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The Josephson effect in ballistic point contacts between single-band and multi-band superconduc-

tors was investigated. It was found that in the case of Josephson junctions formed by a single-band

and an s6-wave two-band superconductor as well as by a single-band and a three-band supercon-

ductor the junctions become frustrated, showing the u-contact properties. Depending on the ground

state of a three-band superconductor with time-reversal symmetry breaking, the Josephson junction

can have from one to three energy minima, some of which can be locally stable. We also study the

behavior of a dc SQUID based on the Josephson junctions between single-band and multi-band

superconductors. Some features on the dependences of the critical current and the total magnetic

flux on the applied flux of a dc SQUID based on the Josephson point contacts between a single-

band superconductor and an s6-wave superconductor, three-band superconductor with broken time-

reversal symmetry and three-band superconductor without broken time-reversal symmetry as com-

pared to the conventional dc SQUIDs based on single-band superconductors were found. The

results can be used as an experimental tool to detect the existence of multi-band structure and time-

reversal symmetry breaking. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4935255]

1. Introduction

One of the most efficient ways of obtaining information

about the symmetry of the order parameter in unconven-

tional superconductors is phase-sensitive techniques based

on the Josephson effect in such superconducting systems.

Armed with the hypothesis about a possible shape of the

Cooper pair wave function, we can theoretically predict spe-

cific aspects of the behavior of various Josephson systems

based on unusual superconductors. It is these features that

form the basis for the techniques known as the Josephson

interferometry. This technique involves the study of the

magnetic response of a Josephson junction, current-phase

relation for the Josephson junctions formed at grain bounda-

ries and SQUID interferometry. Among the variety of the

Josephson interferometry techniques, the latter is often the

most useful. From a technical point of view, it is based on

the study of the characteristics of a one-contact interferome-

ter (a Josephson junction in a superconducting ring) or a dc

SQUID (a SQUID ring with two Josephson junctions). In

this geometry, one of the superconductors forming the junc-

tion has an isotropic s-wave symmetry of the order parame-

ter, while the second one is an unusual superconductor with

the symmetry of the order parameter to be revealed.1,2

It is important to note that the Josephson interferometry

has already established itself as a useful technique that

greatly helped in the identification of d-wave pairing

mechanism of Cooper pairs in cuprate high-Tc superconduc-

tors (see, e.g., review Ref. 3).

The recent discovery of a new class of high-Tc supercon-

ductors based on iron4 gave rise to the question of the pairing

mechanism in these compounds and hence the symmetry of

the superconducting order parameter. The initially widely

accepted hypothesis of the so-called alternating-sign two-

component s6-wave order parameter5,6 does not allow us to

unambiguously explain the experimental data for some of

the iron superconductors.7–14 In this regard, there appeared

models based on the assumption of a multi-component chiral

structure of the order parameter with the symmetry of the

type s þ id,15 s6 þ isþþ,16 or with a conventional s-wave

symmetry with three or more gaps. Under certain conditions,

the presence of chirality leads to the appearance of frustra-

tion, when the time-reversal symmetry in a superconductor

is broken.17–26 This means that the phases of the order pa-

rameter cannot simultaneously satisfy the minimum energy

condition, hence creating a two or more fold degenerate

ground state.

According to theoretical predictions, time-reversal sym-

metry breaking in iron superconductors should lead to some

interesting phenomena, such as the appearance of spontane-

ous magnetic field in the presence of nonmagnetic defects,

massless Leggett modes and phase solitons (see review

Ref. 27 and references therein).
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While several technologies have already been proposed

for the detection of potential time-reversal symmetry break-

ing in iron-based superconductors,28–31 currently there is no

strong experimental evidence for the existence of this phe-

nomenon in iron-based superconductors.

Since the breaking of the time-reversal symmetry is, as a

matter of fact, a consequence of the frustration of the order

parameter phases, it is logical to assume that for the detection

of this phenomenon, the above mentioned phase-sensitive

experiments, and in particular the Josephson interferometry,

can be advantageous.

Previously, we investigated the Josephson effect32 and

the behavior of a dc SQUID containing Josephson point con-

tacts between an s-wave superconductor and a three-band

isotropic superconductor in the dirty limit.30 We have estab-

lished the unusual dependence of the critical current on the

external magnetic flux and demonstrated the possibility of

appearance of multi-hysteresis loops in the dependence of

the net flux on the external magnetic flux. It was found that

all these features of Josephson systems are associated with

time-reversal symmetry breaking. Therefore, the Josephson

interferometry is a powerful tool for the detection of this

phenomenon. To complete the picture of the possibilities of

using the Josephson interferometry to determine the structure

of the order parameter and the possible violation of the time-

reversal symmetry in iron-based superconductors, in the

present paper we will consider the Josephson effect and

the behavior of a dc SQUID in another limiting case, when

the Josephson point contact between a single-band and a

multi-band superconductor exhibits ballistic conduction.

2. Formalism

The theory of the stationary Josephson effect in ballistic

point contacts (S-c-S contacts) formed by s-wave single-band

superconductors has been developed in Ref. 33. The results of

this study can be generalized to the point contact between a

single-band and an n-band (n � 2) superconductor (Fig. 1).

In this case, the total current flowing through the

Josephson junction at any temperature T is given by the

expression

I ¼
Xn

i¼1

2pjD0jjDij
eRNi

sin vþ /isgn i� 1ð Þ
� �

T

�
X
x>0

�
1

4

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ jD0j2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ jDij2

q� �2

� jD0j þ jDijð Þ2
	
þjD0jjDij cos2 vþ /isgn i� 1ð Þ

2


�1

:

(1)

Here, v is the phase difference between the first order param-

eters of the n-band and the single-band superconductor, /i ¼
ui � u1 denotes the phase difference between the i-th and

the first order parameters of the bulk n-band superconductor,

jD0j is the magnitude of the energy gap of the single-band

superconductor, jDij are the magnitudes of the energy gaps

of the n-band superconductor, x is the Matsubara frequency,

and RNi are the partial contributions of each band to the total

resistance of the contact in the normal state.

The temperature dependence of the magnitudes of the

energy gaps in the n-band superconductor can be found by

numerical solution of the self-consistency equation

jDij ¼ 2pT
X

i

X
j

X
x>0

kij
jDij exp I/isgn i� 1ð Þ

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ jDij2

q ; (2)

where kij are the constants of electronic interaction between

the bands of the n-band superconductor and I is the imagi-

nary unit.

Let us make few comments regarding the phase differen-

ces /i, which determine the basic state of an n-band supercon-

ductor. For a two-band (n ¼ 2) clean bulk superconductor, the

ground state is non-degenerate with u2 ¼ u ¼ 0 or p, depend-

ing on the nature of the interband interaction (attraction or

repulsion, respectively). As has been shown in Refs. 31 and

32, in the case of a three-band superconductor, the degeneracy

multiplicity of the ground state is determined by the values of

the interband interaction coefficients and the modules of the

order parameters. In the microscopic description, it has been

found that the phase difference of the order parameters u2 ¼
u and u3 ¼ h can be expressed as:

if / 2 � p
2
; p

2

� �
and h 2 � p

2
; p

2

� �
, then

/ ¼ 6arcsinX;

h ¼ 7arcsin
G1jD2j
G3jD3j

X
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;

/ ¼ 0;
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(8><
>: (3)
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FIG. 1. Schematics of a contact between single-band (coral color) and

multi-band (yellow) superconductors. The length of the point contact is

much greater than its width, and the width is much smaller than the mini-

mum values of the coherence length and the London penetration depth for

the single-band superconductor and the i-th band of the multi-band

superconductor.
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Here

X ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� G2
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2jD3j2 � G2

1G2
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1G2
2jD2j2

2G2
1G2G3jD1jjD2j

 !2
vuut

;

G1 ¼ k�1
12 N1 þ k�1

21 N2, G2 ¼ k�1
23 N2 þ k�1

32 N3, and G3 ¼ k�1
13

N1 þ k�1
31 N3, where Ni are the densities of states at the Fermi

level for each of the bands. The choice of stable solutions,

corresponding to the frustrated or non-frustrated states is

determined by the second variation of the energy of the

three-band superconductor with the difference of the phases

u and h.

To simplify the analysis of the problem, we make a few

assumptions. Let the temperature T be equal to zero and

assume that the energy gaps of the superconductors are

equal: jD0j ¼ jDij ¼ jDj. These assumptions will help to gain

qualitative understanding of the main features of the behav-

ior of the Josephson system without resorting to complex nu-

merical solution of Eqs. (2)–(6) in the general case.

Based on these assumptions, from Eq. (1) we obtain an

expression for the current flowing through the Josephson

junction

I ¼
X

i

pjDj
eRNi

sin
vþ /isgn i� 1ð Þ

2
sgn cos

vþ /isgn i� 1ð Þ
2

:

(7)

Then, by integrating over v, we find the energy of the

Josephson junction

E ¼ �
X

i

U0jDj
2eRNi

cos
vþ /isgn i� 1ð Þ

2










: (8)

3. Josephson effect in point contacts between single-band
and multiband superconductors

As follows from Eqs. (7) and (8), the current flowing

through the Josephson junction formed by two single-band

s-wave superconductors, is30

I ¼ pjDj
eRNi

sin
v
2

sgn cos
v
2
; (9)

and the energy of the Josephson junction

E ¼ � U0jDj
2eRN1

cos
v
2




 


: (10)

The current-phase relation for such a contact and the de-

pendence of the Josephson energy on the phase difference is

shown in Fig. 2.

It can be seen that the I(v) dependence experiences a

jump at the point v ¼ p. This jump is the main difference

between the Josephson junction with ballistic conductivity

and the similar system with diffusive conductivity.34

In the case of a junction formed by single-band and two-

band superconductors, the current-phase relation can exhibit

new qualitative features if the two-band superconductor has

the s6-wave symmetry of the order parameter (the character-

istics of the Josephson junction with a two-band supercon-

ductor of sþþ-wave symmetry are qualitatively similar to

those of the junction between single-band superconductors,

see Fig. 2). The I(v) dependence is, according to Eq. (7), as

follows:

I ¼ pjDj
eRN1

sin
v
2

sgn cos
v
2
� pjDj

eRN2

cos
v
2

sgn sin
v
2
; (11)

and the energy of the Josephson junction, according to Eq.

(8), is equal to

E ¼ � U0jDj
2eRN1

cos
v
2




 


� U0jDj
2eRN2

sin
v
2




 


: (12)

Several conclusions follow from Eqs. (11) and (12).

First, the Josephson junction becomes frustrated (Fig. 3)

with two-fold degenerate ground state

X 1ð Þ ¼ 2arctan
RN1

RN2

� �
and X 2ð Þ ¼ 2p� arctan

RN1

RN2

� �
:

(13)

Secondly, the frustrated ground state corresponds to a

non-zero phase difference (normal contact, see Fig. 2) or p
(p-contact). Following the definition of Ref. 35, we call such

a Josephson system u-contact. Thus, the Josephson system

formed by a conventional and a two-band superconductor

with the s6-wave symmetry of the order parameter leads to a

frustrated u-contact. Note that the possibility of a frustrated

tunnel junction between a single-band and a two-band s6

superconductor has already been predicted in the phenome-

nological Ginzburg-Landau theory.36

FIG. 2. Current-phase dependence (blue, 1) and the Josephson energy (red,

2) of a point contact between two single-band superconductors.

FIG. 3. Current-phase dependence (blue, 1) and the Josephson energy (red,

2) of a point contact between a single-band and a two-band superconductor

with the s6-wave symmetry of the order parameter. The ratio RN1/RN2 ¼ 1.
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The behavior of the Josephson junction, which is formed

by a single-band and a three-band superconductor, is much

more complicated. First of all, this is due to the presence of

time-reversal symmetry breaking in the three-band supercon-

ductor, which leads to frustration—the emergence of two

ground states in the bulk three-band superconductor, u2 ¼ u
and u3 ¼ h. In this case, the phase differences are deter-

mined by Eqs. (3)–(6). According to Eq. (7), the Josephson

current through the junction is defined as

I ¼ pjDj
eRN1

sin
v
2

sgn cos
v
2
þ pjDj

eRN2

sin
vþ /

2
sgn cos

vþ /
2

þ pjDj
eRN3

sin
vþ h

2
sgn cos

vþ h
2

; (14)

and the Josephson energy is, according to Eq. (8),

E ¼ � U0jDj
2eRN1

cos
v
2




 


� U0jDj
2eRN2

cos
vþ /

2










� cos

vþ h
2










:

(15)

To investigate the properties and characteristics of the

Josephson junction, the phase differences u and h can be

chosen arbitrarily since it is always possible to select such

values of the coupling constants kij, that satisfy Eqs. (2)–(6).

In other words, after u and h are selected, there are five

equations and two inequalities to determine nine coupling

constants. Three of the equations are consistency equations

(3)–(6), two others result from the respective equations

determining phase differences u and h, and two inequalities

follow from the second variation of the energy of a bulk

three-band superconductor, which determine the stability of

the ground states of the bulk three-band superconductor.

Using these arguments, let us consider a three-band

superconductor with time-reversal symmetry breaking by

selecting one of the ground states in the form u ¼ 0.6p and

h ¼ 1.2p. Since the above phase differences are in the sec-

ond and third quadrants, respectively, they belong to the

intervals u 2 [p/2, 3p/2] and h 2 [p/2, 3p/2], and the other

ground state corresponds to u ¼ 1.4p and h ¼ 0.8p.

The dependences of the energy and current on the

phase difference across the Josephson junction are shown in

Fig. 4.

As can be seen, the frustration of the ground state of a

bulk three-band superconductor gives rise to two different

dependences I(v) and E(v). Practically, this means that in a

set of experimental measurements, various current-phase

characteristics of the Josephson junction can be observed.

Which of them is realized in the specific experiment depends

on the history of the three-band superconductor, i.e., in

which of the frustrated states is the three-band superconduc-

tor during this measurement.

Moreover, the dependence E(v) clearly indicates that the

Josephson system with a three-band superconductor in the

frustrated state with u ¼ 0.6p and h ¼ 1.2p or u ¼ 1.4p and

h ¼ 0.8p behaves like a u-junction. We also found that such

a ballistic junction formed by a single-band and three-band

superconductor with time-reversal symmetry breaking has,

in addition to the global minimum, two local minima in the

dependence E(v) (Fig. 4).

FIG. 4. Current-phase dependence (blue, 1) and the Josephson energy (red, 2) of a point contact between a single-band and a three-band superconductor with

time-reversal symmetry breaking and frustrated ground states (a) u ¼ 0.6p and h ¼ 1.2p and (b) u ¼ 1.4p and h ¼ 0.8p.

FIG. 5. Current-phase dependence (blue, 1) and the Josephson energy (red, 2) of a point contact between a single-band and a three-band superconductor with-

out time-reversal symmetry breaking and ground states (a) u ¼ 0 and h ¼ p and (b) u ¼ p and h ¼ p.
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We now consider the properties of the Josephson junc-

tion, which is formed by a single-band and a three-band

superconductor without breaking the time-reversal symmetry

which has the ground states u ¼ 0 and h ¼ p or u ¼ p and h
¼ p (the case u ¼ 0, h ¼ 0 is trivial and qualitatively

matches the properties of a Josephson junction formed by

single-band superconductors). Current-phase dependences

and the energy of the Josephson junction are shown in

Fig. 5. In spite of the absence of degeneracy of the ground

state of a bulk three-band superconductor, the Josephson

junction is frustrated and exhibits signs of u-contact.

Based on Eqs. (14) and (15), we constructed a phase dia-

gram for the Josephson junction between single-band and

three-band superconductors, which shows the total number

of energy minima of the system depending on the position

of the ground state of the bulk three-band superconductor

(Fig. 6, left).

As can be seen, the phase diagram is divided into sectors

according to the number of energy minima of the Josephson

junction. Depending on the values of u and h, the number of

minima changes from one to three. For each of the eleven

sectors (I–XI), the position of the minima is given by the

expressions in Appendix A. However, the most notable fea-

ture of the ballistic junction formed by single-band and

three-band superconductors is much wider variety of the

states of the Josephson junction in comparison with a similar

system in the dirty limit (Fig. 6, right). In other words, for

the Josephson junction with diffusive conductivity the inter-

vals in which several energy minima exist are significantly

narrower (see Appendix B).

4. Behavior of a dc SQUID based on the Josephson point
contacts between single- and multi-band superconductors

It is well known that if one or more Josephson junctions

are placed into a superconducting ring, there arise a number

of novel features related to macroscopic quantum interfer-

ence. This section will explore these phenomena in a dc

SQUID—a system consisting of two point contacts linked

by s-wave single- and multi-band superconductors (Fig. 7).

Following the above notation, we denote the junction

phase difference between the first order parameter of the

multi-band superconductor and the order parameter of the

single-band superconductor as vi, where i ¼ 1,2 is the con-

tact number. The uniqueness of the phase difference along

the contour, the thickness of which is greater than the

London penetration depth for both single-band and multi-

band superconductors, requires the following condition to be

fulfilled

v1 þ /ið Þ � v2 þ /ið Þ ¼ 2p
U
U0

; (16)

where U is the total magnetic flux through the system and U0

is the magnetic flux quantum. Recall that ui denotes the

phase difference between the i-th and the first order parame-

ters of the n-band superconductor and defines its ground

states.

Quantization condition (16) should be supplemented by

the first Kirchhoff’s law and the condition for the total mag-

netic flux

I ¼ I1 þ I2; (17)

U ¼ Ue þ L1I1 � L2I2; (18)

where I1 and I2 are the currents flowing through the contacts,

Ue is the external magnetic flux, L1 and L2 are the inductan-

ces of each arm of the dc SQUID. These inductances can be

represented as L1 ¼ aL and L2 ¼ (1 � a)L, where L is the

total inductance of the SQUID ring.37

Using condition (16), Eqs. (4) and (5) can be rewritten

in the dimensionless form:

i1 ¼ 1� að Þiþ 1

bL1

v1 � v2ð Þ � ve½ �; (19)

FIG. 6. Dependence of the total number (global and local) of energy minima of a ballistic (left) and a diffusive (right) Josephson junction formed by a single-

band and a three-band superconductor on the parameters of the ground state (/ and h) of the latter.

FIG. 7. Schematics of a dc SQUID containing Josephson point contacts

between a single-band (coral color) and a multi-band (yellow) superconduc-

tor with an applied current I and magnetic flux Ue. I1 and I2 denote the re-

spective currents in point contacts 1 and 2 of the dc SQUID.
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i2 ¼ ai� 1

bL1

v1 � v2ð Þ � ve½ �; (20)

where the currents i, i1 and i2 are now expressed in units of

the first-band critical current of the multiband superconduc-

tor with no account taken of the interband interactions for

the first point junction I
ð1Þ
c1 , the main parameter of the

SQUID has the form bL1 ¼ ð2pLI
ð1Þ
c1 Þ=U0 and external flux

ve ¼ (2pUe)/U0.

After introduction of dimensionless variables, the cur-

rents i1 and i2 can be expressed as

ij ¼
X

i

R 1ð Þ
N1

R
jð Þ

Ni

sin
vj þ /isgn i� 1ð Þ

2

� sgn cos
vj þ /isgn i� 1ð Þ

2

� �
; (21)

where R
ðjÞ
Ni are the partial contributions of each band of the

multi-band superconductor to the normal resistance of the

j-th contact.

Equations (19) and (20) can be obtained from the varia-

tion of the energy E with the variables vj:

E v1; v2ð Þ ¼
1

2bL1

v2 � v1ð Þ þ ve½ �2

� i 1� að Þv1 þ av2

� �
þ EJ v1; v2ð Þ: (22)

Here EJ(v1, v2) is an expression for the total Josephson

energy of the dc SQUID point contacts

EJ v1; v2ð Þ ¼ �
X

j

X
i

R 1ð Þ
N1

R
jð Þ

Ni

cos
vj þ /isgn i� 1ð Þ

2










; (23)

which follows from Eq. (8).

Let us begin the study of the dc SQUID behavior by

considering its energy as a function of the phase difference

at the contacts v2 and v1, which depends on the magnitude of

the applied magnetic flux. Unless otherwise stated, for the

sake of simplicity in the following we will consider a sym-

metric dc SQUID with identical point contacts R
ð1Þ
N1=R

ðjÞ
Ni ¼ 1.

Fig. 8 shows the contour plots of the surface E(v1,v2) for

dc SQUIDs with Josephson junctions formed between two

single-band superconductors (Figs. 8(a) and 8(b)), single-band

and s6 dual-band superconductors (Figs. 8(c) and 8(d)),

single-band and three-band superconductors with violation of

the time-reversal symmetry (Figs. 8(e) and 8(f)), and between

one-band and three-band superconductors without breaking

the time-reversal symmetry (Figs. 8(g)–8(j)) for zero magnetic

flux (left column in Fig. 8) and the magnetic flux correspond-

ing to the half flux quantum (right column in Fig. 8).

In the case of a dc SQUID based on a two-band super-

conductor with the s6-wave symmetry of the order parame-

ter, the energy minimum is degenerate at zero magnetic flux

Ue (Fig. 8(c)) due to the frustration of the Josephson junction

(see Fig. 3). For the same reason (see Figs. 5(a) and 5(b)), a

degeneracy occurs for a three-band superconductor without

time-reversal symmetry breaking (Figs. 8(d) and 8(g)).

In a magnetic field (Ue ¼ U0/2), dc SQUIDs based on an

s6 two-band and three-band superconductors without time-

reversal symmetry breaking (Figs. 8(d), 8(f), and 8(h),

respectively) exhibit qualitatively the same behavior as a

normal dc SQUID based on single-band superconductors

(Fig. 8(b)).

The most interesting features emerge for a dc SQUID

based on a three-band superconductor with time-reversal sym-

metry breaking. At zero magnetic flux, there is only a shift of

the position of the global energy minimum of the dc SQUID

from the zero point v1 ¼ v2 ¼ 0 (Fig. 8(i)) despite the presence

of time-reversal symmetry breaking in the bulk three-band

superconductor. However at Ue ¼ U0/2, due to time-reversal

symmetry breaking, a unique feature emerges—a strong degen-

eration of the energy minimum (Fig. 8(a)), which is not real-

ized in other dc SQUIDs based on single-band or multiband

superconductors without time-reversal symmetry breaking

(Figs. 8(b), 8(d), 8(f), and 8(h)). Figs. 8(i) and 8(k) are contour

plots of the energy of a dc SQUID based on a three-band super-

conductor with the ground state u ¼ 0.6p and h ¼ 1.2p. For a

three-band superconductor in another ground state, u ¼ 1.4p
and h ¼ 0.8p, the above behavior remains qualitatively the

same, differing only in a symmetrical arrangement of the min-

ima for Ue ¼ U0/2 with respect to the line v1 � v2 ¼ p.

One of the most important characteristics of a SQUID is

the dependence of the critical current ic on the external mag-

netic flux Ue. To simplify the analysis of this problem, it is

commonly assumed that the inductance of the circuit is neg-

ligible, so that the net magnetic flux through the SQUID is

equal to the external flux

v1 � v2 ¼ 2p
Ue

U0

: (24)

In this case, the problem of finding the function ic ¼
ic(Ue/U0) is equivalent to the problem of determining the

maximum of the function

iðv1; v2Þ ¼ i1ðv1Þ þ i2ðv2Þ; (25)

taking into account the quantization condition, Eq. (16).

Here, i1(v1) and i2(v2) are the dimensionless current-phase

dependences defined by Eq. (21).

The dependence of the critical current on the external

magnetic flux for a dc SQUID was sought numerically. This

dependence for a dc SQUID based on the Josephson point

contacts between single-band superconductors is plotted in

Fig. 9(a). In what follows the critical current is normalized

to its maximum value.

For a two-band superconductor with sþþ-wave symmetry

of the order parameter, the dependence ic ¼ ic(Ue/U0) qualita-

tively agrees with the similar characteristic for a dc SQUID

based on single-band superconductors (see Fig. 9(a)). Features

emerge when the two-band superconductor has the s6-wave

type of symmetry (Fig. 9(b)). It can be seen that the critical

current exhibit a saw-tooth behavior with the period U0/2 as

opposed to the sinusoidal modulation with a period of one

magnetic flux quantum in the case of a conventional single-

band or a two-band superconductor with the sþþ symmetry.

In the case of a three-band superconductor with time-

reversal symmetry breaking, it was found that, despite the

presence of two different possible current-phase relations,17

the dependence ic ¼ ic(Ue/U0) is the same for both ground

states of a bulk three-band superconductor (Fig. 9(c)). A

similar situation occurs for a three-zone superconductor

without time-reversal symmetry breaking, which has the
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ground states with the phases u ¼ 0 and h ¼ p and u ¼ p
and h ¼ p (Fig. 9(d))).

Comparing Figs. 9(c) and 9(d), we can conclude that the

critical current for a three-band superconductor with time-

reversal symmetry breaking has a more complex structure with

some additional peaks present in the dependence ic¼ ic(Ue/U0).

The introduction of asymmetry of the critical currents of

the Josephson point contacts in a dc SQUID naturally leads to

FIG. 8. Contour plot of the energy surface of a dc SQUID for zero external magnetic flux ve ¼ 0 (U/U0 ¼ 0, left column) and ve ¼ p (U/U0 ¼ 0.5, right column) in

the absence of transport current: (a) and (b) the point contacts between s-wave single-band superconductors; (c) and (d) the point contact between a single-band and a

two-band superconductor with the s6-wave symmetry of the order parameter; (e) and (f) and (g) and (h) the point contact between a single-band and a three-band super-

conductor without time-reversal symmetry breaking and the ground states u ¼ 0, h ¼ p, and u ¼ p, h ¼ p, respectively; (i) and (j) the point contact between a single-

band and a three-band superconductor with time-reversal symmetry breaking in one of the frustrated ground states u ¼ 0.6p and h ¼ 1.2p (the graph for another ground

state u ¼ 1.4p and h ¼ 0.8p is symmetric with respect to the line v1� v2¼ p). Crosses indicate the positions of the global minima. For all the SQUIDs, bL1¼ 3.
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an asymmetry of the critical current dependence on the exter-

nal magnetic flux (Fig. 10). This effect is particularly noticea-

ble in a three-band superconductor both with time-reversal

symmetry breaking (Fig. 10(c)) and without it (Fig. 10(d)).

Let us now consider the S-states of a dc SQUID, i.e., the

dependences of the net magnetic flux through the loop on

the external magnetic flux in the case of no transport current

i ¼ 0. Assuming the critical currents of the junctions equal,

the dc SQUID can be replaced with the equivalent circuit

containing an rf SQUID with a phase difference at the con-

tact vrf. This phase difference is related to the phase differen-

ces v1 and v2 of the dc SQUID through the relations

v1 ¼ Dvþ vrf ; (26)

v2 ¼ Dv� vrf ; (27)

where Dv is a certain parameter which can be obtained by

summing Eqs. (19) and (20) and taking into account the

form of the current-phase relation (21)

X
j

X
i

sin
vj þ /isgn i� 1ð Þ

2

� sgn cos
vj þ /isgn i� 1ð Þ

2

� �
¼ 0 (28)

and Eqs. (26) and (27) for the new variable vrf.

The magnitude of the parameter Dv depends on what

superconductors are in contact in the dc SQUID. If the dc

SQUID is formed by the Josephson junctions between

single-band superconductors, then in the interval Dv 2 [0,

2p), this parameter is

Dv ¼ 0 and Dv ¼ p: (29)

For a system of junctions between a single-band and a

two-band superconductor with s6-wave symmetry of the

order parameter

Dv ¼ 0; Dv ¼ p
2
; Dv ¼ p and Dv ¼ 3p

2
: (30)

For a three-band superconductor, the parameter Dv
depends on u and h, which, as well known, define the ground

states of the bulk three-band superconductor. In this case, Dv
can be found only by numerical solution of Eqs. (26)–(28).

The exception is the case of a three-band superconductor

without time-reversal symmetry breaking, since its Dv pa-

rameter is the same as for a dc SQUID based on single-band

superconductors, Eq. (29).

Given the variable substitution (26) and (27), Eqs. (19)

and (20) are converted into

vrf þ
1

2
bL1

X
i

sin
vrf þ Dvþ /isgn i� 1ð Þ

2

� sgn cos
vrf þ Dvþ /isgn i� 1ð Þ

2

� �
¼ 1

2
ve: (31)

This equation is transcendental, thus its solutions (the

number of the solutions is equal to the number of possible val-

ues of the parameter Dv in the range Dv 2 [0, 2p), see

FIG. 9. Dependences of the critical current of a symmetric dc SQUID with negligible inductance on the applied magnetic flux for (a) single-band superconduc-

tor, (b) two-band superconductor with the s6-wave symmetry of the order parameter, (c) three-band superconductor with time-reversal symmetry breaking and

frustrated ground states u ¼ 0.6p and h ¼ 1.2p and u ¼ 1.4p and h ¼ 0.8p, (d) three-band superconductor without time-reversal symmetry breaking and

ground states u ¼ 0 and h ¼ p and u ¼ p and h ¼ p.
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above)—the functions vrf(ve)—can be found only numerically.

Knowing the dependence vrf(ve) and taking into account Eqs.

(26) and (27), we can find the S-states of a dc SQUID consist-

ing of the Josephson junctions between two single-band super-

conductors (Fig. 11(a)), a single-band and a two-band s6-wave

superconductor (Fig. 11(b)), a single-band and a three-band

superconductor with time-reversal symmetry breaking (Fig.

11(c)), and a single-band and a three-band superconductor

without time-reversal symmetry breaking (Fig. 11(d)).

Let us make few comments regarding the S-states of a

dc SQUID presented in Fig. 11. The figure does not show

the dependences U(Ue) for a two-band sþþ-superconductor

and a three-band superconductor with the ground state u ¼ h
¼ 0, since they qualitatively match the respective character-

istics of a single-band superconductor (Fig. 11(a)), differing

only quantitatively. Despite the fact that Eq. (31) has four

solutions for a two-band s6-wave superconductor, the S-

states for Dv ¼ 0 and Dv ¼ p coincide with each other (solid

line in Fig. 11(b)). The same is true for the states Dv ¼ p/2

and Dv ¼ 3p/2 (dashed line in Fig. 11(b)).

A similar situation occurs for a dc SQUID based on a

three-band superconductor with time-reversal symmetry

breaking. Figure 11(c) shows the S-states for a three-band

superconductor with the frustrated ground states u ¼ 0.6p
and h ¼ 1.2p and u ¼ 1.4p and h ¼ 0.8p. Evidently, in this

case, four different U(Ue) dependences are possible, how-

ever, for example, for u ¼ 0.6p and h ¼ 1.2p, the S-states

with the respective parameters Dv ¼ 1.25664 and Dv ¼
1.25664 þ p coincide pairwise with the S-states arising at u
¼ 1.4p and h ¼ 0.8p with the parameters Dv ¼ 2p �

1.25664 and Dv ¼ p � 1.25664. The same pattern can be

implemented for other three-band superconductors with bro-

ken time-reversal symmetry.

For a three-band superconductor without time-reversal

symmetry breaking, the S-states for u ¼ 0 and h ¼ p with

the parameters Dv ¼ 0 and Dv ¼ p (Fig. 11(d)) are identical

to the S-states for u ¼ p, h ¼ p with the parameters Dv ¼ p
and Dv ¼ 0, respectively.

As in the case of a dc SQUID based on single-band

superconductors, the S-states are stable only if the derivative

dU/dUe > 0. In other words, the S-states are stable in the

intervals where U(Ue) dependences have a positive slope.

In comparison with the hysteretic behavior of dc SQUIDs

based on single-band superconductors (Fig. 11(a)), the S-

states of dc SQUIDs based on multi-band superconductors

can demonstrate a multi-hysteresis behavior. Moreover, the

greater is the number of energy gaps, the more jumps can be

detected when measuring the U(Ue) dependence. As Fig.

11(c) implies, the largest number of hysteresis loops can be

observed in a three-band superconductor with time-reversal

symmetry breaking. Therefore, the presence of the S-states in

a dc SQUID can be regarded as a kind of necessary condition

for the possible existence of multi-bands in the superconduct-

ing compound and realization of time-reversal symmetry

breaking.

5. Conclusion

In summary, we have studied the properties of

Josephson systems based on point contacts with ballistic

FIG. 10. Dependence of the critical current of an asymmetric (R
ð1Þ
N1=R

ð1Þ
Ni ¼ 1 and R

ð1Þ
N1=R

ð2Þ
Ni ¼ 3) dc SQUID with negligible inductance on the magnetic flux

applied for (a) single-band superconductor, (b) two-band superconductor with the s6-wave symmetry of the order parameter, (c) three-band superconductor

with time-reversal symmetry breaking and frustrated ground states u ¼ 0.6p and h ¼ 1.2p and u ¼ 1.4p and h ¼ 0.8p, (d) three-band superconductor without

time-reversal symmetry breaking and ground states u ¼ 0 and h ¼ p and u ¼ p and h ¼ p.
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conduction formed between a single-band and a multi-

band (two- and three-band) superconductor at zero tem-

perature. The ballistic Josephson point contact between a

single-band and an s6-wave superconductor is frustrated,

has two ground states, and thus demonstrates the proper-

ties of a u-contact. If the Josephson junction is formed

by a single-band and a three-band superconductor with

time-reversal symmetry breaking, such a contact may

have two different current-phase characteristics, also dem-

onstrating the u-contact properties. Furthermore, depend-

ing on the ground state of the three-band superconductor

with time-reversal symmetry breaking, the actual

Josephson junction can have from one to three energy

minima. These minima can be either all stable in the

global sense (three-fold degeneracy of the ground state)

or only one of them can be globally stable. For a three-

band superconductor, which is characterized by the ab-

sence of time-reversal symmetry breaking, the Josephson

junction has qualitatively the same properties as the con-

tact with an s6-wave two-band superconductors, it is a

frustrated (two-fold degenerate) u-contact. It was estab-

lished that in comparison with the Josephson junction

with a diffusive contact, the ballistic junction between a

single-band and a three-band superconductor can exhibit a

significantly wider variety of states with additional local

or global energy minima.

We also considered the behavior of a dc SQUID based on

the studied Josephson junctions formed by a single-band and

a multi-band superconductor. We found the differences in the

characteristics of dc SQUIDs (the dependences of the critical

current and the S-state) constructed of an s6-wave supercon-

ductor, a three-band superconductor with time-reversal sym-

metry breaking and a three-band superconductor without time

reversal symmetry breaking as compared with conventional

dc SQUID based on single-band superconductors.

The above features can be used to detect the presence of

a multi-band structure in superconductors. Moreover, in the

case of a three-band superconductor these results can help to

detect time-reversal symmetry breaking.
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APPENDIX A

The phase diagram in Fig. 6(a) consists of 11 sectors,

each of which corresponds to a certain number of energy

minima of the ballistic Josephson junction formed by a

FIG. 11. S-states in a dc SQUID based on the Josephson junctions between (a) single-band superconductors, (b) a single-band and a two-band s6-wave super-

conductor, (c) a single-band and a three-band superconductor with time-reversal symmetry breaking, (d) a single-band and a three-band superconductor with-

out time-reversal symmetry breaking. In the case of a three-band superconductor with time-reversal symmetry breaking, the S-states correspond to the ground

state u ¼ 0.6p and h ¼ 1.2p with the parameter Dv ¼ 1.25664 (black line) and u ¼ 1.4p and h ¼ 0.8p with the parameter Dv ¼ p – 1.25664 (red line). In the

case of a three-band superconductor without time-reversal symmetry breaking, the S-states correspond to the ground states u ¼ 0 and h ¼ p with the parameter

Dv ¼ 0 (black line) and u ¼ p and h ¼ p with Dv ¼ 0 (red line). The solid and dotted lines in the panels (a) and (b) show two possible S-states of a conven-

tional dc SQUID. The reason for the absence of the dotted lines for a three-band superconductor is explained in the main text. For all dependences bL1 ¼ 3.
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single-band and a three-band superconductor. The position

of each minimum (local and/or global) is defined by the fol-

lowing equations:

Sector I (one minimum)

X 1ð Þ ¼ 2p� 2arccot
1þ 2 cos

/þ h
4

cos
/� h

4

2 sin
/þ h

4
cos

/� h
4

: (A1)

Sector II (two minima)

X 1ð Þ ¼ 2p� 2arccot
1þ 2 cos

/þ h
4

cos
/� h

4

2 sin
/þ h

4
cos

/� h
4

; (A2)

X 2ð Þ ¼ 2arccot
1þ 2 sin

hþ /
4

sin
h� /

4

2 sin
h� /

4
cos

hþ /
4

: (A3)

Sector III (one minimum)

X 1ð Þ ¼

2arccot
1þ2sin

hþ/
4

sin
h�/

4

2sin
h�/

4
cos

hþ/
4

; /þh<2p

2pþ2arccot
1þ2sin

hþ/
4

sin
h�/

4

2sin
h�/

4
cos

hþ/
4

; /þh>2p;

8>>>>>>>>>><
>>>>>>>>>>:

(A4)

Sector IV (two minima)

X 1ð Þ ¼ 2pþ 2arccot
1� 2 cos

/þ h
4

cos
/� h

4

2 sin
/þ h

4
cos

/� h
4

; (A5)

X 2ð Þ ¼ 2arccot
1þ 2 sin

hþ /
4

sin
h� /

4

2 sin
h� /

4
cos

hþ /
4

; (A6)

Sector V (one minimum)

X 1ð Þ ¼ 2arccot
1� 2 cos

/þ h
4

cos
/� h

4

2 sin
/þ h

4
cos

/� h
4

; (A7)

Sector VI (two minima)

X 1ð Þ ¼ 2arccot
1� 2 cos

/þ h
4

cos
/� h

4

2 sin
/þ h

4
cos

/� h
4

; (A8)

X 2ð Þ ¼ 2pþ 2arccot
�1þ 2 sin

hþ /
4

sin
h� /

4

2 sin
h� /

4
cos

hþ /
4

; (A9)

Sector VII (one minimum)

X 1ð Þ ¼

2arccot
�1þ2sin

hþ/
4

sin
h�/

4

2sin
h�/

4
cos

hþ/
4

; /þh<2p

2pþ2arccot
�1þ2sin

hþ/
4

sin
h�/

4

2sin
h�/

4
cos

hþ/
4

; /þh>2p

8>>>>>>>>>>><
>>>>>>>>>>>:

(A10)

Sector VIII (two minima)

X 1ð Þ ¼ 2p� 2arccot
1þ 2 cos

/þ h
4

cos
/� h

4

2 sin
/þ h

4
cos

/� h
4

; (A11)

X 2ð Þ ¼ 2arccot
�1þ 2 sin

hþ /
4

sin
h� /

4

2 sin
h� /

4
cos

hþ /
4

; (A12)

Sector IX (three minima)

X 1ð Þ ¼ 2p� 2arccot
1þ 2 cos

/þ h
4

cos
/� h

4

2 sin
/þ h

4
cos

/� h
4

; (A13)

X 2ð Þ ¼ 2arccot
1� 2 cos

/þ h
4

cos
/� h

4

2 sin
/þ h

4
cos

/� h
4

; (A14)

X 3ð Þ ¼

2arccot
1þ2sin

hþ/
4

sin
h�/

4

2sin
h�/

4
cos

hþ/
4

; /þh<2p

2pþ2arccot
1þ2sin

hþ/
4

sin
h�/

4

2sin
h�/

4
cos

hþ/
4

; /þh>2p;

8>>>>>>>>>>><
>>>>>>>>>>>:

(A15)

Sector X (two minima)

X 1ð Þ ¼ 2p� 2arccot
1þ 2 cos

/þ h
4

cos
/� h

4

2 sin
/þ h

4
cos

/� h
4

; (A16)

X 2ð Þ ¼ 2arccot
1� 2 cos

/þ h
4

cos
/� h

4

2 sin
/þ h

4
cos

/� h
4

; (A17)

Sector XI (three minima)

X 1ð Þ ¼ 2p� 2arccot
1þ 2 cos

/þ h
4

cos
/� h

4

2 sin
/þ h

4
cos

/� h
4

; (A18)
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X 2ð Þ ¼ 2arccot
1� 2 cos

/þ h
4

cos
/� h

4

2 sin
/þ h

4
cos

/� h
4

; (A19)

X 3ð Þ ¼

2arccot
�1þ2sin

hþ/
4

sin
h�/

4

2sin
h�/

4
cos

hþ/
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; /þh<2p

2pþ2arccot
�1þ2sin

hþ/
4
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h�/

4

2sin
h�/

4
cos

hþ/
4

; /þh>2p;

8>>>>>>>>>><
>>>>>>>>>>:

(A20)

APPENDIX B

The current-phase relation I(v) and the energy of the

Josephson junction E(v) formed by a single-band and a

three-band superconductor in the dirty limit is given by32

I ¼ pjDj
eRN1

cos
v
2

artanh sin
v
2

þ pjDj
eRN2

cos
vþ /

2
artanh sin

vþ /
2

þ pjDj
eRN3

cos
vþ h

2
artanh sin

vþ h
2

; (B1)

E¼ jDjU0

2eRN1

2 sin
v
2

artanh sin
v
2
þ ln cos2 v

2

� �

þ jDjU0

2eRN2

2 sin
vþ/

2
artanh sin

vþ/
2
þ ln cos2 vþ/

2

� �

þ jDjU0

2eRN2

2 sin
vþ h

2
artanh sin

vþ h
2
þ ln cos2 vþ h

2

� �
;

(B2)

where h and u define the ground state of a bulk three-band

superconductor.

The phase diagram in Fig. 6 (right), which shows the

number of ground states of the diffusive Josephson junction

as a function of u and h, is based on Eqs. (B1) and (B2).
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