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h i g h l i g h t s

• We numerically simulate stochastic resonance in an RF SQUID with ScS Josephson junction.
• We use the zero-temperature approximation for the ScS superconducting current–phase relation.
• The potential energy has a finite-height barrier for any arbitrary small parameter βL.
• ScS-based SQUIDs are more suitable for SR amplification at ultralow temperatures.
• The concept of ‘‘Just-In-Place Amplification’’ is introduced.
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a b s t r a c t

Using a point (superconductor–constriction–superconductor, ScS) contact in a single-
Josephson-junction superconducting quantum interference device (RF SQUID) provides
stochastic resonance conditions at any arbitrary small value of loop inductance and contact
critical current, unlike SQUIDs with more traditional tunnel (superconductor–insulator–
superconductor, SIS) junctions. This is due to the unusual potential energy of the ScS RF
SQUID which always has a barrier between two wells, thus making the device bistable.
This paper presents the results of a numerical simulation of the stochastic dynamics of the
magnetic flux in an ScS RF SQUID loop affected by band-limited white Gaussian noise and
low-frequency sine signals of small and moderate amplitudes. The difference in stochastic
amplification of RF SQUID loops incorporating ScS and SIS junctions is discussed.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The sensitivity of superconducting quantum interference devices (SQUIDs) and their quantum analogues, SQUBIDs,
has practically reached the quantum limitation [1–3]. However, with increase of the quantizing loop inductance up to
L ∼ 10−9–10−10 H, thermodynamic fluctuations lead to quick deterioration of the energy resolution. As shown earlier [4–8],
the sensitivity ofmagnetometers can be enhanced in this case byusing stochastic resonance (SR). The SRphenomenonwhose
concept was introduced in the early 1980s [9–11] manifests itself in non-monotonic rise of a system response to a weak pe-
riodic signal when noise of a certain intensity is added to the system. Owing to extensive studies during the last two decades,
the stochastic resonance effect has been revealed in a variety of natural and artificial systems, both classical and quantum.
Analytical approaches and quantifying criteria for estimation of the ordering due to the noise impact were determined and
described in the reviews [12–14]. In particular, the sensitivity of a bistable stochastic system fed with a weak periodic sig-
nal can be significantly improved in the presence of thermodynamic or external noise that provides switching between the
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metastable states of the system. For example, it was experimentally proved [4] that the gain of a harmonic informational sig-
nal can reach 40 dB at a certain optimal noise intensity in a SQUID with an SIS (superconductor–insulator–superconductor)
Josephson junction. Moreover, the stochastic amplification in SIS-based SQUIDs can be maximized at a noise level insuffi-
cient to enter the SR mode by means of the stochastic-parametric resonance (SPR) effect [15] emerging in the system due
to the combined action of the noise, a high-frequency electromagnetic field and the weak informational signal. An alterna-
tive way of enhancing the RF SQUID sensitivity is to suppress the noise with strong (suprathreshold) periodic RF pumping
of properly chosen frequency which results in a better signal-to-noise ratio in the output signal [16]. In the latter case the
switching between metastable states is mainly due to strong regular RF pumping [17] unlike SR where the dominating
switching mechanism is the joint effect of noise and weak periodic signal [12–14].

In recent years quantum point contacts (QPCs) with direct conductance have attracted strong interest from the point
of view of both quantum channel conductance studies and building qubits with high energy level splitting. Currently, two
types of point contacts are distinguished, depending on the ratio between the contact dimension d and the electron wave
length λF = h/pF : d ≫ λF for a classical point contact [18] and d ∼ λF for a quantum point contact [19–21]. Practically,
superconducting QPCs are superconductor–constriction–superconductor (ScS) contacts of atomic-size (ASCs). The critical
currents of such contacts can take discrete values. The relation IScSs (ϕ) between the supercurrent IScSs and the order param-
eter phase ϕ in both classical and quantum cases at lowest temperatures (T → 0) essentially differs [18,20,21] from the
current–phase relation for an SIS junction described by thewell-known Josephson formula ISISs = Ic sinϕ. The corresponding
potential energies in the motion equations are therefore different as well.

When an SIS junction is incorporated into a superconducting loop with external magnetic flux Φe = Φ0/2 (where
Φ0 = h/2e ≈ 2.07 · 10−15 Wb is the magnetic flux quantum) piercing the loop, its current–phase relation ISISs (ϕ) leads to
the formation of a symmetric two-well potential energy USIS(Φ) of the whole loop that principally enables the SR dynamics
only for βL = 2πLIc/Φ0 > 1. βL is a dimensionless non-linearity parameter sometimes called the main SQUID parameter.
In contrast, the potential energy UScS(Φ) of a superconducting loop with a QPC always has a barrier with a singularity at
its top, and two metastable current states of the loop differing by internal magnetic fluxes Φ can be formally achieved at
any vanishingly low βL ≪ 1. In the quantum case, the most important consequences of the ‘‘singular’’ barrier shape are the
essential rise of macroscopic quantum tunneling rate and the increased energy level splitting in flux qubits [2,3].

In the classical limit, the SR dynamics of a superconducting loop with ScS Josephson contact and non-trivial potential
UScS(Φ)would differ substantially from the previously explored [4–6,8] case of the SIS junction and would bemuch like the
4-terminal SQUID dynamics [7]. In the present work a numerical analysis is given of stochastic amplification of weak low-
frequency harmonic signals in a superconducting loop broken by an ScS Josephson junction at low temperatures T ≪ Tc .
Specific focus is given to low critical currents, i.e. rather high-impedance contacts (ASCs) when βL = 2πLIc/Φ0 < 1.

2. ScS junction loop model and numerical computation technique

The stochastic dynamics of the magnetic flux in an RF SQUID loop (inset in Fig. 1(a)) was studied by numerical solution
of the motion equation (Langevin equation) in the resistively shunted junction (RSJ) model [22]:

LC
d2Φ(t)
dt2

+
L
R
dΦ(t)
dt

+ L
∂U(Φ, Φe)

∂Φ
= Φe(t), (1)

where C is the capacitance; R is the normal shunt resistance of the Josephson junction; L is the loop inductance; Φ(t) is the
internal magnetic flux in the loop; U(Φ, Φe) is the loop potential energy, which is the sum U(Φ, Φe) = UM +UJ of themag-
netic energy of the loop and the coupling energy of the Josephson junction. The time-dependent externalmagnetic fluxΦe(t)
piercing the loop contains a constant and a variable, including noise, component. This equation is analogous to the motion
equation for a particle of mass C moving in potential U with friction coefficient γ = 1/R. The junction coupling energy UJ
is specific to its nature; we will consider the case of clean ScS contacts in the ballistic mode of the electron fly-through [18].

For both classical [18] and quantum [19–21] ScS point contacts with the critical current Ic , at arbitrary temperature T the
current–phase relation reads

IScSs (ϕ) = Ic sin
ϕ

2
tanh

∆(T ) cos ϕ

2

2kBT
, Ic(T ) =

π∆(T )

eR
, (2)

where IScSs (ϕ) is the supercurrent through the contact, ∆(T ) is the superconducting energy gap (order parameter), ϕ is the
difference between the order parameter phases at the contact ‘‘banks’’, kB is the Boltzmann constant, e is the electron charge,
and R is the normal contact resistance. In the limit T = 0 the expression (2) transforms into

IScSs (ϕ) = Ic sin
ϕ

2
sgn


cos

ϕ

2


. (3)

The potential energy of a superconducting loop broken by an ScS contact, UScS(Φ, Φe), reads as

UScS(Φ, Φe) =
(Φ − Φe)

2

2L
− EScS

J cos
πΦ

Φ0

 , (4)

where EScS
J = IcΦ0/π is the maximum coupling energy of the ScS Josephson contact.



O.G. Turutanov et al. / Physica A 396 (2014) 1–8 3

a b

Fig. 1. (Color online) (a) Potential energy USIS of an SIS-junction-based RF SQUID loop with large non-linearity parameter βL = 12 versus the normalized
internal magnetic flux x. The inset is the RF SQUID loop schematic. (b) Potential energies of RF SQUIDs with an SIS junction (βL = 1.5) and an ScS junction
(βL = 0.75) versus the normalized internal magnetic flux x. The barrier heights 1U in both SQUIDs are approximately equal at chosen values of βL . A fixed
magnetic flux Φe = Φ0/2(xe = 1/2) is applied to symmetrize the potential.

To compare, the potential energy of a loop with a tunnel junction is [22]

USIS(Φ, Φe) =
(Φ − Φe)

2

2L
− ESIS

J cos
2πΦ

Φ0
, (5)

where ESIS
J = IcΦ0/2π is the maximum coupling energy of the tunnel Josephson junction.

Reducing the fluxes by the flux quantum Φ0 : x = Φ/Φ0, xe = Φe/Φ0 and the potential energy by Φ2
0/2L, and using the

parameter βL, Eqs. (4) and (5) can correspondingly be rewritten as

uScS(x, xe) =
(x − xe)2

2
−

βL

2π2
cos |πx| (6)

and

uSIS(x, xe) =
(x − xe)2

2
−

βL

4π2
cos(2πx). (7)

The reduced potential energy uSIS(x, xe) of the loop with a tunnel junction has two or more local minima at βL > 1 only.
When the loop is biased by a fixed magnetic flux Φe = Φ0/2 (xe = 1/2), the two lowest minima become symmetric. This
case is illustrated in Fig. 1(a) for a large value βL = 12, for better illustration.

The essential feature attributed to the potential energy uScS(x, xe) of the RF SQUID with ScS contact is that the inter-well
barrierwith the singularity at its top keeps its finite height down to vanishingly smallβL and therefore small L and Ic . Fig. 1(b)
shows the two-well potential of an RF SQUID with an ScS contact at βL = 0.75 < 1 (solid line) and, for comparison, the
potential of the loop with the SIS junction (dashed line) with the same energy barrier height 1U (see also Fig. 2(a)). Noise
of thermal or any other origin causes switching between the metastable states corresponding to the minima of U(Φ). The
average switching rate rsw (of a transition from a metastable state to another one) for white Gaussian noise with intensity
D and high barriers (1U/D ≫ 1) is estimated by the well-known Kramers rate rK [23]

rsmooth
sw = rK =

ω0 ωb

2πγ
exp(−1U/D) (8)

for parabola wells and smooth parabola barrier, which is almost the case for the SIS–SQUID potential. Here ω0 = [U ′′
Φ

(xbottom)/C]
1/2 and ωb = [U ′′

Φ(xtop)/C]
1/2 are the angular frequencies of small-amplitude oscillations near the bottom of

the well and the top of the barrier, correspondingly, defined by the potential curvature in these points; γ is the damping
constant.

Meanwhile, for parabola wells and a sharp barrier that is close to the ScS SQUID potential shape, especially at low non-
linearity parameter βL, the switching time is given by formula (5.4) in Ref. [24], which in our terms will read as

rsharpsw =
√

π
γ (1x)2

81U


D

1U
exp(−1U/D). (9)

For the thermal noise, D = kBT . In this work we do not presume any specific nature of the noise, however, considering
it white Gaussian. The sole limitation we impose is setting an upper cut-off frequency fc for the noise band which does
not exceed the reversal time of the flux relaxation in the loop 1/τL = R/L to provide the adiabatic mode for the SQUID
operation. Previous estimations [8,15] following from the numerical simulation show that a ‘‘reasonable’’ value for fc can
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Fig. 2. (Color online) (a) Energy barrier height 1U and (b) spacing 1x between the potential energy minima versus the parameter βL for RF SQUIDs with
ScS and SIS Josephson junctions.

be chosen so that its further increase does not practically affect the results of the calculations. Usually fc ∼ (103–104)fs is
high enough, where fs is the signal frequency. Adding a small periodic signal with frequency fs to the external flux Φe on the
noise background enables stochastic resonance dynamics of a particle in the bistable potential when the SR condition fulfils

rsw ≈ 2fs. (10)
For typical experimental parameters, L ≈ 3 · 10−10 H, C ≈ 3 · 10−15 F, R ≈ 1–102 �, Ic ≈ 10−5–10−6 A and βL = 0.1–3,

we estimate the McCumber parameter accounting for the capacitance to be low enough: βC = 2πR2IcC/Φ0 < 1. In this
case (aperiodic, or overdamped, oscillator) themotion is non-oscillatory, and therefore the first termwith second derivative
in Eq. (1) can be neglected. Note that a contact with resistance R ∼ 100 � is close to ASC since the number of conducting
channels (atomic chains) is small but the considered situation, even at low temperatures, remains a classical one because of
strong dissipation. The low signal frequency fs ∼ 1–10 Hz ≪ 1/τL and the upper-limited noise frequency band (quasi-white
noise) with cut-off frequency fc ∼ 104 Hz ≪ 1/τL make the problem adiabatic, as noted above, and allow one to attribute
all the time dependence to the potential energy in Eq. (1):

τL
dx
dt

+
∂U(x, t)

∂x
= 0. (11)

For the case of an ScS contact, by substituting Eq. (6) in Eq. (11), we get

dx
dt

=
1
τL


xe(t) − x +

βL

2π
sin(πx) · sgn[cos(πx)]


, (12)

and for an SIS junction, taking into account Eq. (7), Eq. (11) reads as

dx
dt

=
1
τL


xe(t) − x +

βL

2π
sin(2πx)


. (13)

The external magnetic flux xe(t) is the sum of the fixed bias flux xdc = 0.5, the useful signal xac = a sin 2π fst and the
noise flux xN . Theoretically, the noise is assumed to be δ-correlated, Gaussian-distributed, white noise: xN = ξ(t),


ξ(t)

ξ(t − t ′)

= 2Dδ(t − t ′). During numerical simulation it is emulated by a random-number generator with Gaussian distri-

bution, variance D = σ 2 and repetition period of about 290. When solving the equation in a finite-difference approximation,
the sampling frequency is 216 which is equivalent to a noise frequency band of∼32 kHz. This allows us to consider the noise
to be quasi-white for stochastic amplification of the signals with frequency fs = 1–10 Hz.

Eqs. (12) and (13)were solved by the Heun algorithmmodified for stochastic equations [25,26]. 10–50 runsweremade to
obtain 16-s time series with different noise realizations. They then underwent fast Fourier transform (FFT), and the resulting
spectral densities SΦ(ω) of the output signal (internal flux in the loop) were averaged. In this work we use the spectral
amplitude gain of the weak periodic signal as the SR quantifier defined as the ratio of spectral densities of the output and
input magnetic fluxes:

k(ω) = S1/2Φout(ω)/S1/2Φin(ω). (14)

3. Numerical simulation results and discussion

The energy barrier height1U , as follows from Eqs. (6) and (7), is determined by βL and is different for the cases of ScS and
SIS junctions (Fig. 2(a)). As can be seen, in the loop with SIS junction (referred to as SIS SQUID) the two-well potential with
two metastable states needed to prepare conditions for stochastic amplification of a weak information signal exists only at
βL > 1 while it is finite for any βL in the ScS SQUID. Both 1U and D, being in exponent, are the core parameters to define
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Fig. 3. (Color online) The amplitude gain k of the sine signal in RF SQUIDs with ScS and SIS junctions versus the noise amplitude σ = D1/2 . The βL
parameters are chosen so that (a) the potential barriers 1U in both SQUIDs are equal; (b) the minima spacings 1x in both SQUIDs are equal. The signal
amplitude a = 0.001 and the frequency fs = 10 Hz.

the switching rate rsw (8), (9). For a specified frequency of a weak harmonic signal, the SR condition (10) requirement can
be met by increasing the noise power. Meanwhile, the amplitude gain k(ω) of the small signal, according to the two-state
theory [27], should depend on the spacing 1x between the local minima of the potential energy U(x).

k(ω) =
rsw (1x)2

2D (4r2sw + ω2)1/2
. (15)

Fig. 2(b) shows 1x as a function of βL for the ScS and SIS SQUIDs. It is obvious from Fig. 2(b) that both the spacing 1xScS
between the potential energy minima and the barrier height 1UScS tend to zero, remaining finite when βL → 0. In contrast,
for SIS SQUIDs 1USIS and 1xSIS vanish at βL = 1.

Calculation of the small-signal gainwith the same barrier height for both potentials,1UScS
= 1USIS, shows thatmaximal

gain for an SIS SQUID is roughly two times higher than that of an SR amplifier based on an ScS SQUID (Fig. 3(a)).
Maximal gain is obtained when the SR condition (10) is met. After substituting (10) in (15) the gain becomes a function

of only 1x and D. However, the obtained difference in the gain is less than could be derived from only the ratio of 1xScS to
1xSIS because the gain maxima correspond to different optimal noise intensities Dm = σ 2

m which depend on the potential
shapes modifying the switching rate rsw. Using σm from Fig. 3(a) to calculate the gain ratio by the formula (15), we get
kSIS/kScS = 2.15versus the experimental value of 2.37. This is good enough taking into account the simplicity of the two-state
model. Fig. 3(b) illustrates the alternative case when the minima spacings for both potentials are equal while the barriers
are different. Unexpectedly, there is no agreement here between the simulated and calculated gain ratios. Nevertheless, it
should be stressed that despite the lower gain in the ScS SQUID, SR amplification in it is possible at very small critical currents
(typical for ASCs) and low noise level (which may correspond to thermodynamic fluctuations at ultralow temperatures).
Meanwhile, there is no amplification of weak informational signals in SIS SQUIDs for all βL < 1.

Fig. 4 displays a set of SR gain in ScS SQUID versus noise intensity curves for several βL < 1 and the corresponding am-
plitude Fourier spectra of the output signal normalized by the Fourier spectra of the input signal, thus showing the spectral
amplification k(f ). It is seen that, for a sine signal of small amplitude (a = 10−3), the system response remains linear even
for small βL = 0.1, which is indicated by no sign of a third harmonic in the output spectrum (even harmonics are absent
due to the potential symmetry). The latter case corresponds to the millikelvin temperature range for real devices. Although
it is obvious that the detected spectrum is clearer at lower temperature because of a smaller noise background, additionally
the signal gain also turns out to be high enough at βL = 0.1.

The effect of degradation of stochastic amplification in an ScS SQUIDwith signal amplitude increase is shown in Fig. 5. The
higher the signal amplitude, the smaller the signal gain, while the third harmonic (and other odd ones) in the output Fourier
spectrumbecomes visible for a = 3·10−3 and 10−2 (even harmonics are absent because of the potential symmetry), thus the
amplification becomes markedly non-linear. Since signal-to-noise ratio (SNR) enhancement in the output signal is hardly
expected for moderate-to-subthreshold signals on the background of rather weak noise (associated with small βL) [28],
linear amplification is more suitable in this case. Therefore, the weakest signals are stochastically amplified by an ScS SQUID
most effectively.

The maximum stochastic gain for a weak (a = 0.001) low-frequency (fs = 10 Hz) sine signal in both types of SQUIDs is
presented in Fig. 6(a) versus themain SQUID parameterβL = 0.1–3. The formal divergence of the signal gain obtained for the
SIS SQUID at βL = 1 will be smeared by noise in real experiments. Besides, as an additional analysis shows, the non-linear
signal distortions drastically rise and the dynamic range narrows in the region in the vicinity ofβL = 1. For the ScS SQUID, the
dependence of the signal SR gain on the main parameter βL has no distinctive features within a wide range of βL including
βL < 1. The narrowing of the dynamic range and rise of the non-linear distortion is observed at βL ≪ 1 similarly to SIS
SQUID-based amplifiers near βL = 1 due to a vanishingly small potential barrier. Fig. 6(b) presents the optimal noise levels
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Fig. 4. (Color online) (a) The amplitude gain k of the sine signal in an RF SQUID with ScS junction for various βL = 0.1, 0.3, 0.5 versus the noise amplitude
σ = D1/2 . (b) Spectral gains k(f ) for the same values of βL as in panel (a) and noise levels corresponding to the peak of each curve in panel (a). The signal
amplitude a = 0.001 and the frequency fs = 10 Hz.

a b

Fig. 5. (Color online) (a) The amplitude gain of sine signals with various amplitudes a in an ScS RF SQUID versus the noise amplitude σ = D1/2 . (b) The
spectral amplitude gain k(f ) for the same a as in panel (a) and noise levels corresponding to the gain curve maxima in panel (a). The signal frequency
fs = 10 Hz, the parameter βL = 0.1.

where maximum gain is reached as a function of the parameter βL. As expected, the optimal noise levels depend mostly on
the height of the barrier between the two metastable current states. It follows from the obtained results that in the small
signal approximation when the response is supposed to be linear, SIS SQUIDs should be used as SR amplifiers at βL ≥ 1,
while ScS SQUIDs are suitable for small critical currents and/or inductances associated with flux qubits, that is for βL < 1.

4. Conclusion

In this work the noise-induced stochastic amplification of weak informational signals at low temperatures T ≪ Tc in
RF SQUIDs containing ScS contacts (QPCs) is considered. It is shown that SR amplification of weak sine signals emerges at
any, vanishingly small, value of the parameter βL. This is due to an unusual shape of the potential barrier between the two
metastable states with a singularity at its top and always finite height. It should be noted that there is no noise-induced
re-normalization of the potential energy of an ScS SQUID because the noise is band-limited. This justifies the use of the
zero-temperature approximation.
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Fig. 6. (Color online) (a) The maximum gain kmax and (b) the optimal noise amplitude σm for ScS and SIS RF SQUIDs versus the parameter βL . The signal
frequency fs = 10 Hz and the amplitude a = 0.001.

Taking into account quantum corrections to the decay rate of themetastable current states in SR [29] can lead to essential
modification of the dynamics and rise of SR gain. For example, as reported in the paper [30], under some conditions the
presence of noise could enhance the quantum correlation in superconducting flux qubits. With temperature rise up to Tc ,
the SR dynamics of an RF SQUID with a QPC will change due to the temperature dependence of the potential, UScS(T ) [31],
tending, apparently, to that of an SIS SQUID.

It is worth noting that a discontinuous (‘‘saw-like’’) current–phase relationship at T = 0 is also a characteristic of other
types of Josephson contacts with direct conductance, e.g., the 4-terminal microbridge junction and the superconductor–
normal metal–superconductor (SNS) junction, which results in a singularity on top of the barrier of the potential for such
junctions [32,33], and hence their stochastic dynamics should be similar to the behavior of an RF SQUIDwith the considered
ScS contact.

In addition, wewould like highlight one important feature of SR. Even in the case when the SR effect in a SQUID is consid-
ered as ‘‘stochastic filtration’’ [34], and no enhancement in the signal-to-noise ratio is anticipated as compared to its ‘‘input’’
value [28], the SR effect has an almost self-evident advantage over other amplification methods because it works directly
inside the sensor, thus providing a kind of ‘‘first aid’’ to signal detection that we could call ‘‘Just-In-Place Amplification’’,
unlike widely spread ‘‘On-Chip’’ technical solutions where amplification is carried out in a separate unit situated near the
sensor on a common substrate.
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