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ABSTRACT: Quantum mechanical effects induced by the
miniaturization of complementary metal-oxide-semiconductor
(CMOS) technology hamper the performance and scalability
prospects of field-effect transistors. However, those quantum
effects, such as tunneling and coherence, can be harnessed to
use existing CMOS technology for quantum information
processing. Here, we report the observation of coherent charge
oscillations in a double quantum dot formed in a silicon
nanowire transistor detected via its dispersive interaction with
a radio frequency resonant circuit coupled via the gate.
Differential capacitance changes at the interdot charge transitions allow us to monitor the state of the system in the strong-
driving regime where we observe the emergence of Landau−Zener−Stückelberg−Majorana interference on the phase response
of the resonator. A theoretical analysis of the dispersive signal demonstrates that quantum and tunneling capacitance changes
must be included to describe the qubit-resonator interaction. Furthermore, a Fourier analysis of the interference pattern reveals a
charge coherence time, T2 ≈ 100 ps. Our results demonstrate charge coherent control and readout in a simple silicon transistor
and open up the possibility to implement charge and spin qubits in existing CMOS technology.
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Q uantum computation promises to be exponentially more
efficient than classical computers in solving a particular

set of problems.1−3 However, implementing the underlying
quantum algorithms requires a scalable hardware that would
allow making multiqubit structures possible. Silicon quantum-
dot-based qubits are promising candidates for such quantum
hardware due to their tunability, flexible coupling geometries,
and long coherence times.4−6 Furthermore, using silicon, one
can exploit the advances of complementary metal-oxide-
semiconductor (CMOS) technology and benefit from an
industrial platform dedicated to building complex scalable
circuits.
A first step toward quantum computation with CMOS

quantum dots would be demonstrating that time-dependent
coherent phenomena can be harnessed in a scalable CMOS
device. One approach to test the coherent nature of a system is
Landau−Zener-Stückelberg−Majorana (LZSM) interferome-
try,7,8 in which a coupled two-level system is strongly driven
through its anticrossing. This approach has been successfully

applied for coherent quantum control of superconducting
qubits,9−16 semiconductor quantum dots17−20 and donors in
silicon.21

Additionally, interfacing quantum systems with high-
frequency electrical resonators promises compact high-
sensitivity quantum-state read-out and long distance transfer
of information,22−25 ideal characteristics for a prospective
scalable architecture. In these systems, the dispersive shift on
the resonator response due to the qubit’s state-dependent
quantum or tunnelling capacitance26−31 is exploited for read-
out. However, in the strong-driving regime, these two different
dispersive contributions can coexist11 and it becomes important
to understand the nature of the qubit-resonator interaction and
the different contributions to the dispersive response.
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Here, we demonstrate coherent control and read-out of the
charge state of a double quantum dot (DQD) in a CMOS
transistor. We perform dispersive charge detection in situ by
coupling the gate of the transistor to a MHz resonator and
monitoring changes in the differential capacitance at the
interdot charge transitions. We show coherent manipulation of
the charge state in the strong-driving regime, where we observe
LZSM interference on the charge occupation probabilities of
the DQD. We find that the DQD-resonator interaction is
accurately described by a combination of quantum capacitance
changes, due to the nonzero energy-band curvature, and
tunnelling capacitance variations, since the quantum state
probability redistribution happens at a rate much faster than the
probing frequency of the resonator. Finally, we obtain the
charge coherence time by analyzing the interference signal in
Fourier space. Overall, our work demonstrates charge coherent
manipulation and read-out in a CMOS transistor, paving the
way toward CMOS-based quantum computing.
The device studied here is a fully depleted silicon-on-

insulator (SOI) nanowire transistor fabricated under CMOS
standards. It consists of a 11 nm thick and 80 nm wide undoped
Si (001) channel gated by a 50 nm long polycrystalline wrap-
around silicon top-gate (G), as can be seen in Figure 1a,b. The
SOI layer sits on a 145 nm thick SiO2 buried oxide and a 850
μm handle wafer that can be used as a back gate.32 The highly
doped source and drain are formed by ion implantation, after
deposition of 12 nm long Si3N4 spacers at both sides of the top
gate. A doping gradient occurs between the source-channel and
drain-channel junctions producing confinement along the
transport direction.33 Furthermore, due to the corner effect in
square cross section nanowire transistors, accumulation
happens first at the topmost corners generating a DQD in
parallel.31,34−36

In the presence of interdot tunnel coupling Δc, the energy
spectrum of a DQD with one electron presents a well-defined
two-level system with an avoided crossing at zero-energy
detuning (ε = 0), as depicted in Figure 1c. At large detuning |ε|
> 0, the electron is strongly localized in one of the dots (left |L⟩
or right |R⟩ charge states). The ground (−) and excited state
(+) energies of this system are given by

ε= ± + Δ±E
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This two-level system has an associated differential capacitance,
as seen from the top gate, given by
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where Cgeom corresponds to the DQD’s geometrical capacitance
and α is the difference between the right and left dot-to-gate
couplings (see the Supporting Information). The average
electron occupation (defined here for the right dot) can be
conveniently expressed as a function of the difference between
ground state and excited state occupation probabilities
Z = P− − P+ as
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where ΔE = E+ − E−.
37 Finally, using eqs 2 and 3, we arrive at

the generalized expressions for the differential capacitance of a
DQD,
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Expression 4 contains two contributions parametric on ε.
The first, CQ, corresponds to the so-called quantum capacitance
arising from adiabatic charge transitions and the nonzero
curvature of the energy bands.26,27 The second, the tunnelling
capacitance CT, appears when population redistribution
processes, such as relaxation and thermal excitation, occur at
a rate comparable or faster than the probing frequency.28,29,31

In general, both contributions must be considered when
analyzing the effect of the qubit on an external system.
To detect the differential capacitance of the DQD, we use

gate-based radio frequency reflectometry30,31,36,38 at the base
temperature of a dilution refrigerator. We couple the DQD via
the gate to a f rf = 355 MHz resonant tank circuit formed by a
surface mount inductor (L = 390 nH) and the gate to ground
parasitic capacitance (Cp = 515 fF). Additionally, a surface

Figure 1. Device characterization and measurement of interdot
quantum capacitance. (a) Scanning electron microscope image of a
similar transistor (channel width w = 80 nm and gate lentgh l = 50
nm) connected to a reflectometry setup via the gate. DC and MW
voltages are delivered to the source via a K250 bias-tee. The MW line
is attenuated −23 dB at 1 K and −3 dB at 45 mK. (b) Schematic cross
section of the transistor perpendicular to the transport direction.
Quantum dots L and R form at the topmost edges of the transistor due
to the corner effect. (c) Schematic energy diagram of a single-electron
shared among two tunnel coupled quantum dots as a function of the
energy detuning ε. The charge state configuration of the ground state
(red curve) and excited state (black curve) are indicated as |L⟩, |R⟩.
(d) VG−VBG stability map of the phase response of the resonator
where an interdot charge transition is observed. The direction of
increasing detuning is marked by a black arrow. (e) Phase response
(black solid curve) and fit (red dashed curve) of the interdot transition
as a function of VG and calibrated detuning for VBG = 0 V.
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mount bias-tee allows us to apply a DC gate voltage (VG). We
apply a −95 dBm signal at the resonant frequency and monitor
the phase of the reflected signal obtained from IQ-
demodulation after cryogenic and room temperature amplifi-
cation. The demodulated phase response is sensitive to
capacitance changes ΔC of the probed system,27 ΔΦ ≈
−2QΔC/Cp, where Q is the quality factor of the resonator (Q =
42).
Figure 1d shows the demodulated phase response of the

resonator (ΔΦ) as a function of the top-gate voltage (VG) and
back-gate voltage (VBG) in the subthreshold regime of the
transistor, where direct source-drain current measurements are
not sensitive enough (see the Supporting Information). Here,
we observe a diagonal line of enhanced phase response, which
we identify with a single valence electron shared between
quantum dots, as demonstrated below. In this voltage regime,
the tunnel rate between the source and drain reservoirs and the
two quantum dots is slow, leading to a negligible reservoir-to-
dot signals and indicating that both dots are well-centered in
the channel.31,40,41 On the contrary, the interdot charge
transition is still visible due to the finite tunnel coupling Δc
between quantum dots and also due to a slight asymmetry in
the dot-to-gate couplings, which could be due to potential
irregularities at the interface.35 The interdot line is the last
transition we observe, however excited-state spectroscopy
revealed it is not the (0,1)−(1,0) transition but an odd-parity
charge transition39 with total electron number higher than 1.
Overall, these measurements demonstrate that gate-based
reflectometry simplifies the qubit architecture and presents
the advantage that charge motion can be detected without the
need of direct transport or external electrometers.
In order to confirm the quantum nature of the interdot

transition, we do a line-shape analysis of the signal, as can be
seen in Figure 1e. Here, we plot the phase response as a
function of gate voltage for VBG = 0. We use eq 4 to fit the data
assuming adiabatic conditions for the interdot transition (Δc ≫
kBTe, hf rf) since the electron temperature in the leads is Te <
200 mK. Under these conditions Z ≈ 1 and the differential
capacitance of the system becomes only dependent on the
tunnel coupling. We obtain Δc = 98 ± 2 μeV. Here, we have
used ε = eα(VG − VG0), where α = 0.25, accurately obtained
from microwave spectroscopy measurements, as shown below,
and VG0 is the gate voltage value at which the signal is
maximum.
We now move on to the investigation of microwave-driven

coherent charge oscillations between quantum dots. Coherent
transitions between the two charge states can be promoted by
fast-oscillating voltage signals that vary the energy splitting
periodically, as sketched in Figure 2a, where we plot the ground
(red) and excited (black) state energies as a function of time. At
the point of minimum energy splitting, a Landau−Zener
transition occurs that splits the electron wave function in to
ground and excited states with certain probability PLZ =
exp(−πΔc

2/2Amwhfmw), where Amw and fmw are the amplitude
and frequency of the driving signal, respectively, and h is
Planck’s constant. After the first passage, the two states acquire
a dynamical phase difference (Δθ) given by the time integral of
ΔE, marked in gray in Figure 2a. If a second passage is
performed at time scales faster than the electron phase
coherence time (T2), a second Landau−Zener transition
generates a quantum mechanical interference of the ground
and excited state occupation probabilities P−(+). This
phenomenon is known as Landau−Zener−Stückelberg−

Majorana interferometry, analogous to Mach−Zehnder inter-
ferometry,9,11 and allows probing coherent charge tunnelling
and the time scale at which they occur.
To generate the required conditions to observe this

phenomenon in our system, we vary the energy detuning
periodically, ε + Amw cos(2πfmwt), by applying an attenuated
MW signal via the source of the device (see Figure 1a). Here
we use fmw = 34 GHz and variable amplitude Amw = κVmw,
where we use κ = 0.46 meV/V to calibrate the microwave
generator output, Vmw (see the Supporting Information). The
characteristic LZSM interference pattern is shown in Figure 2b,
where we plot ΔΦ as a function of detuning and microwave
amplitude. In the region defined by Amw ≥ ε, the qubit is
periodically driven through the avoided crossing which in turns
affects the resonator response. First, we observe that ΔΦ varies
periodically as a function of ε, with resonant lines appearing at
equally spaced points ε = nhfmw. Here, n-photon transitions
mediate the charge oscillation between quantum dots and allow
calibrating the dot-to-resonator coupling α. Moreover, we see
that, at fixed detuning, ΔΦ oscillates (quasi)periodically around
zero as a function of the microwave amplitude (seen in more
detail in Figure 3b). Since Δθ is an increasing function of Amw,
what we observe here is the alternation between constructive
and destructive interference in the ground state occupation
probability. Overall, the results in Figure 2b demonstrate the
dispersive readout of coherent charge oscillations in a
semiconductor DQD via its interaction with an electrical
resonator.

Figure 2. Dispersive detection of Landau−Zener−Stückelberg−
Majorana interference. (a) Evolution of the ground (red) and excited
(black) state energies as a function of time t, when periodically driven
through the anticrossing. Here Landau−Zener transitions occur with
probability PLZ. Between two successive transitions, the excited and
ground states acquire a dynamical phase Δθ given by the area between
energies. (b) Phase response of the resonator ΔΦ as a function of
detuning ε and calibrated microwave amplitude Amw.
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Noteworthy are the regions of positive resonator phase shift
in Figure 2b. In the simple adiabatic picture, the differential
capacitance of a DQD simplifies to its quantum capacitance CQ.
Considering this limit, ΔΦ > 0 implies an average population
inversion, which is not achievable in two-level systems.
Understanding the qubit−resonator interaction in nonadiabatic
regimes, such as LZSM, requires studying a hybrid regime in
which not only quantum capacitance changes occur but also
tunnelling capacitance variations.
We consider here the qubit-resonator system semiclassically:

a quantum system coupled to a classical resonator (hf rf ≪ kBT).
Such a semiclassical approach was successful for the description
of most phenomena related to atom-light interaction.42 In our
case, this assumption means that all characteristic qubit times
are much shorter than the resonator period f rf

−1 ≫ h/Δc, T1,2.
Since the resonator is much slower than the qubit ( f rf ≪ fmw),
it sees the stationary value for the occupation probabilities.
Assuming this, we can make use of the analytic result for the
time-averaged upper-level occupation probability P+ in the

strong-driving regime, obtained in the rotating-wave approx-
imation8
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where Δc,n = ΔcJn(Amw/hfmw), and Jn is the nth order Bessel
function.
The differential capacitance of the DQD can then be

calculated using eqs 4 and 7. We note that eq 7 describes the
series of Lorentzian-shaped multiphoton resonances, while its
derivative gives the alternation of positive and negative values.43

Figure 3a shows the comparison of the measured (left) and
calculated (right) LZSM interferometry patterns. Here, we use
T2 = 100 ps, obtained from Fourier analysis, as demonstrated
below, and we use T1 as a fitting parameter. We find the best fit
for T1 ≈ T2 = 100 ps. These results justify our assumption that
all characteristic qubit’s times are much shorter than the
resonator period. This short T1 could be due to the presence of
low-lying orbital excited states in the silicon quantum dots
which have been reported to have relaxation times ranging
down to the picosecond regime.45

To further demonstrate the good match between experiment
and theory, we plot, as a function of the amplitude of the MW
signal, the measured and calculated n-photon traces in Figure
3b,c, respectively. The n = 0,1,2,3 (black, red, green, blue) are
obtained at the points marked by the arrows in panel (a). We
observe that the theory successfully captures the oscillatory
behavior of the differential capacitance, highlighting the
importance of the third term in eq 4 and sets LZSM in a
regime where quantum and tunnelling capacitance changes
must be considered. The match is particularly good for the n =
1,2,3 photon lines while for the 0-photon line the agreement is
qualitative. This can be understood knowing that eq 7 assumes
Δ ≪ |ε|, which means that it is not exact at around ε = 0.
Nevertheless, its practical implementations21,44,46 demonstrated
that this gives reasonable description even for ε ∼ Δ.
Finally, we move on to the study of electron phase coherence

time in our strongly driven two-level system. In Figure 4a, we
perform a Fourier analysis of the dispersive response of the
resonator of Figure 2b. The two-dimensional Fourier transform
of the phase response, ΔΦ̃, shows the characteristic lemon-
shaped ovals of increased intensity in the reciprocal space (kε,
kA) similar to results obtained for superconducting qubits

13 and
semiconductor quantum dots.20,44 Two-dimensional Fourier
transforms of the occupation probabilities in the LZSM regime
have been demonstrated to carry information about the qubit’s
dephasing mechanisms. More particularly, the transformed
populations decay exponentially in kε as exp(−kε/T2).

20,47 This
result is directly applicable to ΔΦ̃ since its associated
differential capacitance is proportional to the occupation
probabilities, P+ and P− through the quantum capacitance
term as seen in eq 5. We demonstrate this in Figure 4b where a
one-dimensional kε trace at kA = 0 reveals an exponentially
attenuated signal. From the fit, we find T2 = 100 ± 50 ps,
similar to values reported for charge coherence in semi-
conductor double dots21,48 and Cooper-pair transistors.49

We confirm our estimation of T2 by performing a frequency
dependence of the LZSM pattern in Figure 4c−e. Here we
explore three driving regimes: the quantum coherent regime
[panel (c)] the incoherent driving regime [panel (e)] and an
intermediate driving regime [panel (d)]. In the quantum

Figure 3. Theoretical analysis. (a) Comparison between experimental
and calculated LZMS interferograms. Experimental (b) and calculated
(c) n-photon traces as a function of microwave amplitude. The traces
are taken at the points indicated by the colored arrows in (a). The 0, 1,
2, 3 photon traces correspond to the black, red, green, and blue solid
lines, respectively.
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coherent regime, measured at fmw = 34 GHz, successive
transitions through the anticrossing are correlated and we
observe the clear signature of the interference fringes indicating
fmw > T2

−1. In the incoherent regime, fmw = 14 GHz, Landau−
Zener transitions are uncorrelated and we observe no sign of
interference oscillations, hence fmw < T2

−1. However, in the
intermediate regime, fmw = 26 GHz, we observe only one clear
minima and maxima regions, indicating that the number of
correlated passages is close to two and hence fmw ≈ T2

−1. These
results agree well with the coherence time obtained from the
Fourier analysis.
In conclusion, we have reported the dispersive read-out and

coherent manipulation of a DQD in the channel of a CMOS
nanowire transistor. Gate-sensing allows for in situ detection of
charge motion within the double-dot system without the need
of external electrometers. Additionally, we have performed
coherent manipulation of the DQD charge state by means of
high-frequency microwave signals and observed the emergence
of LZSM interference in the resonator’s response. Furthermore,
we have demonstrated that, in fast relaxing systems, the
dispersive DQD−resonator interaction contains contributions
from both the quantum capacitance and the tunnelling
capacitance. In the future, split-gate CMOS transistors, as the
ones reported in refs 21 and 36, could provide better control of
the energy detuning between dots and a larger asymmetry in
the dot-resonator coupling, improving the sensitivity of the
read-out protocol. Overall, our results demonstrate that it is
possible to integrate qubit control and read-out with existing
CMOS technology opening a path toward large-scale integrated
qubit architectures.
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