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Within the formalizm of Usadel equations the Josephson effect in dirty point contacts between

single-band and three-band superconductors is investigated. The general expression for the

Josephson current, which is valid for arbitrary temperatures, is obtained. We calculate current-phase

relations for very low temperature and in the vicinity of the critical temperature. For three-band

superconductors with broken time-reversal symmetry (BTRS) point contacts undergo frustration

phenomena with different current-phase relations, corresponding to u-contacts. For three-band

superconductors without BTRS we have close to sinusoidal current-phase relations and absence of

the frustration, excepting the case of very low temperature, where under certain conditions two

ground states of the point contact are realized. Our results can be used as the potential probe for

the detection of the possible BTRS state in three-band superconducting systems. VC 2014
AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4897416]

1. Introduction

The symmetry of the order parameter of recently discov-

ered iron-based superconductors still remains a controversial

question and an unresolved challenge. The initial hypothesis

that the order parameter has two components with opposite

signs (s6-wave symmetry) is casted doubt on by numerous

data obtained during the angle-resolved photoemission spec-

troscopy1 and in experiments on the temperature dependence

of the specific heat capacity.2–4 These results indirectly

indicate the presence in these compounds superconducting

chiral state like spin-triplet p-wave in strontium ruthenate5

or recently proposed d þ id wave superconductivity in

graphene.6

At the same time it is well known that chiral supercon-

ductivity can lead to an interesting phenomenon in such

compounds, namely the broken time-reversal symmetry

(BTRS): phases of the multicomponent order parameter

undergo frustration, leading to the emergence of several

“equal in rights” ground states of the superconductor.

BTRS in superconducting oxypnictides and chalcogenides

is discussed earlier in the frame of the s þ id7 and s6 þ isþþ
8

symmetry of the order parameter. These models assumed the

presence of two components of the order parameter (a two-

band superconductor). However, the latest experimental data

give clear evidences about the presence of at least three energy

gaps in the spectrum of quasiparticle excitations in iron-based

superconductors.9,10 The presence of three interacting parame-

ters also leads to the BTRS state.11–20

In this regard, a reasonable question arises about the

possible experimental techniques for the creating and

subsequent detection of this phenomenon in iron-based

superconductors. Currently in this sense the most prominent

candidate among known superconducting iron oxypnictides

and chalcogenides is Ba1�xKxFe2As2, in which BTRS can be

achieved by the controlling the level of doping.20 In turn,

methods that have been proposed to reveal this phenomenon

use the detection of Legget modes,21 observation of the

unusual behavior of the magnetization of the sample in the

process of the fast quench cooling22 and the detection of

kinks on the current versus applied magnetic flux dependen-

cies in a doubly-connected mesoscopic sample.23

We believe that another useful way to detect the

state with BTRS in iron-based superconductors is the investi-

gation of the Josephson effect, which is traditionally consid-

ered as the most powerful tool for detecting the

manifestation of the phase of the order parameter in single

and multiband superconductors.24,25 Attempt to understand

how the frustration of phases of the order parameters effects

on current-phase relations of a contact between conventional

(s-wave) single-band and three-band superconductor with

BTRS one has been undertaken already in Ref. 26. However

this investigation was done for the ballistic regime which is

difficultly to achieve in real experimental conditions.

In the present paper within the formalizm of the Usadel

equations,27 generalized for the case of three energy gaps,28

we investigated a dirty point contact between the s-wave

single-band superconductor and the three-band one. We

found qualitative differences in the structure of the current-

phase relations of the point contact for cases of the three-

band superconductor with the presence of BTRS and without

of this state.

2. Ground states of a homogeneous equilibrium three-band
superconductor

At the beginning we investigate a homogeneous equilib-

rium three-band superconductor with strong impurity intra-

band scattering rates (dirty limit) and without interband

scattering in order to find all possible frustrated and nonfrus-

trated ground states. In this limit the three-band supercon-

ductor is described by the Usadel equations for normal and

anomalous Green’s functions gi and fi:

xfi �
1

2
Di gir2fi � fir2gi

� �
¼ Digi; i ¼ 1; 2; 3: (1)
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Equation (1) must be supplemented with self-consistency

equation for order parameters Di:

Di ¼ 2pT
X

j

Xhx0i

x>0

kijfj; (2)

and the expression for the current density

j ¼ �2iepT
X

i

X
x>0

NiDiðf �i rfi � firf �i Þ: (3)

Normal and anomalous Green’s functions gi and fi, which

are connected by the normalization condition g2
i þ jfij2 ¼ 1,

are functions of coordinates r and the Matsubara frequency x
¼ (2n þ 1)pT. Di are the intraband diffusivities due to non-

magnetic intraband impurity scattering, Ni are the densities of

states on the Fermi surface of the ith band, kij are BCS inter-

action constants and hx0i is the cut-off frequency.

For the equilibrium homogeneous state Usadel Eq. (1)

have solutions

fi ¼
jDij exp iuið Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ jDij2
q ; (4)

where ui are phases of each order parameter.

Ground states of a three-band superconductor can be

found from the minimization of the free energy density in

respect to phase differences of the order parameters (/¼ u1

� u2 and h ¼ u1 � u3

F ¼ 1

2

X
ij

DiD
�
j Nik

�1
ij þ

X
i

Fi; (5)

where k�1
ij is the inverse matrix of interaction constants kij and

Fi ¼ 2pT
Xhx0i

x>0

Ni

�
x 1� gið Þ � Re f �i Di

� �

þ 1

4
Di rfirf �i þrgirgi

� ��
; (6)

represents intraband energies of the three-band superconductor.

For i ¼ 1, 2 we obtain the free energy density of a two-

band superconductor, which was used for the prediction of

phase textures in multiband and multiband-like supercon-

ducting systems.29 The first term in (5) contains three

interband (Josephson-like) interaction energies c12 cos /,

c13 cos h, and c23 cos ðh� /Þ, where cij ¼ �k�1
ji Nj (usually

k�1
ij Ni ¼ k�1

ji Nj, i 6¼ j) are interband interaction coefficients,

which are used in Ginzburg–Landau approach; for cij > 0

attractive interband interactions are took place, while for

cij < 0 interactions are repulsive.

The first variation of (5) on / and h gives

�ðk�1
12 N1 þ k�1

21 N2ÞjD1jjD2j sin /

þðk�1
23 N2 þ k�1

32 N3ÞjD2jjD3j sin ðh� /Þ ¼ 0; (7)

�ðk�1
13 N1 þ k�1

31 N3ÞjD1jjD3j sin h

�ðk�1
23 N2 þ k�1

32 N3ÞjD2jjD3j sin ðh� /Þ ¼ 0: (8)

Solutions of (7) and (8) for / and h, which determine

the points of extremum, depend from their arrangement in

quadrants.

Introducing

X ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� G2

3G2
2jD3j2 � G2

1G2
3jD1j2 � G2

1G2
2jD2j2

2G2
1G2G3jD1jjD2j

 !2
vuut

;

where G1 ¼ k�1
12 N1 þ k�1

21 N2, G2 ¼ k�1
23 N2 þ k�1

32 N3 and

G3 ¼ k�1
13 N1 þ k�1

31 N3 for / 2 � p
2
; p

2

� �
and h 2 � p

2
; p

2

� �
we

have

/ ¼ 6 arcsin X;

h ¼ 7arcsin
G1jD2j
G3jD3j

X

	 

;

/ ¼ 0;
h ¼ 0;

�8<
: (9)

for / 2 p
2
; 3p

2

� �
and h 2 � p

2
; p

2

� �
/ ¼ p 6 arcsin X;

h ¼ 6 arcsin
G1jD2j
G3jD3j

X

	 

;

/ ¼ p;
h ¼ 0;

�8<
: (10)

for / 2 � p
2
; p

2

� �
and h 2 p

2
; 3p

2

� �
/ ¼ 6 arcsin X;

h ¼ p 6 arcsin
G1jD2j
G3jD3j

X

	 

;

/ ¼ 0;
h ¼ p;

�8<
: (11)

and for / 2 p
2
; 3p

2

� �
and h 2 p

2
; 3p

2

� �
/ ¼ p 6 arcsin X;

h ¼ p7arcsin
G1jD2j
G3jD3j

X

	 

;

/ ¼ p;
h ¼ p:

�8<
: (12)

For given kij and computed for these values jDij by Eqs.

(2) and (4) we have eight possible solutions for / and h
(9)–(12). Selection of the proper solution, which corresponds

to the ground state, is provided by the condition for the mini-

mum of F(h, /), following from the second variation of the

free energy density (5). Final form of the expression for the

second variation also depends on the arrangement in quad-

rants of / and h.

3. Josephson current between single-band and three-band
superconductors

The point contact can be considered as a weak supercon-

ducting link in the form of thin filament of the length L and di-

ameter d, connecting two superconducting bulk banks (Fig. 1).

On conditions that d � L and d � min ni (T) (ni (T) is

the coherence lengths in the ith band) we can solve a one-

dimensional problem inside the filament (0 � x � L) and

neglect all terms in Usadel Eq. (1) except the gradients ones.

Using the normalization condition we have equations for fi

FIG. 1. The model of the point contact between bulk single-band and three-

band superconductors as two banks connected by the thing filament of a

length L and a diameter d.
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� jfij2

q
d2

dx2
fi � fi

d2

dx2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� jfij2

q
¼ 0; i ¼ 1; 2; 3: (13)

The boundary conditions for Eq. (13) at x ¼ 0, L are deter-

mined by the values of fi in banks

fi 0ð Þ ¼ jD0jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jD0j2 þ x2

q ; (14)

f1 Lð Þ ¼ jD1j exp ivð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jD1j2 þ x2

q ; f2 Lð Þ ¼ jD2j exp ivþ i/ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jD2j2 þ x2

q ;

f3 Lð Þ ¼ jD3j exp ivþ ihð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jD3j2 þ x2

q ; (15)

where v is the phase difference between the first order pa-

rameter of the three-band superconductor and the order pa-

rameter of the single-band one and where / and h determine

phase differences (ground state) in the bulk three-band

superconductor.

Equation (13) admit analytical solution with boundary

conditions (14), (15). Taking into account expression

for the current density (3) we get for the Josephson

current between the single-band and the three-band

superconductor

I ¼
X

i

Ii; (16)

where

Ii¼
2pT

eRNi
bi

X
x>0

1

pi
arctan

D0di�aibi

pi

	 

þarctan

Didi�aibi

pi

	 
� �
:

(17)

Here RNi are partial contributions to the point-contact

resistance. Also notations

pi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

i þ ða2
i þ 1Þx2

q
; a1 ¼

jD1j � jD0j
jD1j þ jD0j

cot
v
2
;

a2 ¼
jD2j � jD0j
jD2j þ jD0j

cot
vþ /

2
; a3 ¼

jD3j � jD0j
jD3j þ jD0j

cot
vþ h

2
;

b1 ¼
2jD0jjD1j
jD0j þ jD1j

cos
v
2
; b2 ¼

2jD0jjD2j
jD0j þ jD2j

cos
vþ /

2
;

b3 ¼
2jD0jjD3j
jD0j þ jD3j

cos
vþ h

2
; d1 ¼ a2

1 þ 1
� �

sin
v
2
;

d2¼ a2
2þ1

� �
sin

vþ/
2

and d3¼ a2
3þ1

� �
sin

vþh
2

were used:

For i ¼ 1 we get expression for the Josephson current

between single-band superconductors,30,31 which for coin-

ciding values of energy gaps turns into Kulik-Omelyanchouk

theory for dirty point contacts.32

3.1. Josephson current for T 5 0

For T ¼ 0 in the expression (17) we can turn from the

summation over Matsubara frequencies to the integration

and get for the total current

I ¼ p
eRN2

jD0jjD1j
jD0j þ jD1j

cos v=2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

1 þ 1
p ln Q2 þ

p
eRN2

jD0jjD2j
jD0j þ jD2j

cos vþ /ð Þ=2½ �ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

2 þ 1
p ln Q2 þ

p
eRN3

jD0jjD3j
jD0j þ jD3j

cos vþ hð Þ=2½ �ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

3 þ 1
p ln Q3: (18)

Here

Qi ¼
jD0jdi � aibi þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jD0jdi � aibið Þ2 þ b2

i

q� �
jDijdi þ aibi þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jDijdi þ aibið Þ2 þ b2

i

q� �
b2

i

: (19)

In the following we consider for the simplicity the case of coinciding energy gaps jD0j ¼ jD1j ¼ jD2j ¼ jD3j ¼ jDj and obtain

for the total current:

I ¼ pjDj
eRN1

cos
v
2

arctanh sin
v
2
þ pjDj

eRN2

cos
vþ /

2
arctanh sin

vþ /
2
þ pjDj

eRN3

cos
vþ h

2
arctanh sin

vþ h
2

: (20)

Integrating (20) over v we obtain the expression for the Josephson energy of the point contact

E ¼ jDjU0

2eRN1

2 sin
v
2

arctanh sin
v
2
þ ln cos2 v

2

	 

þ jDjU0

2eRN2

2 sin
vþ /

2
arctanh sin

vþ /
2
þ ln cos2 vþ /

2

	 


þ jDjU0

2eRN3

2 sin
vþ h

2
arctanh sin

vþ h
2
þ ln cos2 vþ h

2

	 

: (21)

We can select arbitrary values of / and h because it’s

possible to match appropriate values of kij to satisfy the self-

consistency Eq. (2) and expressions (9)–(12). In other words,

we have only five equations, three of which follow from the

self-consistency Eq. (2) and two from expressions for /, h,

for the determination of nine variables kij. Based on these
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arguments we assume that for the frustrated three-band

superconductor one of the ground state can be, for instance,

/ ¼ 0.6p, h ¼ 1.2p. Since these phase differences were cho-

sen in the second and in the third quadrants, respectively,

according to the solution (12) another ground state should

correspond to such values: / ¼ 1.4p, h ¼ 0.8p.

So when one of contacting banks is the three-band

superconductor with BTRS state we observe complicated

current-phase relations with the behavior of Josephson ener-

gies, corresponding to u-contact (Fig. 2), following to the

terminology after.33 Here and hereinafter we will call

u-contact as a type of the Josephson junction with an arbi-

trary phase shift u in the ground state.

So during experimental measurements for the same

BTRS three-band superconductor we can observe different

current-phase relations. It depends from the “prehistory” of

the three-band superconductor, i.e., how was the ground state

for this superconducting system achieved.

Also we consider the simplest case, which is often cited for

the illustration of BTRS in three-band superconductors, when

such systems have the odd number of repulsive interband inter-

actions cij with equal modules. In this case two ground states

are possible: (/, h) ¼ (�p/3, p/3) and (/, h) ¼ (p/3, �p/3), if

we have only one repulsive interband interaction and two

attractive ones and (/,h) ¼ (�2p/3, 2p/3) and (/, h) ¼ (2p/3,

�2p/3), if all interband interactions are repulsive.

Firstly we found that for these two ground-states current-

phase relations and Josephson energies coincide (see Fig. 3)

in comparison with above considered case (Fig. 2). This fact

can be easily understood from expressions (20) and (21) bear-

ing in mind that the cosine is even function and the inverse

hyperbolic tangent and the sine are odd ones. Secondly, de-

spite the presence of the BTRS state in the three-band super-

conductor the most remarkable feature for (/, h) ¼ (�p/3,

p/3) and (/, h) ¼ p/3, �p/3), is that there is no frustration of

the point contact (Fig. 3(a)) with inflection points in the mid-

dle of the current-phase relation curve. Thirdly, for (/, h) ¼
(�2p/3, 2p/3) and (/, h) ¼ (2p/3, �2p/3) we have current-

phase relation with triply degenerates states (Fig. 3(b)), i.e.,

frustration with three ground states of the point contact is

occurred.

The current-phase relation (20) and the Josephson energy

(21) for the point contact between single-band superconductor

and non-BTRS three-band one are shown on Fig. 4. Here the

peculiarity of such point contacts are the occurrence of a u-

contact with frustration of ground states (Figs. 4(b) and 4(c))

as for the BTRS case if the three-band superconductor has the

ground state for / ¼ 0, h ¼ p or / ¼ h ¼ p.

Thus at T ¼ 0 in both cases of BTRS and non-BTRS

three-band superconductors we can have frustration phenom-

enon in point contacts. In order to distinguish three-band

superconductors with and without BTRS state in the next

FIG. 2. Current-phase relations (solid lines) and Josephson energies (dashed

lines) of point contacts between single-band and three-band superconductors

with BTRS in the case of coinciding energy gaps for / ¼ 0.6p, h ¼ 1.2p (a)

and / ¼ 1.4p, h ¼ 0.8p (b). Ratios RN1/RN2 ¼ RN1/RN3 ¼ 1.

FIG. 3. The same as in Fig. 2 for / ¼ p/3, h ¼ �p/3; / ¼ �p/3, h ¼ p/3 (a)

and / ¼ 2p/3, h ¼ �2p/3; / ¼ �2p/3, h ¼ 2p/3 (b). Ratios RN1/RN2 ¼ RN1/

RN3 ¼ 1.
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section we consider point contacts in the vicinity of the criti-

cal temperature Tc (it can be the critical temperature of the

single- or the three-band superconductor in dependence on

what is the value lower).

3.2. Josephson current in the vicinity of the critical
temperature

By the linearization of the expression (17) we get for

total current

I¼ pjDj2

4eTcRN1

sinvþ pjDj2

4eTcRN2

sin vþ/ð Þþ pjDj2

4eTcRN3

sin vþhð Þ;

(22)

and after integrating over v for the Josephson energy

E ¼ jDj
2U0

8eTcRN1

cos v� jDj
2U0

8eTcRN2

cos vþ /ð Þ

� jDj
2U0

8eTcRN3

cos vþ hð Þ: (23)

For the three-band superconductor with BTRS the

intricate behavior of I (u) and E(u) dependencies (Fig. 2)

turns into simple sinusoidal forms but nevertheless with the

conservation of a u-contact feature (Fig. 5).

For the point contact when one of the bank is the three-

band superconductor with one repulsive interband interac-

tion and with equal modules of cij current-phase relations

continue to coincide, but now lost inflection points, which

are took place for the very low temperature (Fig. 3(a)) and

transform to clear sinusoidal dependence (Fig. 6). At the

same time the ground state is not varied and the point contact

remains conventional.

FIG. 4. Current-phase relations (solid lines) and Josephson energies (dashed

lines) of point contacts between single-band and three-band superconductors

without BTRS in the case of coinciding energy gaps for / ¼ h ¼ 0 (a) and

/ ¼ 0, h ¼ p (b, for / ¼ p and h ¼ 0 it will be the same dependence) and /
¼ h ¼ p (c). Ratios RNI/RN2 ¼ RNI/RN3 ¼1.

FIG. 5. Current-phase relations (solid lines) and Josephson energies (dashed

lines) of point contacts between single-band and three-band superconductors

with BTRS in the case of coinciding energy gaps and in the vicinity of the

critical temperature for / ¼ 0.6p, h ¼ 1.2p (a) and / ¼ 1.4p, h ¼ 0.8p (b).

Ratios RN1/RN2 ¼ RN1/RN3 ¼ 1.
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If one of the contacting banks is the three-band super-

conductor with all repulsive interband interaction and

again with equal modules of cij the point contact is charac-

terized by the zero Josephson current for both ground

states of such three-band superconductor. It seems some-

thing unexpectedly but if we substitute / ¼ �2p/3, h ¼
2p/3 (for / ¼ 2p/3, h ¼ �2p/3 it would be the same) into

the expression for the current (22) after the simplification

we get zero current.

Current-phase relations (22) and Josephson energies

(23) in the case of the three-band superconductor without

BTRS are shown on Fig. 7. Figure 7 demonstrates that for

the nonfrustrated three-band superconductor with / ¼ 0,

h¼ p and / ¼ h ¼ p the proximity of the critical tempera-

ture removes a degeneracy of the ground state of the point

contact transforming u-contact to conventional one (if

/¼ 0, h ¼ p) or to p-contact (if /¼ h ¼ p).

Comparing current-phase relations of point contacts

we can definitely claim the difference between three-band

superconductors with the BTRS state and without one.

From the experimental point of view the identification pro-

cedure can be done in the following way: if a point contact

demonstrates two different current-phase relations with the

properties of a u-contact at very low temperature and in

the vicinity of Tc during several repeating measurements,

unambiguously this three-band superconductor has the

state with BTRS. Otherwise even if we observe a

u-contact at the temperature close to the zero but conven-

tional or n-contact near Tc a three-band superconductor has

no BTRS state.

For the special case of a three-band superconductor with

odd number of repulsive interband interactions and equal

modules of cij the detection procedure undergoes changes.

During measurements we will observe conventional current-

phase relations with inflection points at very low tempera-

ture, which disappear near Tc if a three-band superconductor

has one repulsive interband interaction and two attractive, or

we will observe current-phase relations with triply degener-

ate ground states at T ¼ 0 and zero Josephson current in the

vicinity of the critical temperature if all interband interac-

tions are repulsive.

Conclusions

Based on the microscopic approach, we have obtained

general analytical expressions for phase differences of order

parameters, corresponding to the ground state of a homoge-

neous equilibrium three-band superconductor. We have

developed microscopic theory of the Josephson effect in

dirty point contacts between single-band and three-band

superconductors. For a BTRS three-band superconductor we

FIG. 7. Current-phase relations (solid lines) and Josephson energies (dashed

lines) of point contacts between single-band and three-band superconductors

without BTRS in the case of coinciding energy gaps and in the vicinity of

the critical temperature for / ¼ h ¼ 0 (a) and / ¼ 0, h ¼ p (b, for / ¼ p
and h ¼ 0 it will be the same dependence) and / ¼ h ¼ p (c). Ratios

RN1/RN2 ¼ RN1/RN3 ¼ 1.

FIG. 6. The same as in Fig. 5 for / ¼ p/3, h ¼ �p/3 and / ¼ �p/3, h¼p/3.

For / ¼ 2p/3, h ¼ �2p/3 and / ¼ �2p/3, h ¼ 2p/3 absence of the

Josephson current is took place (see explanation in the text).
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have revealed frustration phenomenon of the point contact

with different current-phase relations. By analyzing the

Josephson energy we have found that the contact has shown

the property of a u-contact for whole temperature interval

from zero to the critical temperature. For a three-band super-

conductor, which is characterized by the absence of the

BTRS state, with the increasing of the temperature we have

observed the evolution of the contact behavior from the frus-

trated u-contact to conventional or p-contact in dependence

on the values of phase differences in a three-band supercon-

ductor. We stress that our theoretical results can be useful in

experiments on the detection of BTRS states in multiband

superconductors.
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