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We present numerical solutions of Aslamazov–Lempitskiy (AL) equations for distributions of

the transport current density in thin superconducting films in the absence of external magnetic field,

in both the Meissner and the vortex states. These solutions describe smooth transition between

the regimes of a wide film and a narrow channel and enable us to find critical currents and current-

voltage characteristics within a wide range of the film width and temperature. The normalized

critical currents and the electric field were found to be universal functions of the relation between

the film width and the magnetic field penetration depth. We calculate the fitting constants of the

AL theory and propose approximating formulas for the current density distributions and critical

currents. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4928918]

1. Introduction

The main distinguishing property of current states in

wide superconducting films is an inhomogeneous distribution

of the current density j across the film as a result of the

Meissner screening of the current-induced magnetic field. It

should be noted that the current state of a film is qualitatively

different from the Meissner state of a bulk superconductor.

Whereas the transport current I in the latter case flows basi-

cally within a surface layer with the thickness of the order of

the London penetration depth k, the current in a thin film with

the thickness d� k is distributed over its width w according

to the approximate power-like law,1,2 j � [(w/2)2� x2]�1/2,

where x is the transversal coordinate with the origin in the

middle of the film. Thus, the characteristic length k?(T)

¼ 2k2(T)/d,3 which is commonly referred to as the penetration

depth of the perpendicular magnetic field, is actually not the

scale of the current decay, but rather plays the role of a “cutoff

factor” in the above-mentioned law of the current distribution

at the distances k? from the film edges and thereby determines

the magnitude of the edge current density. The latter was esti-

mated in Ref. 1 as je � I=d
ffiffiffiffiffiffiffiffiffiffiffiffi
pwk?
p

, assuming w to be larger

than k? and the coherence length n.

In such an inhomogeneous situation, the resistive transi-

tion of a wide film occurs1–4 when je reaches the value close

to the critical current density jGL
c in the Ginzburg-Landau

(GL) theory. This leads to the expression Ic � jGL
c d

ffiffiffiffiffiffiffiffiffiffiffiffi
pwk?
p

for the critical current1 which is widely used in analysis of

experimental data (see, e.g., Refs. 5 and 6) and imposes

a linear temperature dependence of the critical current

IcðTÞ / 1� T=Tc near the critical temperature Tc. The quan-

titative theory by Aslamazov and Lempitskiy (AL)2 also pre-

dicts the linear dependence Ic (T) but gives its magnitude

numerically larger than the above estimate. This result has

been confirmed in recent experiments.7–9

The instability of the current state at I¼ Ic results in the

entry of vortices into the film which leads to formation of

the vortex part of its I – V characteristic (IVC). The motion

and annihilation of the vortices of opposite signs form a

peak in the current density along the middle axis of the film.

For certain current value Im, the magnitude of this peak

reaches jGL
c , which causes instability of the stationary vortex

flow.2 Further behavior of the film depends on the conditions

of the heat removal10 and the quality of the films. In early

experiments, an abrupt transition to the normal state has

been usually observed at I¼ Im, whereas in later researches,

in which optimal heat compliance was provided, a step-like

structure of the IVC, associated with the appearance of

phase-slip lines, was observed at I> Im.7,11–14

In the immediate vicinity of Tc where k?ðTÞ unlimitedly

grows, any film reveals the features of a narrow channel

at k? � w: the critical current in this case is due to uniform

pair-breaking thus showing the temperature dependence of

the GL pair-breaking current IGL
c ðTÞ / ð1� T=TcÞ3=2

. As the

temperature decreases, the film is expected to exhibit a

crossover to the wide film regime at k?�w, when the vortex

part of the IVC occurs and the temperature dependence Ic(T)

should be linear.1,2 However, it was found8,9 that in moder-

ately wide films, the nonlinear temperature dependence of Ic

holds down to low enough temperatures and transforms to

the linear one only when k?ðTÞ becomes smaller than the

film width by the factor of 10–20, although the vortex state

already occurs at much larger values of k? � ð0:2� 0:25Þw.

Similar difficulties were met in the experiment15 when trying

to interpret the IVC measurements by using asymptotical

results of the AL theory, because the strong condition

Ic� Im used in Ref. 2 can be fulfilled only in extremely wide

films whose width exceeds k?ðTÞ by several orders of mag-

nitude. Thus, there exist a considerable intermediate region

of the film widths and temperatures, where the assumptions

and initial equations of the AL theory remain valid, but the

asymptotic results cannot provide satisfactory agreement

with the experimental data.

In order to obtain a quantitative theoretical description

of the current states within a wide region of the ratio w=k?,

we perform in this paper a numerical solution of the AL

equations which describes smooth transition between the

regimes of a wide film and a narrow channel. The critical

currents Ic and Im normalized on the GL critical current IGL
c ,

as well as the specifically normalized IVC, were found to be

universal functions of the ratio w=k?. We calculate the
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fitting constants in the asymptotic formulas of the theory2

and propose approximating expressions for the current den-

sity distributions which are in rather good agreement with

the results of the numerical computations.

We note that the AL model assumes rather weak pin-

ning, taking the presence of defects into consideration only

through the viscosity of the vortex fluid. The opposite case

of strong pinning corresponds to the model of critical state

with unmovable vortices, which results in quite different dis-

tributions of the current and magnetic field (see, e.g., the

reviews 16 and 17).

2. Basic equations and asymptotic results of AL theory

A starting point of the AL theory are static GL equations

for the dimensionless modulus F of the order parameter (nor-

malized on its equilibrium value in the GL theory) and the

gauge-invariant vector potential Q ¼ A� j�1
effrv,

j�1
effr2Fþ Fð1� F2 � Q2Þ ¼ 0; (1)

rot rot Q ¼ �F2QdðzÞ: (2)

Here the electromagnetic vector potential A is measured in

units of u0=2pn, u0 is the magnetic flux quantum, v is the

order parameter phase and jeff ¼ k?=n, is the effective GL

parameter. The axis z is perpendicular to the film whose

thickness is assumed to be infinitely small, and all distances

are measured in units of k?.

Usually in thin films, the GL parameter is large, jeff � 1

Assuming the film width much larger than nðTÞ, one thus can

neglect the gradient term in Eq. (1) and use the local relation

F2¼ 1�Q2 between the order parameter and the vector

potential. Inside the thin film, the latter has only one compo-

nent Q � Qy and can be found from equation

dQ

dx
¼ � 1

2p

ð~w=2

�~w=2

Q x0ð Þ 1� Q2 x0ð Þ
� �
x0 � x

dx0; ~w ¼ w=k? ; (3)

with the Biot-Savard integral which relates the magnetic

field dQ/dx to the dimensionless density j¼Q(1�Q2) of the

surface current. Equations (1)–(3) determine the stability

threshold of the Meissner state, when the vortices begin to

penetrate into the film, and the edge value of the vector

potential appears to be close to its critical value QGL
c

¼ 1=
ffiffiffi
3
p

in the GL theory for narrow channels.* The asymp-

totic value of the critical current at w � k? has been calcu-

lated in Ref. 2 and then refined in Ref. 18:

IAL
c ¼

ffiffiffiffiffiffiffiffiffiffi
15=8

p
IGL
c ðpk?=wÞ1=2: (4)

The resistive vortex state of a wide film is described by

including the contribution of the vortices nu0(n(x) is the vor-

tex density) to the net magnetic field induction in the

hydrodynamic approximation.1,2,19 Using the continuity

equation for the flux density nv of the vortex fluid, express-

ing the vortex velocity v through the linear current density j
and the viscosity coefficient g as21

v ¼ �g�1u0jsign x; (5)

and the average electric field—through the flux density as

E ¼ �nvu0, one obtains equation

4p
k?
w

dj

dx
þ 2

ð
�
1

�1

j x0ð Þdx0

x0 � x
¼ � gc3E

u0j xð Þ
sign x: (6)

Here and below, the coordinate x is normalized on the film

half-width w/2, and the expression sign x indicates the oppo-

site direction of the vortex motion in different halves of the

film.

An asymptotic analysis of Eq. (6) at w� k? shows2 that

the IVC is linear in the vicinity of Ic, whereas at large cur-

rents, the voltage grows quadratically,

V ¼ E0L
I � Icð Þ=Ic;

C I=Icð Þ2;
I � Ic � Ic;

I � Ic;
E0 ¼

8u0I2
c

gw2c3
;

(
(7)

until the transport current reaches the threshold of stability

of the vortex state,

Im ¼ C0IGL
c ln�1=2ðw=k?Þ: (8)

In Eqs. (7) and (8), L is the film length, IGL
c is the GL critical

current formally calculated for uniform current distribution

and C, C0 are fitting constants which cannot be determined

by the asymptotic analysis.

We note that the validity of the AL theory for the analy-

sis of the vortex state is confined by applicability of the static

Ginzburg-Landau equations to the description of the vortex

motion. With this approach, the order parameter relaxation

time sD � ðTc=DÞse (se is the energy relaxation time) is

assumed to be much smaller than other characteristic times

of the system. In the opposite case, finiteness of sD results in

a considerable deformation of the vortex core and in occur-

rence of a wake with suppressed order parameter behind the

moving vortex. As shown by numerical simulation,20 this

may anomalously enhance the vortex velocity and lead

to creation of rapidly moving chains of vortices treated in

Ref. 21 as nuclei of the phase-slip lines.

3. Results of numerical calculations

In our calculations, we perform numerical solution of

Eq. (6) with a certain modification. As is obvious, the left-

hand side of Eq. (6) is the approximate form of Eq. (3), in

which the vector potential Q in the gradient term is replaced

by the current density j. Such an approximation corresponds

to the linear London relation j � Q between the current and

the vector potential which assumes independence of D of the

vector potential. For this reason, Eq. (6) is usually referred

to as a generalized London equation.1,2 This does not essen-

tially affect the asymptotic results2 because the gradient

term is small at w � k?; however, in our calculations, we

*Actually, according to the definition of Q, the correct formula for the dimen-

sionless current density must have the opposite sign, j ¼ �Q(1 � Q2). Thus,

to deal with positive values of the transport current, one should consider neg-

ative values of Q. To avoid this inconvenience, the authors of Refs. 1 and 2

define j as presented in the text and use positive Q values, that does not

affect the results. In our paper, we also follow this convention.
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will use the full nonlinearized version of Eq. (6) in a dimen-

sionless form (see also Ref. 18):

a
dQ

dx
þ 1

4

ð
�
1

�1

i x0ð Þdx0

x0 � x
¼ �E0 sign x

i xð Þ
; (9)

where the following definitions are introduced,

i ¼ Q 1� Q2
� �

; E ¼ E0E0; j xð Þ ¼ 3
ffiffiffi
3
p

2

IGL
c

w
i xð Þ;

E0 ¼
54u0

gw2c3
IGL
c

� �2
; a ¼ pk?

2w
: (10)

The distribution of the vector potential is obviously sym-

metric, Q(x)¼Q(�x), which enables us to consider Eq. (9)

only in the region x> 0 and to reduce the integral in (9) to

the region x0 > 0. After integration of Eq. (9) from the film

edge to a given point x, we finally get**

a Q xð Þ � Qe½ � ¼ 1

4

ð0
0

i x0ð Þln x2 � x02

1� x02

�����
�����dx0 � E0

ðx
1

dx0

i x0ð Þ
; (11)

where Qe � Qð1Þ is the edge value of the vector potential. In

these notations, the net current I is given by equation

I ¼ w

ð1
0

j xð Þdx ¼ 3
ffiffiffi
3
p

2
IGL
c

ð1
0

i xð Þdx: (12)

At I < Ic, the quantity Qe increases with the current and

has to be determined self-consistently from Eqs. (11) and

(12) at zero electric field; this procedure simultaneously

gives the solution for the current distribution across the film.

As noted above, the resistive state of a wide film at I ¼ Ic

occurs when Qe approaches the critical value Qc ¼ 1=
ffiffiffi
3
p

.

Such a relation is also obviously valid for narrow channels,

that makes it reasonable to extend it over the films of arbi-

trary width. In the resistive vortex state, I> Ic, the quantity

Qe holds its critical value Qc, and Eqs. (11) and (12) deter-

mine the dependence E0(I), i.e., the IVC, V(I)¼E0(I)E0L.
A specific property of these equations is that their solu-

tions, i.e., the normalized current density distribution i(x)

and the electric field E0, are universal functions of the param-

eters w=k? and I=IGL
c . This implies that the normalized criti-

cal current Ic=IGL
c and the maximum current of existence of

the vortex state, Im=IGL
c , as well as the normalized maximum

electric field E0m ¼ EðImÞ=E0, are universal functions of the

parameter w=k?. Thus, the temperature dependencies of these

quantities, being expressed through the variable w=k?ðTÞ,
must coincide for the films with different widths and thick-

nesses, which has been demonstrated in experiments.8,9

3.1. Solution in subcritical regime I £ Ic

Solution of Eqs. (11) and (12) can be found by iteration

method, using Qe as initial approximation for the function

Q(x). Although the iteration parameter a�1 � w=k? is large

for a wide film, convergence of the iterations can be never-

theless provided by introducing certain weight factors for

contributions of previous and current iterations. The result of

numerical calculation of the reduced critical current, shown

in Fig. 1, describes transition from the uniformly distributed

GL depairing current IGL
c / ðTc � TÞ3=2

in a narrow channel

to the critical current IAL
c � Tc � T for a wide film (4). As

seen from Fig. 1, the asymptotic dependence (4) can be

achieved with appropriate accuracy only at rather large ratio

w=k? > 10� 20.

It should be noted that in some experiments,7,9,23 the

behavior of IC(T) at the beginning of transition to the wide

film regime was found to be different from the smooth de-

pendence following from the AL theory. Namely, when the

temperature decreases and the ratio w=k? exceeds 4–5, the

critical current sharply falls to the value IcðTÞ � 0:8IGL
c ðTÞ

and holds this level until w=k?�10. Within this temperature

interval, the film enters the vortex state at I> Ic, although the

temperature dependence of Ic is similar to the case of a

vortex-free narrow channel. Analogous behavior of the criti-

cal current in wide films has been registered in early experi-

ments.24,25 To explain such a specific dependence of Ic(T),

it was supposed9 that the Pearl vortices26,27 in moderately

wide films may overcome the edge barrier at the edge cur-

rent density� (1�T/Tc)
2 much smaller than the GL critical

current density � (1�T/Tc)
3/2, possibly due to interaction

with the opposite film edge.

In Fig. 2(a) we present the current density distribution

across the film at the resistive transition point I¼ Ic and dif-

ferent ratios w=k?. Interestingly, these distributions are well

approximated by function

j1 xð Þ ¼ je
affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 1� a2ð Þx2
p : (13)

Equation (13) represents a modification of the asymptotic

function1,2,19 j(x)¼ j(0)(1� x2)�1/2 in with a regularization

parameter a ¼ j1ð0Þ=je which provides finiteness of the

approximated current density (13) at the film edges. As fol-

lows from its definition, this parameter characterizes sup-

pression of the current in the middle of the film due to the

Meissner screening. Substituting Eq. (13) with je ¼ jGL
c

� IGL
c =w into Eq. (12), we obtain equation for its value

ac¼ cos u at the critical current,

FIG. 1. Numerically calculated critical current (1) compared to the asymp-

totical estimate (4) (2).

**Similar method has been applied to the problem of critical magnetic field

of a wide film at I ¼ 0.22
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Ic=IGL
c ¼ u= tan u: (14)

In the case of a wide film, w � k?, the coefficient ac is

small, ac� 1, and it can be estimated by using the asymp-

totic value (4) of the critical current as

ac ¼ 2:74ðk?=pwÞ1=2: (15)

Within the framework of the generalized London’s equa-

tion (6) in which the effect of the current on the order param-

eter is neglected, the current distribution is determined only

by geometric factors, therefore the coefficient a is independ-

ent of the current and holds a constant value ac. The edge cur-

rent density in this approximation varies linearly with the

transport current, that reproduces the result of Ref. 1,

je ¼ ðI=IcÞjGL
c (16)

(see dashed lines in Fig. 2(b)).*** In the general case

described by Eq. (9), the dependence je(I) appears to be non-

linear, and the coefficient a increases with the current and

approaches a maximum value ac at I¼ Ic (solid lines in

Fig. 2(b)). Physically, this is due to suppression of the order

parameter by the transport current, that weakens the screen-

ing effect while the current increases.

3.2. Solution in the vortex state, Ic < I £ Im

In the region of the vortex resistivity, the distribution of

the screening current is superimposed by the distribution

associated with the vortex motion and having a peak at the

middle of the film, as shown in Fig. 3. The logarithmic fea-

ture �ln1=2ðw=k?Þ of this peak predicted in Ref. 2 appears to

be rather weak and remains visible only for a certain inter-

mediate current value; at I ! Im, this feature practically van-

ishes. Such an inhomogeneous current distribution with

three maxima in the vortex state of wide films has been

visualized experimentally29 by using the laser scanning

microscope.

For moderately wide films, in which the above-

mentioned logarithmic factor is of the order of unity, the vor-

tex contribution can be approximated by a piecewise-linear

function

j2ðxÞ ¼ jGL
c bð1� jxjÞ (17)

depicted in Fig. 3(b) by dashed lines. As follows from (17),

the parameter b ¼ j2ð0Þ=jGL
c represents the relative (in units

of jGL
c ) current density created by vortices in the middle of

the film. Within such an approximation, this parameter line-

arly depends on the transport current,

bðIÞ ¼ 2ðI � IcÞ=IGL
c : (18)

According to Ref. 2, the vortex state becomes unstable

when the height of the central peak of the current distribu-

tion approaches jGL
c . Using this condition and solving Eqs.

(9) and (11) at the critical edge value of the vector potential,

Qe¼Qc, we determine the maximum current of existence of

the vortex state Im and the normalized maximum electric

field E0m¼E0(Im). The results of numerical calculation com-

pared to the asymptotic results of the AL theory are pre-

sented in Fig. 4 by solid and dashed lines, respectively. At

large enough values of w=k?� 20� 30, the asymptotic

dependencies2

FIG. 2. Current distributions over the film width at the resistive transition

point, I� Ic, numerically calculated for different values w=k? ¼ 1, 5, and

20 (solid lines). Dashed lines show the approximating dependence (13) with

the critical value of the coefficient a¼ ac found from Eq. (14) (a); numeri-

cally calculated dependencies of the edge current density je and the current

suppression coefficient in the middle of the film, a ¼ jð0Þ=je, on the trans-

port current I for the wide film w=k? ¼ 20 (solid lines). For comparison, the

values (15) and (16) found from the generalized London’s equation (6) are

shown by the dashed lines (b).

FIG. 3. Solid lines—distributions of the net current density (a) and the vor-

tex contribution (b) in the vortex state at w=k? ¼ 20 numerically calculated

at different values of the transport current: I¼ Ic (1), I¼ 0.5(Icþ Im) (2),
I¼ Im (3). The approximating distributions (17) are shown by dashed lines.

FIG. 4. Dependencies of the maximum current of existence of the vortex

state Im and the normalized maximum electric field E
0
m on the parameter

w=k? (solid lines). Dashed lines show their asymptotic behavior (19) in the

AL theory with the fitting constants C1¼ 1.2, C2¼ 0.4, C3¼ 0.062. Dotted

line depicts the approximating dependence (20) of Im, in which the result of

numerical calculation of Ic (see Fig. 1) and the formula (15) for the parame-

ter ac were used.

***Numerical solutions of (6) have been obtained in Ref. 28 and used for

determination of the penetration depth.
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Im=IGL
c ¼ C1ln�1=2ðC2w=k?Þ; E0m ¼ C3ðIm=IGL

c Þ
2; (19)

can be fitted to the numerical results by an appropriate choice

of the fitting constants of the AL theory (shown in the caption

of Fig. 4) which cannot be evaluated within the framework of

the asymptotical analysis. In order to obtain a satisfactory

agreement, one has to introduce an additional constant C2

into the argument of the logarithm, since the formulas (19)

were derived in Ref. 2 with logarithmic accuracy. At smaller

w=k?�20, the asymptotic results (19) considerably overesti-

mate the numerically obtained values of Im and E0m.
Another useful expression for Im suitable for a rather wide

range of film widths can be obtained from the approximating

current distributions (13) and (17). At the stability threshold of

the vortex state, where jð0Þ ¼ j1ð0Þ þ j2ð0Þ ¼ jGL
c , the relation

b¼ 1� ac is fulfilled which leads to equation

Im ¼ Ic þ 0:5IGL
c ð1� acÞ: (20)

As seen from Fig. 4, this approximation (dotted line) rather

well reproduces the result of numerical calculations of Im,

up to the point of nucleation of the vortex resistivity at

w=k? � 4 as 4. For extremely wide films, in which Im � Ic

and the logarithmic peak of the current is well pronounced,

the AL asymptotic expression (19) for Im with numerically

calculated fitting constants is more preferable.

In Fig. 5 a normalized IVC per unit length of a wide film

(w=k? ¼ 20) is shown by the curve 1 within the region of

the stable vortex state Ic < I < Im � 1:7Ic. Its initial part

coincides with the linear AL asymptotic (line 2) at

I� Ic� Ic,

E0 Ið Þ ¼ 4

27

Ic

IGL
c

� 	2 I

Ic
� 1

� 	
� 0:873

k?
w

I

Ic
� 1

� 	
; (21)

obtained by using Eq. (4) for Ic. At I > 1:4Ic, the IVC is well

described by the modified AL asymptotic for I� Ic:

E0 Ið Þ ¼ C1

4

27

Ic

IGL
c

� 	2 I

Ic
� C2

� 	2

� 0:873C1

k?
w

I

Ic
� C2

� 	2

(22)

with the fitting constants C1¼ 0.97 and C2¼ 0.7. Introduction

of an additional constant C2, which shifts the original AL pa-

rabola, enables us to generalize the result obtained in Ref. 2 for

the case of large supercriticality, I� Ic, to the region of cur-

rents comparable with Ic. Such a modification of the AL as-

ymptotic formulas has been successfully used for fitting of the

parabolic part of the IVC.15 In experiments with films of rela-

tively small width (in which the vortex state nevertheless

exists), the region of vortex resistivity is rather narrow,

Im� Ic� Ic, and only a linear part of the IVC is observed.7,15,23

Similar current distributions and IVCs were obtained by

numerical simulation of the vortex motion in an infinitely

long and thick superconducting slab.20 Although these

results cannot be quantitatively applied to the thin film

because of essential difference between Abrikosov vortices

in a bulk slab and Pearl vortices in a thin film,26,27 they give

an additional theoretical evidence of intrinsic nonlinearity of

the IVCs in the vortex state, which is often ascribed to the

flux creep or to the nonequilibrium state of quasiparticles in

the vortex core.30

4. Summary

We studied distributions of the transport current density

in thin superconducting films in zero external magnetic field

within a wide range of the film widths w and temperatures,

using numerical solutions of the integro-differential equa-

tions for the gauge-invariant vector potential. We found that

these solutions can be approximated by rather simple analyt-

ical formulas, the parameters of which have a clear physical

meaning and can be relatively easily calculated.

We found that the reduced critical current Ic and the

reduced maximum current of existence of the vortex state Im

(both normalized on the Ginzburg-Landau critical current in

a uniform current state), as well as the reduced maximum

electric field in the vortex state are universal functions of the

parameter w=k?; this has been confirmed in the experiment.

We calculated numerically the current-voltage characteristic

of a wide film in the vortex state and propose a modification

of the asymptotic results2 which provides much better fitting

with the experimental data. For wide enough films,

w=k?� 20� 30, our results coincide with the asymptotic

dependencies2,18 with properly chosen fitting constants.

The author is grateful to I. V. Zolochevskii for helpful
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