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We report the results of experimental and theoretical studies of critical current oscillations in thin

doubly-connected Sn films in an external perpendicular magnetic field. The experiments were

performed on samples that consisted of two wide electrodes joined together by two narrow

channels. The length of the channels l satisfied the condition l� n (n is the Ginzburg–Landau

coherence length). At temperatures close to the critical temperature Tc, the dependence of the

critical current Ic on average external magnetic flux �Ue has the form of a piecewise linear function,

periodic with respect to the flux quantum U0. The amplitude of the Ic oscillation at a given

temperature is proportional to the factor n/l. Moreover, the dependence Ic ¼ Icð�UeÞ is found to be

multivalued, hence indicating the presence of metastable states. Based on the Ginzburg–Landau

approximation, a theory was constructed that explains the above features of the oscillation

phenomenon taking a perfectly symmetric system as an example. Further, the experiments displayed

the effects related to the critical currents imbalance between the superconducting channels, i.e., shift

of the maxima of the dependence Ic ¼ Icð�UeÞ accompanied by an asymmetry with respect to the

transport current direction. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4876229]

1. Introduction

Off-diagonal long-range order,1,2 which is responsible for

the phenomenon of superconductivity, manifests itself in the

form of various oscillation effects in doubly-connected super-

conducting systems in external magnetic fields. Such effects

include, for instance, the Little-Parks resistance oscillations in

superconducting thin-walled cylinders and narrow rings,3–8 as

well as the oscillations of the critical transport current Ic in

superconducting interferometers consisting of a loop with two

parallel Josephson junctions.9–11 The oscillations of both

types are periodic in the flux of an external magnetic field

with a period equal to one flux quantum U0 ¼ p�hc=jej.
Recently, the possibility of creating superconducting inter-

ferometers containing no artificial Josephson junctions attracted

significant interest of experimentalists (see Refs. 12–15). Such

a possibility has long been discussed in theoretical studies,16

where, within the framework of Ginzburg-Landau theory,17 a

simple doubly-connected superconducting circuit has been con-

sidered. The circuit was formed by uniform and effectively

one-dimensional elements: a circular loop of a small radius and

two long linear electrodes.

Critical current oscillations has been predicted in

Ref. 16 and observed for the first time in Ref. 13. In the

experiments reported in Ref. 14, the superconducting devices

similar to the interferometers proposed in Ref. 16 have been

studied. However, the role of loops in the experiments was

played by composite rings consisting of two halves with differ-

ent critical currents. As expected (see, e.g., Refs. 18 and 19),

the dependences of Ic ¼ IcðUe=U0Þ obtained by Gurtovo K%
et al.14 showed characteristic shifts of the critical current max-

ima with respect to the points Ue=U0 ¼ 0;61;62; ::: as well

as an asymmetry with respect to the transport current direction.

In accordance with the theory,16 Refs. 13 and 14 employed

“microscopic” doubly-linked elements (superconducting

loops and rings) with the linear dimensions not exceeding

the temperature-dependent coherence length n(T).4–6 To

ensure that this condition is fulfilled, aluminum, which is

characterized by a large BCS coherence length n0,20 was

selected as the superconducting material, and the measure-

ments were carried out at temperatures close to the critical

temperature Tc.

However, the experiments12 on wide tin films with a

macroscopic rectangular hole convincingly demonstrated

that “microscopicity” of a doubly-connected superconduct-

ing system is not a prerequisite for the observation of critical

current oscillations. The same conclusion was also drawn by

Michotte et al.,15 who have studied experimentally the oscil-

latory dependence of Ic ¼ IcðUe=U0Þ for niobium loops with

symmetric and asymmetric injection of transport current. A

distinctive feature of the experiments in Ref. 15 was the fact

that the measurements were performed at low temperatures

as compared to Tc, when the “microscopicity” condition is

clearly not fulfilled.

In a series of our experiments we observed oscillations

of the critical transport current in a doubly-connected mac-

roscopic superconducting system at temperatures close to

Tc. In this paper, we present the main results of these

experiments, as well as their consistent theoretical interpre-

tation within the framework of the Ginzburg-Landau

approximation.

The samples for our experiments were prepared using

tin thin films and shaped as two long narrow (l � n(T))

channels connected to wide electrodes (see Fig. 1). The fol-

lowing basic properties of macroscopic oscillation effect

were experimentally established: the dependence Ic ¼ Ic(He)

(He is the external magnetic field) exhibits a piecewise linear

behavior and is multivalued, while the oscillation amplitude

is proportional to the factor n(T)/l. These properties were

fully explained by the developed theory.
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We also observed the effects of asymmetry, which have

been found in earlier studies.14,15 In this paper, such effects

are qualitatively explained by the fact that the long super-

conducting channels were not fully identical.

Sec. 2 describes the experimental setup and basic experi-

mental results. In Sec. 3, a theory of macroscopic oscillation

effect in the case of a perfectly symmetric system is devel-

oped. Finally, in Sec. 4, we formulate the main results of the

study and give some concluding remarks.

2. Experimental methods and main experimental results

Fig. 1 schematically illustrates the geometry of the

experiment. Superconducting sample is shown in gray. It is a

doubly-connected thin-film structure which consists of two

wide electrodes A and B, joined by two narrow channels 1
and 2. External magnetic field He is directed along the z-axis

(He ¼ (0,0,He)), and the transport current I is injected along

the x-axis (I ¼ (I,0,0)).

The experiments were conducted using a set of samples

that had the same shape, but a different length l of the super-

conducting channels. Samples were prepared by electron-

beam lithography; tin, which is a type-I superconductor, was

used as the film material.4

The basic geometrical parameters of the samples were

as follows: the film thickness t ¼ 0.25 lm, the channel width

d¼ 0.3 lm, and the distance between the channels w¼ 5 lm.

The length l of the channels varied from 5 to 110 lm.

The critical temperature Tc, measured as the end of the

superconducting transition, was from 3.825 to 3.915 K for

different samples. The experiments were performed in the

temperature range DT ¼ 0.90–0.99Tc. Temperature was

maintained with an accuracy equal or better than

0.0005(T/Tc). Earth’s magnetic field was shielded using a

three-layer permalloy (over 100-fold attenuation) and a

superconducting shields.

All samples were of sufficiently high purity: the

estimated mean free path was 0.117 lm. (Note that for tin

n0 ¼ 0.23 lm and the depth of penetration in the clean limit

at zero temperature k(0) � 0.05 lm.4) In the entire tempera-

ture range of the measurements DT, the condition of

smallness for the transverse dimensions t and d of the chan-

nels with respect to the temperature-dependent coherence

length n(T) (nðTÞ / n0ð1� T=TcÞ�1=2
) was satisfied.

However, the temperature-dependent penetration depth

kðTÞ / kð0Þð1� T=TcÞ�1=2
was of the order of or smaller

than t and d.

In the experiments, current-voltage characteristics (CVC)

were measured as a function of the applied magnetic field He.

The current-voltage characteristics of all samples exhibited a

shape typical for the resistivity mechanism associated with

the formation of phase slip centers5,6,21 (see Fig. 2).

Once the critical current was reached, the voltage

appeared abruptly, and switching to the steps with linear and

differential resistance, which was a multiple of a certain

value, and the same excess current was observed. Thus, the

value of critical current was well fixed and not dependent on

the voltage level at which the critical current was measured

in the switching region. In this case, the critical current at

which a jump to the first step occurred varied periodically

with magnetic field between the values Ic max and Ic min. The

currents at which the jumps to the second and all subsequent

steps occurred did not oscillate with magnetic field. Neither

the excess current nor the differential resistance of the steps

exhibited magnetic field dependence and, therefore, the volt-

age drop at the steps did not oscillate either at a fixed

current.

Based on the conducted experiments, two types of

behaviour were established. The first type (I) is characterized

by the basic properties of the macroscopic oscillation effect,

while the patterns of the second type (II) presumably

appeared due to the incomplete symmetry of the samples.

Basic properties of macroscopic oscillation effect (type I)

All the obtained dependences Ic ¼ Ic (He) exhibited pro-

nounced periodicity, oscillatory behavior, and piecewise-

linear shape (see Figs. 3, 5, 7, and 8). The oscillation period

DHe did not depend on temperature.

The quotient of division of the magnetic flux quantum U0

by the oscillation period for each of the samples was equal to

the area bounded by a certain effective loop (see Fig. 1) which

FIG. 1. Schematic experimental geometry in the plane z ¼ 0. The regions

where perpendicular magnetic field penetrates into the sample are shaded.

Gray circles indicate the locations of potential contacts V1 and V2. (See the

text, Sec. 2 and 3, for further details.)

FIG. 2. Set of current-voltage characteristics of the sample with the channel

length l ¼ 25 lm measured at the reduced temperature T/Tc ¼ 0.976 in dif-

ferent magnetic fields.
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was entirely located within the film and surrounding the

hole. The area bounded by the effective contour was always

slightly larger than the orifice area and was approaching it

upon increasing the length of the channel l (see Fig. 3 for

illustration).

Using the samples with different channel lengths in the

experiments allowed us to establish the fact of linear depend-

ence of the oscillation amplitude Ic ¼ Ic(He) on 1/l at a given

temperature (see Fig. 4).

The critical current �Ic averaged over the oscillation

period increased with decreasing temperature as �Ic

/ ð1� T=TcÞ3=2
. The oscillation amplitude DIc initially

increased and then, at a reduced temperature T/Tc < 0.9,

tended to saturate.

Moreover, upon decreasing temperature, when a hys-

teresis appeared in CVC, the dependences Ic ¼ Ic(He)

became multivalued (Figs. 5, 7, and 8). This was revealed

by recording CVCs multiple times at a fixed value of a

magnetic field (Fig. 6). Thus, the longer the sample was,

the more branches Ic ¼ Ic(He) were observed (cf. Fig. 7

(l ¼ 5 lm), 5 (l ¼ 25 lm), and 8 (l ¼ 55 lm)).

FIG. 3. Ic(He) plots for the samples with different channel lengths (l ¼ 5,

11, 25, 55, 110 lm). The oscillation period DHe is approximately inversely

proportional to the area of the opening.

FIG. 4. Dependence of the oscillation amplitude DIc on the channel length l
at the reduced temperature T/Tc ¼ 0.97.

FIG. 5. Magnetic field dependence of the critical field for the sample with l
¼ 25 lm at different temperatures. The values of critical current were deter-

mined from the current-voltage characteristics measured several times at the

same value of magnetic fields.

FIG. 6. Current-voltage characteristic of the sample with the channel length

l ¼ 55 lm (T/Tc ¼ 0.911, H ¼ 0.6 Oe) obtained at a fixed value of the mag-

netic field measured at the reduced temperature T/Tc ¼ 0.976 in different

magnetic fields.
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Asymmetry effects (type II)

Almost for all the samples (Figs. 3, 5, 7, and 8), the de-

pendence Ic ¼ Ic(He) exhibited an offset of the critical cur-

rent maximum point from He ¼ 0. The offset varied when

the temperature was changed (see Fig. 7).

The offset of the critical current maximum was accom-

panied by an asymmetry of the dependence Ic ¼ Ic(He) with

respect to reversal of the transport current direction. This

asymmetry increased with decreasing temperature, and, ulti-

mately, the plots Ic ¼ Ic(He) acquired a sawtooth-like shape

(see Fig. 8), which indicated a transition to the resistive state

of only one of the two superconducting channels.

Note that the above described phenomena have also

been observed in the experiments of Refs. 14 and 15 on spe-

cially prepared asymmetric samples. Moreover, such effects

have long been studied and discussed in detail for the case of

superconducting interferometers containing two Josephson

junctions with different critical currents.18,19 Following the

arguments of Refs. 18 and 19, we can conclude that in our

case the asymmetry effects arise due to unequal critical cur-

rents of the two superconducting channels, which,

apparently, results from the inevitable presence of micro-

structural defects.

3. Theory of the oscillatory effect in the case of a fully
symmetric system

For a theoretical explanation of the main experimentally

observed features of the macroscopic oscillation effect (Sec.

2, type-I behavior) it is sufficient to consider the simplest

case of a fully symmetric system. In particular, in this sec-

tion we will assume that the experimental model shown in

Fig. 1 is fully symmetric with respect to reflections in the

planes x ¼ 0, y ¼ 0, and z ¼ 0, implying that the critical cur-

rents of superconducting channels 1 and 2 are identical.

Since the condition

1� T=Tc � 1 ; (1)

was satisfied in all the measurements (temperature range DT
¼ 0.90–0.99Tc), the local Ginzburg-Landau equations will

serve as a departure point for our theory.17 However, first we

need to make an important remark.

As follows from the microscopic theory (see, e.g., Ref.

4), to fulfill the local approximation, in addition to the condi-

tion (1), two more conditions are required. First, the smallest

linear dimensions of the system (the film thickness t and

channel width d) should satisfy the inequality

n0 < t; d ; (2)

where n0 is the BCS coherence length.20 Second, the in-

equality providing the local coupling between the supercon-

ducting current j and the vector potential A should be

fulfilled as well:

n0 < k ; (3)

where k ¼ k(T) is the Ginzburg-Landau penetration depth.

While inequality (2) can be assumed to hold always, the in-

equality (3) will be satisfied for some samples only at the

upper limit of the temperature interval DT. Fortunately, this

does not affect the explanation of the oscillation effect and

will be ignored hereafter.

So, once again let us consider the geometry of the prob-

lem (Fig. 1). We denote the spatial region occupied by the

sample as X (colored gray in Fig. 1). Since the sample is

made of a type-I superconductor, the following condition is

satisfied

k� n ; (4)

where n ¼ n(T) is the Ginzburg-Landau coherence length.

The superconducting electrodes A and B will be consid-

ered semi-infinite in the x-direction (i.e., Lx!1). The other

linear dimensions of the system satisfy the following condi-

tions, which are fulfilled in the experiment:

t; d � n ; (5)

t; d � k ; (6)

w� t; d ; (7)

l=2� n ; (8)

FIG. 7. Temperature shift of the critical current maximum in the depend-

ence Ic ¼ Ic(He) for the sample with the channel length l ¼ 5 lm.

FIG. 8. Ic ¼ Ic(He) dependences for the sample with l ¼ 55 lm measured

at different temperatures and fixed (positive) direction of the transport cur-

rent (three lower graphs). With decreasing temperature the dependences

become sawtooth-like. The upper graph (T/Tc ¼ 0.935) shows the depend-

ence Ic ¼ Ic(He) for the two directions of the transport current.
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Ly � wð Þ=2� k? ; (9)

where k? is the penetration depth for a perpendicular mag-

netic field,4,5,22 for which, in our case, the following estimate

is valid

t; d; k < k? < n : (10)

The role of conditions (5)–(10) will be clarified in what

follows.

The superconducting state is described by the Ginzburg-

Landau equation for the complex order parameter D ¼ D(r),

which is continuous and single-valued23 in the whole region

X and can be represented in the following form:

D ¼ D0f e�iv : (11)

Here, D0 ¼ D0(T) is the real order parameter for an unper-

turbed bulk superconductor and the real function f ¼ f(r)

(the reduced modulus of the order parameter) takes values

within the interval (0,1] and satisfies the boundary

condition:

rf � nð Þjr2@X ¼ 0 ; (12)

where n ¼ (nx, ny, nz) is the outward normal to the surface

@X. From the condition of uniqueness of the order parame-

ter, the boundary condition for the phase v isþ
C

rv drð Þ ¼2pN N ¼ 0;61;62;…ð Þ; (13)

where C is an arbitrary continuous closed contour enclosing

the opening in the system. (One such circuit within the plane

z ¼ 0 is shown in Fig. 1.) Recall that a topological number

N, appearing in the right-hand side of Eq. (13), parameter-

izes different allowed states of the system for a given value

of an external field He (see, e.g., Ref. 24).

The complete system of equations also includes the

Maxwell equations

rot h ¼ 4p
c

j; h ¼ rot A ; (14)

where h ¼ (hx, hy, hz) is the local magnetic field, which satis-

fies the boundary conditions:

hjy¼61 ¼ hjz¼61 ¼ 0; 0;Heð Þ ; (15)

and A ¼ (Ax, Ay, Az) is the corresponding vector potential.

The superconducting current density j satisfies the continuity

condition

div j ¼ 0 (16)

and the boundary condition

ðj � nÞjr2@X ¼ 0: (17)

It is given by the Ginzburg-Landau relation

j ¼ cU0

8p2k2
f 2 rv� 2pA

U0

� �
; (18)

where U0 ¼ p�hc=jej is the magnetic flux quantum. Note that

due to Eq. (17) and the symmetry of the problem, jz � 0.

Therefore, it is logical to use the gauge

Az � 0; (19)

at which

v ¼ v x; yð Þ: (20)

For convenience, we label the quantities D and j in the

region of electrodes with the indices A and B and those in

the region of channels with the indices 1 and 2:

DA;B ¼ D0fA;Be�iv; D1;2 ¼ D0f1;2 e�iv;

jA;B ¼ jAx;Bx; jAy;By; 0ð Þ; j1;2 ¼ j1;2; 0; 0ð Þ:
(21)

Due to the boundary condition (12) and strong inequal-

ities (5),2,4,8

fA;B ¼ fA;B x; yð Þ; f1;2 ¼ f1;2 xð Þ: (22)

(Note that, due to relations (20) and (22), the whole depend-

ence of the current densities jA,B
and j1,2 on the z-coordinate

is transferred to the components of the vector potential A;

see definition (18).)

At the boundaries between the electrodes and channels

the conditions of continuity are fulfilled:

f1 �
l

2

� �
¼ 1

d

ð�w=2

�w=2�d

dy fA �
l

2
; y

� �
; f1

l

2

� �
¼ 1

d

ð�w=2

�w=2�d

dy fB
l

2
; y

� �
;

f2 �
l

2

� �
¼ 1

d

ðw=2þd

w=2

dy fA �
l

2
; y

� �
; f2

l

2

� �
¼ 1

d

ðw=2þd

w=2

dy fB
l

2
; y

� �
;

df1

dx
� l

2

� �
¼ 1

d

ð�w=2

�w=2�d

dy
@

dx
fA x; yð Þ

� �
x¼�l=2

;
df1

dx

l

2

� �
¼ 1

d

ð�w=2

�w=2�d

dy
@

dx
fA x; yð Þ

� �
x¼l=2

;

df2

dx
� l

2

� �
¼ 1

d

ðw=2þd

w=2

dy
@

dx
fA x; yð Þ

� �
x¼�l=2

;
df2

dx

l

2

� �
¼ 1

d

ðw=2þd

w=2

dy
@

dx
fA x; yð Þ

� �
x¼l=2

: (23)
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From condition (16) follows the conservation laws for the x-components of the current densities

j1 �
l

2
; y; z

� �
¼ jAx �

l

2
; y; z

� �
;

j1

l

2
; y; z

� �
¼ jBx

l

2
; y; z

� �
y 2 �w

2
� d;�w

2

� �
; z 2 � t

2
;

t

2

� � !
;

j2 �
l

2
; y; z

� �
¼ jAx �

l

2
; y; z

� �
;

j2

l

2
; y; z

� �
¼ jBx

l

2
; y; z

� �
y 2 w

2
;
w

2
þ d

� �
; z 2 � t

2
;

t

2

� � !
(24)

and

@j1

@x
¼ 0;

@j2

@x
¼ 0 x 2 � l

2
;

l

2

� �� �
; (25)

as well as the conservation law for the total current I, which

can be written in two equivalent forms:

�j1 þ �j2 ¼ J (26)

and

�j1 ¼ J=2þ �jcirc; �j2 ¼ J=2� �jcirc;

�jcirc ¼
1

2
�j1 � �j2

� �
:

(27)

Here, J � I/s, s ¼ td is the cross-sectional area of each chan-

nel, and the average current densities in the channels are

defined by the relations

�j1 �
1

s

ðt=2

�t=2

dz

ð�w=2

�w=2�d

dy j1 y; zð Þ;

�j2 �
1

s

ðt=2

�t=2

dz

ðw=2þd

w=2

dy j2 y; zð Þ:

(28)

In the notation of Eq. (27), the quantity �jcirc denotes the aver-

age density of the circulating current.

For a clear understanding of the oscillation effect of the

first order in the parameter n/l, it is very important to keep in

mind that, because of the conditions (6), the current densities

j1 and j2 are non-uniform within the cross sections and can-

not be taken from under the integral sing in the right-hand

sides of Eq. (28). (The uniformity of the distributions of j1
and j2 requires strong inequalities t, d� k.4–6)

It is also important to keep in mind that the full current I
can be expressed in terms of the current densities jAx,Bx on

the side surfaces of the electrodes:

I ¼ k?

ðt=2

�t=2

dz jAx �1;
Ly

2
; z

� �
þ jAx �1;�

Ly

2
; z

� �� �

¼ k?

ðt=2

�t=2

dz jBx 1;
Ly

2
; z

� �
þ jBx 1;�

Ly

2
; z

� �� �
: (29)

Relations (29), which are valid due to condition (9), are, in

fact, the rigorous definitions of the penetration depth. As

immediately follows from these relations, conservation law

(26), and the inequality d < k? in the left-hand side of Eq. (10),

the average current densities jAx,Bx on the side surfaces of the

electrodes (the right-hand side of Eq. (29) with a factor of

1=ð2k?tÞ) is strictly less than the average current density in one

of the channels (�j1 and �j2). For this reason, the experimentally

observed value of the total critical current I ¼ Ic is determined

specifically by the state of the narrow channels and not the wide

electrodes.

To obtain another equation relating �j1 and �j2, we should

use condition (13). Let the topological number N be given.

Then we consider a set of equivalent contours C, which are

rectangles in the cross-section plane z ¼ const. In each of the

planes, let us denote the coordinates of the vertices of the rec-

tangles as (�x0, y1), (x0, y1), (x0, y2) and (�x0, y2): see Fig. 1.

The value x0, satisfying the condition x0 � l=2� k?, is

assumed to be given, while y1 and y2 can be varied independ-

ently within the width of the channels. Using definition (18),

we express the phase gradientrv through the current densities

j1,2, jAx,Bx, and the vector potential A. Given the conservation

laws (25) and the condition h ¼ 0, j ¼ 0 on the sides of the

rectangles parallel to the plane x ¼ 0, we obtain from Eq. (13)

for each of the contours C lying in a given plane z ¼ z0:

C1j1 y1; z0ð Þ 1þ e1 y1; z0ð Þ
� 	� C2j2 y2; z0ð Þ 1þ e2 y2; z0ð Þ

� 	
¼ 3

ffiffiffi
3
p

pjc0

n
l

N � Uy1;y2;z0

U0

� �
; (30)

where

C1 � C1 f1½ 	 ¼
1

l

ðl=2

�l=2

dx

f 2
1 xð Þ

; C2 � C2 f2½ 	 ¼
1

l

ðl=2

�l=2

dx

f 2
2 �xð Þ

;

(31)

e1 y1; z0ð Þ ¼

ð�l=2

�x0

dx jAx x; y1; z0ð Þ
f 2
A x; y1ð Þ

þ
ðx0

l=2

dx jBx x; y1; z0ð Þ
f 2
B x; y1ð Þ

lC1j1 y1; z0ð Þ
> 0;

e2 y2; z0ð Þ ¼

ð�l=2

�x0

dx jAx �x; y2; z0ð Þ
f 2
A �x; y2ð Þ

þ
ðx0

l=2

dx jBx �x; y2; z0ð Þ
f 2
B �x; y2ð Þ

lC2j2 y2; z0ð Þ
> 0;

(32)
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jc0 ¼
cU0

12
ffiffiffi
3
p

p2k2n
(33)

is the critical superconducting current density in the Ginzburg-

Landau approximation,4–6 and Uy1
,y2

,z0
is the flux of the mag-

netic field h through the contour under consideration:

Uy1;y2;z0
¼
ðy2

y1

dy

ðl=2

�l=2

dx hz x; y; z0ð Þ

þk?

ðy2

y1

dy hz
l

2
; y; z0

� �
þ hz �

l

2
; y; z0

� �� �
: (34)

Using the continuity conditions (24), obvious inequality

0 < f1;2 
 fA;B 
 1, and the definition of the penetration

depth k? (see Eq. (29)), we can easily obtain a rigorous

upper bound for the values of Eq. (32):

0 < e1 y1; z0ð Þ; e2 y2; z0ð Þ 

2k?

l
<

2n
l
� 1: (35)

Therefore, the terms e1,2 may be omitted in Eq. (30) contain-

ing a small parameter n/l in the right-hand side. This equa-

tion is obviously true for arbitrary values of the topological

number N. Therefore, after averaging, we obtain:

C1
�j1 � C2

�j2 ¼ 3
ffiffiffi
3
p

pjc0

n
l

N �
�U
U0

� �
N ¼ 0;61;62; :::ð Þ;

(36)

�U � 1

sd

ðt=2

�t=2

dz0

ðw=2þd

w=2

dy2

ð�w=2

�w=2�d

dy1Uy1;y2;z0
(37)

is the flux of the magnetic field h through the opening in the

system, averaged over all equivalent contours C.

Due to the symmetry of the system, in the state of ther-

modynamic equilibrium �U ¼ �UðHeÞ, and �Uð0Þ ¼ 0. In a

general case, the average flux �U may be represented as

follows:

�U ¼ �Ue þ
s

c
L�jcirc; (38)

where

�Ue ¼ 2k? þ lð Þ wþ dð ÞHe (39)

is the average flux of the magnetic field He and L is the geo-

metrical inductance of system25 which is considered as known.

To obtain a closed system of equations we should also

specify an algorithm for computing the reduced order param-

eters f1,2 in definition (31). Let’s start with a rigorous formu-

lation of the problem, which includes the one-dimensional

Ginzburg-Landau equations

n2 d2f1;2
dx2

þ 1� f 2
1;2 �

4j2
1;2

27j2c0

1

f 4
1;2

" #
f1;2 ¼ 0 (40)

(see, e.g., Ref. 16) and continuity conditions (23) at the

boundaries of the electrodes. (As usual, the bar over the

quantities j21;2 in Eq. (40) denotes averaging over the coordi-

nates y and z.) Now, we will show that in our case the prob-

lem (23), (40) allows a substantial simplification.

Indeed, the effect of boundaries extends only to a dis-

tance of about n, which is small (due to condition (8))

compared with the length of the channel l. On the other

hand, for our purposes it is sufficient to consider the main

region �l/2 þ n < x < l/2 �n, where one can neglect the

second derivatives in Eq. (40) and ignore the boundary

conditions (23). (This approximation introduces an error

of about n2/l2, which is absolutely insignificant when the

oscillation effect of the first order in the parameter n/l is

considered.)

If, additionally, the approximation j2
1;2 � �j

2
1;2 is taken,

which is rather natural given conditions (6) and (7), we

arrive at non-linear algebraic equations:

f 4
1;2 1� f 2

1;2

� �
¼

4�j
2
1;2

27j2
c0

: (41)

Equations (26), (27), (36), (38), and (41) do not contain

unknown physical quantities related to the electrodes and

allow for a straightforward solution.

From Eqs. (27), (36), and (38) we find:

�j1 ¼
J

2
þ �jcirc; �j2 ¼

J

2
� �jcirc;

�jcirc ¼
1

C1 þ C2 þ 2K
C2 � C1ð ÞJ

2
þ 3

ffiffiffi
3
p

pnjc0

l
N �

�Ue

U0

� �" #

N ¼ 0;61;62; :::ð Þ; (42)

where

K � 1

8p
s

k2

L
l
; (43)

C1 � 1=f 2
1 ; C2 � 1=f 2

2 ; (44)

and the constants f 2
1;2 satisfy Eq. (41). To begin with, let us

discuss the solution of Eqs. (41)�(44) in two simple limiting

cases.

Let He ¼ 0 and J � 0. At the thermodynamic equilib-

rium, N ¼ 0. Due to the symmetry, C1 ¼ C2, and

�j1 ¼ �j2 ¼ J=2: (45)

The square of the order parameter f 2
J=2 � f 2

1 ¼ f 2
2 is given

by the solution of Eq. (41), where we should assume j1 ¼ j2
¼ J/2.

The total critical current of the system is determined by

a simple expression:

Ic � sJc ¼ 2s�jc; (46)

where �jc is the critical value of mean current density in each

of the channels. Non-uniform densities j1,2 have the maxi-

mum values on the surface of the channels. The critical value

of �jc is achieved when the surface densities j1,2 become equal

to the critical density jc0 as defined by Eq. (33). Therefore,

we find:
�jc 
 jc0: (47)

Note that in the case of complete uniformity of the dis-

tribution of current densities j1,2, relation (47) is reduced to a

strict equality. In contrast, in experiments on narrow
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channels the strict inequality �jc < jc0 is always realized.5 In

our case we have a two-sided inequality:

n
l

jc0 � �jc < jc0: (48)

Now let J ¼ 0, and He � 0. Like in the previous case, C1

¼ C2, and the average density of the circulating current

induced by an external field He is given by

�jcirc � �j1 ¼ ��j2 ¼
3
ffiffiffi
3
p

pf 2
�jcirc

2 1þ f 2
�jcirc

K
� � n

l
jc0 N �

�Ue

U0

� �
;

N ¼ 0;61;62; :::ð Þ (49)

where the square of the order parameter f 2
�jcirc
� f 2

1 ¼ f 2
2 satis-

fies Eq. (41) provided �j1 ¼ ��j2 ¼ �jcirc.

It is well-known8,26 that the role of the topological number

N is to minimize the electromagnetic energy of circulating cur-

rents. For this reason, stable (equilibrium) states and low-lying

metastable (nonequilibrium) states should satisfy the condition

maxN

N � �Ue

U0

 � 1: (50)

Such states allow to use the perturbation theory in the

small parameter n/l. In the first approximation, which is of

interest here, we have: f 2
�jcirc
¼ 1þ oðn=lÞ and

�jcirc ¼
3
ffiffiffi
3
p

p

2 1þ Kð Þ
n
l

jc0 N �
�Ue

U0

� �
þ o

n
l

� �

maxN

N � �Ue

U0

 � 1

 !
; (51)

where o(n/l) denotes the contribution of terms of the order

(n/l)n with the exponents n > 1.

It is important to note that for equilibrium and weakly

nonequilibrium states the maximum value of �jcirc is much

smaller than the critical value of the average density jc due

to the condition (48). However, this conclusion could break

down in the case of strongly nonequilibrium states when

condition (50) is not satisfied and the perturbation theory in

the parameter n/l becomes inapplicable.

In the opposite limiting case of pure equilibrium states,

expression (51) takes the following form:

�jcirc ¼ �
3
ffiffiffi
3
p

p

2 1þ Kð Þ
n
l

jc0H
�Ue

U0

� �
þ o

n
l

� �
; (52)

where the periodic piecewise linear function H ¼ H(x) is

given by26

H xð Þ ¼ xf g
�1þ xf g;

xf g 
 1=2;
xf g > 1=2;

�
(53)

where {x} denotes the fractional part of x. From Eqs. (52) and

(53) follows that, for instance, the transitions between differ-

ent equilibrium states N $ N þ 1 occur upon satisfying the

condition �Ue=U0 ¼ ð2N þ 1Þ=2. At the transition points

N$N þ 1, the circulating current �jcirc changes sign. The sign

change of �jcirc also occurs at the points �Ue=U0 ¼ N, see the

graph of the dependence ~�j circ ¼ ~�j circð�Ue=U0Þ in Fig. 9, where

~�j circ �
�jcirc

3
ffiffiffi
3
p

p

2 1þ Kð Þ
n
l

jc0

is the reduced average density of the circulating current. We

also note that the absolute value of the average magnetic

flux induced by circulating current does not exceed U0/2 in

the equilibrium case:

s

c
Lj�jcircj ¼

jH �Ue=U0

� �
jKU0

1þ Kð Þ 
 1

2

KU0

1þ Kð Þ <
U0

2
: (54)

Let us finally consider the general case, when J � 0 and

He � 0. It is a priory clear that the average current densities

j1,2 cannot be equal to a simple sum of the contributions (45)

and (49) because now the C1 6¼ C2. Nevertheless, the linear

parts of the dependences of interest �j1;2 ¼ �j1;2ð�U=U0Þ can be

easily found using the perturbation theory. (Of course, it is

assumed in this case that the condition (50) is satisfied.)

In the first approximation in the small parameter n/l, the

solutions of equations (41) are as follows:

f 2
1 ¼ f 2

J=2 �
2
ffiffiffi
3
p

p

9f 2
J=2

1þ f 2
J=2

K
� �

jc0

Jn
l

N �
�Ue

U0

� �
þ o

n
l

� �
;

f 2
1 ¼ f 2

J=2 þ
2
ffiffiffi
3
p

p

9f 2
J=2

1þ f 2
J=2

K
� �

jc0

Jn
l

N �
�Ue

U0

� �
þ o

n
l

� �

maxN

N � �Ue

U0

 � 1

 !
; (55)

where the square of the unperturbed order parameter f 2
J=2 sat-

isfies the equation

f 4
J=2 1� f 2

J=2

� �
¼ J2

27j2
c0

: (56)

Substituting Eq. (55) into Eqs. (42) and (44) leads to the

desired linear dependences:

�j1 ¼
1

2
J þ 3

ffiffiffi
3
p

p
n
l

jc0

f 2
J=2

1þ f 2
J=2

K
1� 2

27f 6
J=2

1þ f 2
J=2

K
� � J2

j2
c0

0
@

1
A N �

�Ue

U0

� �2
64

3
75þ o

n
l

� �
;

�j2 ¼
1

2
J � 3

ffiffiffi
3
p

p
n
l

jc0

f 2
J=2

1þ f 2
J=2

K
1� 2

27f 6
J=2

1þ f 2
J=2

K
� � J2

j2
c0

0
@

1
A N �

�Ue

U0

� �2
64

3
75þ o

n
l

� �
;

maxN

N � �Ue

U0

 � 1:

(57)

Low Temp. Phys. 40 (5), May 2014 Sivakov et al. 415

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:  140.254.87.149

On: Sat, 20 Dec 2014 00:43:09



As we see, in the presence of the transport current, the

amplitude of the circulating current is suppressed (cf. the

second terms in Eqs. (57) and (51)).

As could be expected, in the corresponding limiting

cases, Eq. (57) is reduced to Eqs. (45) and (51).

In the general case the average current densities j1 and j2
are not equal to each other. Therefore, the critical value of

the total current I ¼ Ic � sJc is reached under an obvious

condition

max �j1; �j2

� �
¼ �jc: (58)

From condition (58) and equations (57) we can easily

obtain:

Jc �
Ic

s
¼ 2�jc � 3

ffiffiffi
3
p

p
n
l

jc0

f 2
�jc

1þ f 2
�jc
K

� 1� 8

27f 6
�jc

1þ f 2
�jc
K

� � �j
2
c

j2
c0

2
4

3
5N � �Ue

U0

þ o
n
l

� �
;

maxN

N � �Ue

U0

 � 1: (59)

In the case of pure equilibrium states, the expression

(59) reduces to

Jc �
Ic

s
¼ 2�jc � 3

ffiffiffi
3
p

p
n
l

jc0

f 2
�jc

1þ f 2
�jc
K

� 1� 8

27f 6
�jc

1þ f 2
�jc
K

� � �j
2
c

j2
c0

2
4

3
5
H

�U
U0

� �þ o
n
l

� �
; (60)

where the function H ¼ H(x) is given by definition (53). As

follows from Eqs. (47) and (56), the value of f 2
�jc

appearing in

the right-hand sides of Eqs. (59) and (60) satisfies the two-

sided inequality:

2

3

 f 2

�jc
< 1: (61)

As can be seen from the graph of D~Jc ¼ D~Jcð�Ue=U0Þ
shown in Fig. 10, where

D~Jc �
Jc � 2�jc

3
ffiffiffi
3
p

p
n
l

jc0

f 2
�jc

1þ f 2
�jc
K

1� 8

27f 6
�jc

1þ f 2
�jc
K

� � �j
2
c

j2
c0

2
4

3
5

is the reduced amplitude of the critical current oscillations,

Eqs. (59) and (60) together give an adequate theoretical

description of the oscillation effect of the first order,

which was observed in our experiment. As follows from

condition (58) and Eq. (57), the critical value of the average

current density �jc is achieved alternately in each of the con-

tacts which is also confirmed experimentally. Thus, for pos-

itive values of the circulating current the condition �j1 ¼ �jc,
�j2 < �jc is satisfied, while for negative values the condition
�j2 ¼ �jc, �j1 < �jc is satisfied.

As can be easily concluded from Eqs. (59) and (60), con-

ditions (6) are optimal for observation of this effect. We

illustrate this conclusion with two important examples.

Let us first consider the case of very narrow and thin

channels when the strong inequalities t, d� k are satisfied,

hence ensuring the uniformity of the distribution of the

current densities j1,2 and the equality �jc ¼ jc0. Obviously, in

this case, expressions (59) and (60) remain valid,

and f 2
�jc
¼ f 2

�jc0
¼ 2=3. If, additionally, K � 1 (negligible

screening of the external field), Eq. (60) takes the following

form:

Jc ¼ 2jc0 �
4pffiffiffi

3
p n

l
jc0K

H �Ue

U0

� �þ o
n
l

� �
: (62)

As we can see, the relative amplitude of the oscillation

effect is significantly reduced due to the appearance of the

factor K� 1.

Expressions (59) and (60) remain valid also when, in

place of conditions (5) and (6), the following conditions are

satisfied

d � k; t� n: (63)

If additionally the condition of strong screening of the

external field K � 1 is also satisfied, then from Eq. (60) we

obtain:

Jc ¼ 2�jc � 3
ffiffiffi
3
p

p
n
l

jc0

K

H �Ue

U0

� �þ o
n
l

� �
; (64)

which implies the suppression of the relative amplitude of

the oscillation effect due to the factor K�1� 1. It is interest-

ing to note that expression (64) can be represented in the

FIG. 10. Dependence D~Jc ¼ D~Jcð�Ue=U0Þ. As in Fig. 9, solid and dashed

lines correspond to the equilibrium and metastable states, respectively.

FIG. 9. Dependence ~�j circ ¼ ~�j circð�Ue=U0Þ. Solid and dashed lines correspond

to the equilibrium and metastable states, respectively.
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form coinciding with that in Ref. 18, in which it has been

obtained for the case of a superconducting interferometer

containing two identical point contacts:

Jc ¼ 2�jc �
2cU0

sL

H �Ue

U0

� �þ o
n
l

� �
: (65)

4. Conclusion

The results of experimental and theoretical investiga-

tions of a new macroscopic oscillation effect in macroscopic

doubly-connected superconducting structures not containing

Josephson junctions were presented.

It was shown experimentally (Sec. 2) that the critical

current Ic of a thin-film tin structure, which is shown in Fig.

1 and satisfies the macroscopicity condition l � n, exhibits

the periodic (with a period equal to U0) dependence on the

average external magnetic flux �Ue at temperatures close to

Tc. All the dependences Ic ¼ Icð�UeÞ obtained in our experi-

ments showed a pronounced piecewise linear behavior and

were multivalued (there were branches corresponding to

metastable states). Furthermore, the oscillation amplitude of

Ic at a given temperature was found to be inversely propor-

tional to the length of the superconducting channel l.
The above features of the macroscopic oscillation effect

were rigorously explained within the theory presented in

Sec. 3. This theory is based on the local Ginzburg-Landau

approximation and relates to a perfectly symmetric system.

At the end of Sec. 3, we demonstrated that the material and

the sample parameters used in our experiments correspond

to the optimum conditions required for the observation of

the effect.

We also observed experimentally the shifts of maxima

in the dependences Ic ¼ Icð�UeÞ accompanied by an asym-

metry with respect to the change of the transport current

direction, which were related to an incomplete symmetry

of the samples employed. Qualitatively, these effects can

be explained by the inequality of the critical currents of

the superconducting channels (see the end of Sec. 2).

However, their rigorous theoretical description is beyond

the scope of this paper and requires separate

consideration.
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