtÞ; ðB16Þ

ZðtÞ ¼ 1 −
Ωð0Þ2

R

Ω2
R

ð1 − cosΩRtÞ; ðB17Þ
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FIG. 8. (a) Hysteresis of X as a function of ω and cycle calculated using Eq. (24). This plot is obtained employing the following set of

parameters: ε0 ¼ 0, Ωð0Þ
R =ωq ¼ 1=2, Γ ¼ 0.01Δ=ℏ. (b) Two-photon excitation regime. The parameter values are similar to the ones in

Fig. 3. (c) Hysteresis of X in the delayed-response region found at ε0 ¼ 0, Ωð0Þ
R =ωq ¼ 1=2, and Γ ¼ 0.01Δ=ℏ. (d) ΔX along the vertical

cross section of (c) denoted by the dashed line.
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ΩR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωð0Þ2

R þ δω2

q
: ðB18Þ

This provides the formula for the Rabi oscillations (of the
upper-level occupation probability):

PþðtÞ ¼
1

2
ð1 − ZÞ ¼ Pþð1 − cosΩRtÞ; ðB19Þ

Pþ ¼ Ωð0Þ2
R

2Ω2
R
¼ 1

2

Ωð0Þ2
R

Ωð0Þ2
R þ δω2

: ðB20Þ

For the qubit current in Eq. (B1), we need Z and X.
The former value is given by Eq. (B17) and the latter is
found with Eq. (B10):

X ¼ Ωð0Þ
R

ΩR

�
sinΩRt cosωtþ

δω

ΩR
ð1 − cosΩRtÞ sinωt

�
:

ðB21Þ

In particular, in resonance, at δω ¼ 0 (then ΩR ¼ Ωð0Þ
R ), we

obtain

Iq
Ip

¼ Δ
ΔE

sinΩð0Þ
R t cosωt −

ε0
ΔE

cosΩð0Þ
R t: ðB22Þ

This is further discussed in the main text, Sec. IV.
Thus, we have analyzed the Rabi oscillations. It is

worth pointing out that these oscillations can be viewed as
a consequence of the constructive interference of the
Landau-Zener-Stückelberg-Majorana (LZSM) transitions
[18,38]. The opposite case refers to the destructive LZSM
interference, which corresponds to the periodic small
rising, in the relevant adiabatic basis, of the height given
by the LZSM probability. Also we note that besides the
sinusoidal driving considered here in detail, there are also
other aspects of the qubits driven by different pulses [9],
which may also be important in the context of quantum
memory devices.

APPENDIX C: HYSTERESIS SIZE

In addition to the results presented in Sec. IV, here we
provide some additional plots (Fig. 8) that could help us to
better understand the system’s response (in certain ranges
of parameters). These plots are obtained similarly to the
plots in Fig. 5.
In particular, Fig. 8(a) exemplifies the Rabi oscillations

regime (Sec. IVA) for the case of Ωð0Þ
R =ωq ¼ 1=2. As

we previously discussed, for a certain ω ∼ ωq, the period of
the hysteresis loop is double the period of the external
excitation [see also Fig. 2(a)]. This feature is clearly seen in
Fig. 8(a) as an alternation of the hysteresis sign in the
consecutive cycles.

Figure 8(b) is related to the two-photon excitation regime
(Sec. IV B) showing that a stable hysteresis indeed occurs
at a certain ω ∼ ωq=2. The oscillations in the hysteresis
appear when ω moves up or down from the hysteretic
value. In Fig. 8(c) we additionally explore the delayed-
response mechanism of the hysteresis (Sec. IV C).
According to Fig. 8(c), the delayed-response mechanism
provides a stable hysteresis with a fixed sign. Its maximum
corresponds to ω ∼ Γ=2 as shown in Fig. 8(d).

APPENDIX D: QUANTUM UNCERTAINTY

Let us finally calculate the quantum uncertainty [39] of
the measurement of output. For this purpose, we introduce
the output operator ŷðtÞ as [see Eq. (14)]

ŷðtÞ ¼ y0
uðtÞ
u0

− y0ϰσz: ðD1Þ

Then, the standard deviation of y is given by

ΔyðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h(ŷðtÞ − yðtÞ)2i

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hŷ2ðtÞi − y2ðtÞ

q
; ðD2Þ

where yðtÞ ¼ hŷðtÞi. Using Eq. (D1), we finally obtain

ΔyðtÞ ¼ y0ϰ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − hσzi2

q
: ðD3Þ

Let us illustrate Eq. (D3). For this purpose, we consider
the Rabi oscillations example from Sec. IVA. Assuming
the case ε0 ¼ 0 [Eq. (21)] and ΩR=ω ¼ 1 (Fig. 2), we get

ΔyðtÞ ¼ y0ϰ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − sin2Ωð0Þ

R t cos2 ωt
q

ðD4Þ

that is illustrated in Fig. 9.
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FIG. 9. Time dependence of the output y and its uncertainty
region [the dashed lines represent yðtÞ � ΔyðtÞ].
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