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We present a theoretical and experimental study of electrodynamics of a planar spiral superconducting

resonator of a finite length. The resonator is made in the form of a monofilar Archimedean spiral. By

making use of a general model of inhomogeneous alternating current flowing along the resonator and

specific boundary conditions on the surface of the strip, we obtain analytically the frequencies fn of

resonances which can be excited in such system. We also calculate corresponding inhomogeneous RF

current distributions wnðrÞ, where r is the coordinate across a spiral. We show that the resonant

frequencies and current distributions are well described by simple relationships fn ¼ f1n and

wnðrÞ ’ sin½pnðr=ReÞ2�, where n ¼ 1; 2::: and Re is the external radius of the spiral. Our analysis of

electrodynamic properties of spiral resonators’ is in good agreement with direct numerical simulations

and measurements made using specifically designed magnetic probe and laser scanning microscope.
VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4923305]

I. INTRODUCTION

Magic experiments of Nikola Tesla, which generated so

much of excitement in the public of the Belle Epoque, had a

solid base in research and patent activity. A spiral resonator

appeared first in one of Tesla patents as early as 1897, as a

tool for wireless RF power transfer.1,2 Despite a wide use of

the planar Archimedean spiral as antenna along the XX cen-

tury,3,4 a possibility to develop an analytical model of elec-

trodynamics of a planar Archimedean spiral resonator and its

inner resonance modes appeared to be elusive and was not

fully explored. Our own attention to this topic is related to

the development of metamaterials.5

Metamaterial is an artificially tailored media showing

unusual electrodynamic properties. It is based on the use of

compact magnetic and electric resonant elements, so-called

meta-atoms.6 The electrical and magnetic meta-atoms are

sub-wavelength size micro-resonators that couple primarily

to either electric or magnetic field of the incoming electro-

magnetic wave. At certain frequencies, close to resonances

of both meta-atoms’ types, the effective permeability and

permittivity of such a media may become negative, resulting

in effective negative index of refraction of the media. This

effect is giving a multitude of opportunities for inventing

non-trivial new optics, as pointed out in early theoretical

work by Veselago7 and more recent reviews.8–10

The first proposed magnetic meta-atoms were split-ring

resonators.5,11–13 The resonance frequency of such resonators

is determined by the ratio between the width of the gap l and

the size R of the ring, somewhat limiting the minimum ratio

R=k, where k is the wavelength. The usage of planar spiral

resonators was suggested in order to radically reduce the

resonator size relative to the wavelength.14–16 Particularly, a

spiral resonator behaves as a distributed resonator with multi-

ple resonance modes, and couples primarily to the magnetic

component of RF field perpendicular to spiral plane, in a way

suitable for magnetic meta-atoms.

In this work, we develop an analytical model of

Archimedean spiral resonator inner modes and verify it by

experiments and detailed numerical simulations.

In a very simplified approach, the spiral resonator may

be considered as straight-line resonator of a length L, rolled

in a spiral (Fig. 1). This view leads to an assumption that the

FIG. 1. (a) A sketch of monofilar planar ring-shaped spiral resonator, studied

earlier in Ref. 17. Here, Re is an external radius and Ri � Re is an internal

radius of the spiral. The resonance frequencies of the ring-shaped spiral fol-

low the sequence of the odd numbers as f1 : f2 : f3 : f4… ¼ 1 : 3 : 5 : 7….

(b) A sketch of monofilar planar Archimedean spiral resonator considering

in this work. Polar coordinates fq;ug and fr; hg determine the coordinates

of the point on the spiral and the observation point in the plane of the spiral,

accordingly. Here, Re is an external radius of the spiral. On the contrary to

(a), the resonance frequencies of the Archimedean spiral follow the

sequence of the integer numbers as f1 : f2 : f3 : f4… ¼ 1 : 2 : 3 : 4….a)Electronic mail: maleeva@misis.ru.
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spiral resonance frequencies are determined as the resonan-

ces in one-dimensional transmission line resonator with the

length L with identical “open circuit” boundary conditions at

both ends of transmission line

fn ¼ nf1 ¼ n
c

2L
; (1)

where n ¼ 1; 2; 3::: is the resonance number, c is the speed

of light, and in our case L � pR2
e=d, where Re is the external

radius of the spiral and d is the spiral period. The amplitude

of a standing wave as a function of the distance l along the

transmission line rolled in spiral, assuming the line to be uni-

form, is expected to be In ¼ I0 sinðnp l
LÞ. When the coordi-

nate is expressed in terms of the radius r, the waveform at a

resonance frequency is

In rð Þ ¼ I0 sin np
r

Re

� �2
 !

: (2)

While being simple and feasible, this approach, nevertheless,

neglects the spiral geometry and interaction between the spi-

ral turns.

The above simple model is not universal. For example,

in contrast to Eq. (1), for a ring-shaped spiral resonator (Fig.

1(a)), the resonance frequencies expression turns out to be

fn � ð2n� 1Þf1.17,18 Moreover, if the line is rolled in a ring-

shaped spiral resonator,17 the RF current amplitude distribu-

tion at resonance frequency is given by a more intricate

expression than Eq. (2). From this point of view, it appears

relevant to study in detail the resonance frequencies and the

corresponding current distributions of a resonator formed by

a planar Archimedean spiral (Fig. 1(b)).

In the following, we provide an analytical solution of

Archimedean spiral resonator problem, obtaining both the

resonance frequencies fn and the corresponding current dis-

tributions in a resonator. We compare our analytical solution

with the direct numerical simulation of electrodynamic prop-

erties of a spiral resonator excited by externally applied RF

magnetic field. We present also an experimental study of

microwave resonances of a single Archimedean spiral reso-

nator by using both RF transmission measurements and two

different spatially resolved probing techniques. From our

experiments, we are able to extract the resonance frequencies

and distributions of current and of the magnetic field near the

spiral at these frequencies. Our experimental results firmly

support the proposed electrodynamic model and analysis.

The paper is organized as follows. In Sec. II, we propose

an analytical model of the planar Archimedean spiral resona-

tor of a finite length and obtain the integro-differential equa-

tion determining the resonance frequencies fn and the

corresponding current distributions. We provide the approxi-

mate analytic solution of this equation, and calculate the res-

onance frequencies and current distributions. In Sec. III, we

present an experimental study of planar Archimedean spiral

resonators. The two different resonators were studied. The

resonance frequencies are determined through the measure-

ment of the frequency dependent transmission of an

externally applied RF signal, i.e., S21ðf Þ. The experimental

current and the magnetic field distributions at the resonances

were obtained by two methods: Laser Scanning Microscopy

(LSM) for a resonator fabricated from superconducting Nb

film and Magnetic Probe Scanning (MPS) for a resonator

made of Cu. In Sec. IV, we present the direct numerical sim-

ulations of electrodynamic properties, in particular, the reso-

nance frequencies and the current distributions in a spiral

resonator exited by an externally applied microwave radia-

tion. Section V contains conclusions.

II. ELECTRODYNAMICS OF A PLANAR SPIRAL
RESONATOR

We consider the electrodynamics of a monofilar

Archimedean spiral resonator of a finite length with N densely

packed turns. In this case, the number of turns N � 1. The

shape of the Archimedean spiral is described by equation

written in polar coordinates as

qðuÞ ¼ Reð1� auÞ; (3)

where u is the polar angle, q is the polar radius varying from

0 to the external radius of the spiral Re, and the parameter

a ¼ d
2pRe
¼ 1

2pN � 1, and d is the distance between adjacent

turns. The schematic view of such a spiral resonator is shown

in Fig. 1.

In order to obtain electrodynamic properties of a spiral

resonator and, in particular, the resonance frequencies fn, we

use the method proposed in Refs. 19 and 20 for a resonator

made in the form of a helical coil. A similar approach has

been used also in Ref. 17 in order to describe electrodynam-

ics of a ring-shaped spiral resonator. We assume that an

alternating inhomogeneous current flows along the spiral.

We also neglect current inhomogeneity inside of the spiral

line. The coordinate and the time dependent radial and angu-

lar components of a vector-potential in cylindrical coordi-

nates can be presented in the following form:17

Ar t; z; r; hð Þ ¼ l0Ieixt

4pð Þ2
ðRe

0

dqw qð Þ

�
ð1

0

dx
xe�

ffiffiffiffiffiffiffiffiffi
x2�k2
p

jzjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � k2
p J1 xq½ �J1 xr½ � (4)

and

Ah t; z; r; hð Þ ¼ l0Ieixt

4pð Þ2
ðRe

0

dq
qw qð Þ

Rea

�
ð1

0

dx
xe�

ffiffiffiffiffiffiffiffiffi
x2�k2
p

jzjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � k2
p J1 xq½ �J1 xr½ �; (5)

where I is the maximum value of the current excited in the

spiral, k ¼ x=c is the wave vector, z is a coordinate perpen-

dicular to the spiral plane, wðqÞ describes normalized inho-

mogeneous current distribution across the spiral in the radial

direction, and J1 is the Bessel function of the first kind.21

In order to obtain the resonance frequencies fn and the

corresponding current distributions wnðqÞ, we use a specific

boundary condition, i.e., we require the component of an
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electric field parallel to the strip surface to be equal to zero.

This condition is written as

ReaEr þ rEhjz¼0 ¼ 0: (6)

The radial component Er and the angular component Eh of

the electric field are expressed through corresponding com-

ponents of the vector-potential as

Er ¼
1

ix�0l0

d

dr

1

r

d

dr
rArð Þ

� �
(7)

and

Eh ¼ �ixAh: (8)

Equations (4) and (5) can be simplified by using the follow-

ing approximation: the wave vector k is much smaller than a

typical inverse size of inhomogeneities in current distribu-

tion wðqÞ, i.e., k � 1=Re.

With this approximation both components of the vector-

potential in the plane of the spiral (z¼ 0) are written as

follows:

Arjz¼0 ¼
l0Ieixt

4pð Þ2
ð1

0

dz

ðRe

0

dqw qð Þ
1

r2

�
ð1

0

dx e�
zx
r xJ1

q
r

x

� �
J1 x½ � (9)

and

Ahjz¼0 ¼
l0Ieixt

4pð Þ2Rea

ð1
0

dz

ðRe

0

dqw qð Þ
q
r2

�
ð1

0

dx xe�
zx
r J1

q
r

x

� �
J1 x½ �: (10)

Introducing the new variables q ¼ Ree�s and r ¼ Ree�n,

the boundary condition (6) is written in the form of an

integro-differential equation [see the details in the Appendix]

ð1
0

dz

ð1
0

dsw sð Þ
�

e3nK00n n� sð Þ

þ 2e3nK0n n� sð Þ þ x2Re
2

c2a2
en�se�nK n� sð Þ

�
¼ 0; (11)

where the kernel Kðn� sÞ ¼ e�ðs�nÞ Ð1
0

dxxe�
zx
r J1½e�ðs�nÞx�

J1½x�. Since the kernel Kðn� sÞ resembles the d-function, we

apply a local approximation and obtain the differential equa-

tion for the current distribution wðnÞ

ð1
0

dz w0 0ð Þe3nK nð Þþ
ð1
�n

duK uð Þ
�

e3nw00n nð Þ þ 2e3nw0n nð Þ
"

þx2Re
2

c2a2
e�ue�nw nð Þ

��
¼ 0: (12)

Here, we have taken into account that wðsÞjs¼0;1 ¼ 0 and

Kð1Þ ¼ 0.

Introducing a new variable v ¼ ðr=ReÞ2 ¼ e�2n and ex-

plicitly calculating the integral over z, we obtain

�2
K vð Þ
g1 vð Þw

0
v 1ð Þv�2 þ 4w00v vð Þ

þx2Re
2

c2a2

g2 vð Þ
g1 vð Þw vð Þ ¼ 0: (13)

Here, the expressions for the kernel K(v), and functions g1ðvÞ
and g2ðvÞ are written as KðvÞ ¼ Rev

Ð1
0

dxJ1½v
1
2x�J1½x�;

g1ðvÞ ¼ Rev
1
2

Ð1ffiffi
v
p du

Ð1
0

dxJ1½ux�J1½x� and g2ðvÞ ¼ Rev
1
2

Ð1ffiffi
v
p

duu�1
Ð1

0
dxJ1½ux�J1½x�.

The solution of Eq. (13) can be obtained as following:

First, we notice that with a good accuracy the ratio
g2ðvÞ
g1ðvÞ is

equal to 1. At the next step, we consider a solution of the ho-

mogenous equation

v00v vð Þ þ x2Re
2

4c2a2
v vð Þ ¼ 0: (14)

The solution of Eq. (14) is vðvÞ ¼ sinðxRe

2ca vÞ, where v ¼ r2,

and therefore, we arrive on Eq. (2) obtained by qualitative

analysis.

The eigenfunctions of Eq. (14) satisfying the boundary

conditions are vnðvÞ ¼ sinðpnvÞ. Thus, we search the solu-

tion of the inhomogeneous Eq. (13) in the following form:

wðvÞ ¼
X1
n¼1

An sin pnv: (15)

Substituting Eq. (15) into Eq. (13), we obtain

�2pbn

X1
m¼1

Amm �1ð Þm
" #

� 2p2Ann2

þx2Re
2

2c2a2
An ¼ 0; (16)

where bn ¼
Ð 1

0
dv KðvÞ

g1ðvÞ v
�2 sin pnv. The amplitude of n-th

eigenfunction An is expressed in the following form:

An ¼
2pbnS

�2p2n2 þ x2Re
2

2c2a2

: (17)

Here, S ¼
P1

m¼1 Ammð�1Þm. The amplitudes An were calcu-

lated for different resonant modes. The distributions of An

for n ¼ 1:::10 are shown in Fig. 2. One can see that the main

contribution in the form wðvÞ ¼
P

nAn sin pnv makes a sum-

mand coinciding with Eq. (2). The resonance frequencies of

the spiral are determined by a transcendent equation

p ¼
X1
m¼1

�1ð Þmmbm

�m2 þ x2Re
2

c2a2

: (18)

Next, we numerically solve Eq. (18) and, therefore,

obtain the resonance frequencies fn for two spiral resonators:

the first one (SR1) had dimensions Re ¼ 16:25 mm, N¼ 23,

and d¼ 0.7 mm, and the second one (SR2) had dimensions

Re ¼ 1:5 mm, N¼ 75, and d¼ 0.02 mm. In Table I (columns

3 and 6), the resonance frequencies fn for ten modes
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(n ¼ 1:::10) are presented. Note here that in experiment (see

Sec. III) and in simulation (see Sec. IV), the spirals were

placed at the substrate with dielectric constant �r. It is known

that the effective dielectric constant for a structure at the

interface of dielectric and air is approximately �ef f ¼ �rþ1
2

. In

order to compare analytical results with experiment and the

simulation, we assume that the speed of light c appearing in

Eq. (18) is reduced by the square root of the effective dielec-

tric constant. The analytically obtained resonance frequen-

cies are in a good agreement with experiments results. For

SR1, the relative deviation is 13% for the first mode and

2%–4% for the higher modes. For SR2, the relative deviation

is 8% for the first mode, 15% for the second mode, and

2%–7% for the higher modes. The deviation is related to

details of the experimental setup, different for SR1 and SR2,

not taken into account in the model. Moreover, the difference

in the resonance frequencies may be caused by the fact that

the resonators used in the experiments are not as densely

packed, as it was assumed in the model.

Using Eqs. (15) and (17), we obtain the RF current dis-

tributions in resonator SR2. These current distributions for

four modes (n ¼ 1; 2; 3; and 6) are presented in Fig. 3 (dotted

lines). One can see a good agreement in locations of the min-

ima and maxima and in the curve shape between experimen-

tal (solid lines) and high frequency structural simulator

(HFSS) simulated (dashed lines) RF current profiles. In order

to compare our analytical predictions with experiments car-

ried out on resonator SR1, we calculated the magnetic field

around the resonator. For this purpose, we approximate the

spiral by the rings of variable radius a with the current distri-

bution wðaÞ (Eq. (15)). Thus, the radial component of mag-

netic field is22

FIG. 2. Coefficients An of Eq. (15) ana-

lytically derived from Eq. (17) for the

first, second, third, and sixth resonance

modes (resonance frequencies). The

coefficients An are normalized to the

value of the maximal An for this partic-

ular mode. One can see that the main

contribution to the current distribution

is given by the coefficient with running

number equals to the mode number.

Thus, the most significant part of the

standing wave profile can be explained

by the solution of the simplified

Eq. (14), amounting for about 90%�
80% of RF current at each mode.

TABLE I. Resonance frequencies of the SR1 and SR2 spiral resonators obtained experimentally, analytically, and from the simulations.

Spiral resonator 1 resonance frequency Spiral resonator 2 resonance frequency

Mode

number

Measured

fExp (MHz)

Analytical

fAnal=fExp

HFSS simulated

fHFSS=fExp

Measured

fExp (MHz)

Analytical

fAnal=fExp

HFSS simulated

fHFSS=fExp

1 80 0.87 1 128 1.08 1.14

2 180 0.96 0.99 299 1.15 1.03

3 268 0.92 0.99 465 1.05 1

4 353 0.97 0.99 635 1.07 0.99

5 437 0.97 0.99 801 1.04 0.99

6 522 0.98 0.99 971 1.05 0.99

7 607 0.97 0.99 1139 1.03 0.98

8 693 0.98 0.99 1307 1.04 0.98

9 779 0.97 0.99 1475 1.02 0.98

10 866 0.98 0.98 1643 1.03 0.98
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Br r; zð Þ ¼
ðRe

0

da
w að Þ

c

2z

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ rð Þ2 þ z2

q

� �K

ffiffiffiffiffiffiffi
4ar
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aþ rð Þ2 þ z2

q
0
@

1
A

2
4

þ a2 þ r2 þ z2

a� rð Þ2 þ z2
E

ffiffiffiffiffiffiffi
4ar
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aþ rð Þ2 þ z2

q
0
@

1
A
3
75; (19)

where K 2rffiffiffiffiffiffiffiffiffiffi
4r2þz2
p
� �

and E 2rffiffiffiffiffiffiffiffiffiffi
4r2þz2
p
� �

are complete elliptic inte-

grals of the first and second kind. Using the corresponding

wðrÞ distribution, the radial component of magnetic field for

the copper resonator (SR1) is calculated and is presented in

Fig. 4 (dotted lines), also for all four modes. The magnetic

field is calculated at the distance of z¼ 0.3 mm from the

plane of the resonator, corresponding to the setting of the

probe loop used in experimental setup. The analytically

obtained results are in a good agreement with the measured

(solid lines) and with the HFSS predicted (dashed lines)

mode profiles in terms of the locations of minima and max-

ima, and of the curves shape (Fig. 4).

III. EXPERIMENT

Our electrodynamic analytical model of the resonance

modes of a spiral resonator has been verified through the

direct measurement of resonance frequencies, the local RF

currents, and the RF magnetic fields of the spiral resonators.

First, spiral resonator (SR1) is fabricated as copper printed

circuit board (PCB) on a hydrocarbon ceramic laminate sub-

strate (RO4350B) with dielectric constant �r ¼ 3:48 and

thickness 0.765 mm. The copper trace width is 0.3 mm. The

second resonator (SR2) is made from superconducting Nb

thin film. SR2 is fabricated by lift-off photolithography on a

Si substrate with dielectric constant �r ¼ 11:45 at 4 K tem-

perature.23 The width of the Nb trace is 10 lm and the gap

between the adjacent turns is 10 lm wide.

The resonance frequencies of the both spiral resonators

SR1 and SR2 are detected in RF transmission measurements

in a way similar to Ref. 18 and the results are presented in

Table I. The two different experimental techniques are used

to study the electrodynamic properties of resonators. The

SR1 is studied by specifically designed MPS allowing one to

measure the RF magnetic field distribution around the reso-

nator. At the same time, the superconducting resonator SR2

is studied with LSM, allowing one to obtain directly the RF

current distribution across the spiral.

The radial component of the magnetic field near the sur-

face of the SR1 is measured with MPS at room temperature

using a small loop antenna as a probe. A sketch of the MPS

experimental setup is shown in Fig. 5(a). Here, in order to

excite the resonator, a 32 mm diameter shielded excitation

loop is used as an RF field source. The loop is made of the

2 mm semi-rigid 50 X coaxial cable and is positioned at

30 mm below the spiral resonator, far enough to ensure the

weak coupling.

The radial component of the RF magnetic field near the

surface of SR1 resonator is measured with loop antenna of

about 0.5 mm in diameter formed at the end of 0.5 mm diame-

ter semi-rigid 50 X coaxial cable. This probe is placed at a

distance of about 50 lm from the surface of the spiral and its

plane is oriented perpendicular to the radius of the spiral.

Thus, the full distance from the center of the probe loop to

the surface of the spiral is about 0.3 mm. A motorized linear

motion actuator is used to move the probe loop along the ra-

dius of the spiral and thus to measure the magnetic field spa-

tial distribution. The movement step is 0.135 mm, small

enough to resolve the RF magnetic field (current distribution)

FIG. 3. Experimental and theoretical

RF current distributions along the spi-

ral radius for the first, second, third,

and sixth inner resonance mode of a

superconductive Nb spiral (SR2). The

data are measured with LSM (solid

line). Although smoothed by the ther-

mal dissipation in the substrate, experi-

mental data are visibly in a good

agreement with analytical model (dot-

ted line) and HFSS simulation (dashed

line). The spiral dimensions are Re ¼
1:5 mm, N¼ 75, d¼ 0.02 mm, and the

substrate is 0.35 mm thick Si.
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of the individual turns. Excitation signal is generated and

probe signal is measured using a vector network analyzer.

Both the motorized drive and the network analyser are con-

trolled by PC. In our experimental setup, the S21 transmission

coefficient is proportional to the amplitude of RF voltage gen-

erated in the probe loop (while the excitation amplitude is

constant), and thus proportional to the local amplitude of the

magnetic flux.

The measured spatial distributions of the radial compo-

nent of the RF magnetic field for four modes (n ¼ 1; 2; 3;
and 6) are presented in Fig. 4 (solid lines). For each mode,

the curves are obtained by combining measurements along

four orthogonal radial directions, allowing for complement-

ing the data.

A low-temperature LSM24 is used to examine in-plane

x–y distribution of RF microwave currents in superconduct-

ing resonator SR2. A number of specific schemes for the

LSM electronics designed for the different detection modes

have been published elsewhere25–28 and it is not a subject of

discussion here. The LSM uses the principle of the point-by-

point x–y scanning of the superconducting planar structure

by a sharply focused laser beam (see Fig. 5(b)). Here, we use

a setup that is specially designed for imaging of current dis-

tribution in superconducting RF samples with in-plane

dimensions up to 10� 10 mm. Our LSM spatial resolution is

limited by the capabilities of objective lens focusing optical

beam to about 5 lm. The focused beam acts as a local heat

source in any point of the optical raster in the plane of

the studied device. The power of the laser beam is set to

about 10 nW (at 670 nm light wavelength). The induced per-

turbation is low enough not to change significantly the RF

current distribution, while keeping LSM photo-response

(PR) detectable. The intensity of the laser light is modulated

FIG. 5. Experimental setup for detecting the profile of the standing wave of

the inner modes of a spiral resonator. (a) The sketch for RF MPS measure-

ment. The probe loop is oriented perpendicular to the radius of the spiral to

sense mostly the radial component of the RF magnetic field. The arrowed

line represents trajectory (radius) along witch the probe loop can be moved

by the motorized drive. (b) The sketch for laser scanning measurement. The

laser beam is scanned over the superconducting spiral and perturbs the

superconducting state in small area of the resonator. The enhanced concen-

tration of normal electrons (quasiparticles) leads to a change of the transmis-

sion of the RF signal through resonator. The induced variation of the

transmission coefficient S21 corresponds to the squared amplitude of local

RF current in the probed area of the circuit.24

FIG. 4. Experimental (solid line), theoretical (dotted line), and numerically simulated (dashed line) amplitudes of the RF magnetic field versus radial coordi-

nate of the spiral. The data are the normalized radial component of the magnetic field for the first, second, third, and sixth modes of copper spiral resonator

(SR1). The radial component of RF magnetic field is measured with a network analyser via a mobile probing loop (as in Fig. 5). The loop diameter is smaller

than the spiral step and its plane is perpendicular to the radius, providing sensitivity to a radial component of the RF magnetic field. Also, the distance from the

probing loop to the spiral surface is small (0.3 mm) in comparison with the spiral line width. Naturally, in the vicinity of the surface the radial component of

the RF magnetic field profile is very similar to the profile of the RF current. The dotted line corresponds to the analytically obtained function Brðr; zÞ with

z¼ 0.3 mm of the perfect conductor spiral. The dashed line corresponds to the radial component of the magnetic field obtained by the HFSS simulation of the

superconductive spiral on the substrate. Simulated magnetic field is taken at z¼ 0.3 mm as well. The SR1 has 23 turns with the period d¼ 0.7 mm and with

external radius Re ¼ 16:25 mm.
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in amplitude at the typical frequency of about fm � 100 kHz

in order to increase the signal-to-noise ratio by using a lock-

in detection technique. The modulation helps reducing the

size of the thermal perturbation area proportional to 1=
ffiffiffiffiffi
fm

p

down to 20 lm at 100 kHz modulation.24

The laser scanning microscope images of the first, sec-

ond, third, and sixth mode standing wave patterns of Nb

superconducting resonator SR2 are presented in Figs.

6(a)–6(d), respectively. The grey scale corresponds to the

amplitude of photo response and can be interpreted as the

squared amplitude of RF current flowing locally in the spiral

(bright is large and dark is small RF current). The outer bor-

der of the spiral structure is given by the dashed line. One

can see from Fig. 6(a) that in the fundamental mode, there is

the only one light-colored circle inside the resonator limits.

The RF currents are lager in the middle part of the Nb reso-

nator, and decay towards both ends of the spiral line. For the

second mode (Fig. 6(b)), there are two rings of strong cur-

rents. Higher harmonics (Figs. 6(c) and 6(d)) demonstrate a

proportional increase in number of bright circles correspond-

ing to local peaks in RF current. This confirms that the spiral

acts as a distributed resonator with integer number of half-

wavelengths of current at each eigenmode. The cross-

sectional radial profiles of standing waves are extracted from

the images and are plotted by solid lines in Fig. 3. One can

note that all the profiles are smoothed off and, as a result, the

measured current is not reaching zero at the RF current

nodes. This can be explained by the smearing effect of the

thermal spot, produced by laser beam when illuminating the

Si substrate of the Nb resonator. The absorption coefficient

in Si at 670 nm light wavelength is of about 65%, and the

calculated size of the thermal spot in Si substrate is larger

than 20 lm (for T¼ 4 K and fm¼ 100 kHz). Thus, by extra

heating through the substrate the laser beam generates addi-

tional LSM PR over 2–3 adjacent turns of Nb spiral. Note

that this experimental artifact does not affect the measured

locations of the RF current nodes and antinodes.

IV. SIMULATION

In order to verify the developed analytical model and to

validate the experimental data, we use the ANSYS HFSS.29

The driven mode HFSS program is used for calculating the

resonance frequencies and the shape of the standing waves

of the resonant modes in both spirals used in our experi-

ments. In HFSS calculations, the planar spirals are assumed

to be made of infinitely thin lossless metal layer situated at

the substrate with appropriate dielectric permittivity �r. The

HFSS simulated circuit structure follows the experimental

setup from Fig. 5(b), where the spiral resonator sample is

placed in between of the two weakly coupled magnetic

loops. In order to ensure a weak coupling of the two loops,

the inter-loop distance is set at four loop radii (4Re). Also in

HFSS model, the two circuit terminals are inserted it a break

in each of the coupling loops, and the resonance frequencies

are determined from simulated terminal 1 to terminal 2 trans-

mission (S21) data.

The HFSS calculated resonance frequencies of SR1 are

in a perfect agreement with experiment, remaining within

1% of relative deviation for the first 10 resonant modes

(Table I, column 4). Next, we simulate with HFSS the wave-

form of the standing wave of RF magnetic field for four reso-

nance modes (n¼ 1, 2, 3, and 6) of spiral resonator SR1, as

measured in experiment of Fig. 5(a). At the resonance fre-

quencies, we calculated the radial component of RF mag-

netic field along the radial line running from the spiral

center, at a constant distance of 0.3 mm from the spiral sur-

face (as in experiment Fig. 5(a)). In this experiment, the ra-

dial component of RF magnetic field is measured with a

miniature loop probe at the same distance (solid line in Fig.

4). The HFSS calculated radial magnetic RF field component

is plotted as well in Fig. 4 as a dashed line. The measured

(solid line) and the HFSS predicted (dashed line) mode pro-

files are in a very good agreement in terms of the locations

of minima and maxima along the radial axis, of the ampli-

tude of the maxima, as well as in the curve shapes (Fig. 4).

The analytical prediction has a similar precision, of about

3% in resonance frequency, but requires a lower volume of

calculations (Table I, column 3).

For the resonator SR2 made of superconducting Nb, the

HFSS simulated resonance frequencies are listed in Table I,

column 7. The precision of the HFSS prediction is very

good, within 2% of the measured values, except for the first

resonant mode, where the deviation is 14%. The deviation of

the first mode resonance frequency may be related to the

details of experimental setup, such as the metal parts of the

cryogenic equipment, not taken into account in HFSS calcu-

lations. Next, we calculated with HFSS the waveform of the

standing wave of RF current for four resonance modes

FIG. 6. The measured standing wave patterns of RF current for the first, sec-

ond, third, and the sixth inner modes of Nb superconducting spiral resonator

(SR2). The images are obtained with cryogenic LSM. Higher level of RF

current is given in a lighter grey scale; the edge of Nb spiral is marked by a

dashed line. The frequencies of the resonances in resonator SR2 are listed in

Table I. Note a smearing effect of the light absorption in the spiral substrate,

giving a halo outside of the spiral structure. The extracted radial profiles of

the RF current of the modes are also smeared, see Fig. 3.
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(n¼ 1, 2, 3, and 6) of spiral resonator SR2. The value of the

RF current in the spiral section is calculated applying Stoke’s

theorem (or Ampere’s circuital law), as a line integral of the

magnetic field around closed curve, encircling a section of

conductive line of the spiral. This approach gave the best pre-

cision in calculation of the RF current, and is applied to 1800

points along the spiral resonator 2. The HFSS calculated pro-

files of RF current for the different modes in SR2 are given in

Fig. 3 as dashed lines. In Fig. 3, one can note a very good mu-

tual agreement in locations of the minima and maxima of ex-

perimental (solid line) and HFSS simulated (dashed line).

The analytical prediction is giving a similar precision for the

resonance frequencies, of about 4%, except 15% deviation at

the second mode (Table I, column 6).

V. CONCLUSION

We developed an analytical model describing electrody-

namics of a planar monofilar Archimedean spiral resonator

of a finite length and verified it numerically and experimen-

tally. We analytically obtain the resonance frequencies and

corresponding RF current distributions in spiral resonator. In

contrast to previously studied ring-shaped spiral resona-

tor,15,17 the Archimedean spiral’s set of resonance frequen-

cies derived from our model is fn ¼ f1n, where n ¼ 1; 2:::,
which is similar to resonances of a straight-line resonator

with open ends. Thus, the distribution of resonant frequen-

cies depends crucially on the details of the geometry of the

spiral.

Next, our analytic solutions are compared with experi-

ment and direct numerical simulations. Experimental and

simulated resonance frequencies follow the predicted rela-

tionship, fn ¼ f1n, in agreement with analytical model (see

Table I). The difference between analytical and measured, or

simulated results significantly decreases with increasing of

the mode number. This can be due to the fact that, for lower

modes, the electric and magnetic fields are wider spread in

space than for upper modes. A widely spread RF field of

lower modes interacts with surrounding parts of experimental

setup, thus perturbing the spiral resonator eigenmodes and

shifting their frequencies. The shape of the standing waves

predicted by analytical model is in a good agreement with

simulations and experiments (Figs. 3 and 4). The difference

in positions of maxima and minima could be explained by the

fact that the resonators used in experiment and in simulation

are not as densely packed as they are assumed in the model.

To summarize, we have studied theoretically (analytical

calculations and numerical simulations) and experimentally

the electrodynamic properties of the planar Archimedean

spiral resonators of a finite length. By making use of a model

of inhomogeneous alternating current flowing along the spi-

ral resonator and of specific boundary conditions (see, Eq.

(6)), we derived an integro-differential equation (11) which,

in turn, determines the resonance frequencies and the corre-

sponding RF current distributions in the spiral. Next, by

applying a local approximation, we solved Eq. (11) and

obtained the resonance frequencies and the corresponding

current distributions of the Archimedean spiral resonator. A

good quantitative agreement is found between the analysis,

direct numerical simulations, and experiments performed

with two spiral resonators made of different materials.

Our analysis of electrodynamic properties of a single

spiral resonator can be useful for metamaterials design.

Indeed, the metamaterials containing the 3D or 2D arrays of

such resonators may show negative permeability,11 when the

frequency of incoming microwave radiation is close to reso-

nant frequency. Also, the usage of superconducting spiral

resonators may allow one to greatly reduce the RF dissipa-

tion effects. Moreover, obtained, here, resonance frequencies

fn determine the frequency bands, in which the real part of

the metamaterial permeability may be negative, and the cur-

rent distribution functions inside of the spiral determine the

spirals interaction in the metamaterial. Our results also may

find application in development of short range wireless

power transfer (WPT) systems.30–34
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APPENDIX: CALCULATION DETAILS

In this appendix, we present intermediate steps allowing

one to obtain the integro-differential equation (11). We use

the following approximation: the wave vector k is much

smaller than a typical inverse size of inhomogeneities in cur-

rent distribution wðqÞ, i.e., k � 1=ðRe � RiÞ. Moreover, we

consider a wide planar spiral, i.e., Ri ’ 0. With these approx-

imations, we have rewritten Eqs. (4) and (5) as

Ar ¼
l0Ieixt

4pð Þ2
ðRe

0

dqw qð Þ
ð1

0

dx e�zxJ1 qx½ �J1 rx½ � (A1)

and

Ah ¼
l0Ieixt

4pð Þ2Rea

ðRe

0

dqw qð Þq
ð1

0

dx e�zxJ1 qx½ �J1 rx½ �: (A2)

In order to obtain components of the vector potential in

the plane of the spiral (z¼ 0) let’s use such an identity:

Arjz¼0 ¼ �
Ð1

0
dz @

@z Ar

Arjz¼0 ¼
l0Ieixt

4pð Þ2
ð1

0

dz

ðRe

0

dqw qð Þ
1

r2

�
ð1

0

dx xe�
zx
r J1

q
r

x

� �
J1 x½ � (A3)

and

Ahjz¼0 ¼
l0Ieixt

4pð Þ2Rea

ð1
0

dz

ðRe

0

dqw qð Þ
q
r2

�
ð1

0

dx xe�
zx
r J1

q
r

x

� �
J1 x½ �: (A4)
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Let us designate q ¼ Ree�s and r ¼ Ree�n. Thus,

Ar ¼
l0Ieixt

4pð Þ2Re

ð1
0

dz

ð1
0

dsw sð Þese�2 s�nð Þ

�
ð1

0

dx xe�
zx
r J1 e� s�nð Þx½ �J1 x½ � (A5)

and

Ah ¼
l0Ieixt

4pð Þ2Rea

ð1
0

dz

ð1
0

dsw sð Þe�2 s�nð Þ

�
ð1

0

dx xe�
zx
r J1 e� s�nð Þx½ �J1 x½ �: (A6)

Next, we identify a kernel Kðn� sÞ as

K n� sð Þ ¼ e� s�nð Þ
ð1

0

dx xe�
zx
r J1 e� s�nð Þx½ �J1 x½ �: (A7)

Using Eq. (A7), the components of the vector potential are

expressed as follows:

Ar ¼
l0Ieixt

4pð Þ2Re

ð1
0

dz

ð1
0

dsw sð ÞenK n� sð Þ (A8)

and

Ah ¼
l0Ieixt

4pð Þ2Rea

ð1
0

dz

ð1
0

dsw sð Þen�sK n� sð Þ: (A9)

Let us write the components of the electric field, i.e., the

angular component Eh

Eh ¼ �
ixl0Ieixt

4pð Þ2Rea

ð1
0

dz

ð1
0

dsw sð Þen�sK n� sð Þ (A10)

and

Er ¼
1

ix�0l0

� 1

Re
en d

dn
� 1

R2
e

e2n d

dn
Ree�nAr

	 
� �� �
: (A11)

Here, we have taken into account that r ¼ Ree�n and
d
dr ¼ � 1

Re
en d

dn.

Using Eq. (A7), the radial component of the electric

field Er is written as

Er ¼
Ieixt

ix�0 4pð Þ2R3
e

ð1
0

dz

ð1
0

dsw sð Þe3n

� K00n n� sð Þ þ 2K0n n� sð Þ
� �

: (A12)

Finally, Eq. (6) is written as

ð1
0

dz

ð1
0

dsw sð Þðe3nK00n n� sð Þ

þ 2e3nK0n n� sð Þ þ x2Re
2

c2a2
en�se�nK n� sð ÞÞ ¼ 0: (A13)
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