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We analyze a system composed of a qubit coupled to the electromagnetic fields in two high quality quantum
oscillators. A particular realization of such a system is the superconducting qubit coupled to a transmission-line
resonator driven by two signals with frequencies close to the resonator’s harmonics. This doubly driven system
can be described in terms of the doubly dressed qubit states. Our calculations demonstrate the possibility to
change the number of photons in the resonator and the transmission of the fundamental-mode signal over a wide
parameter range exploiting resonances with the dressed qubit. Experiments show that in the case of high quality
resonators the dressed energy levels and corresponding resonance conditions can be probed, even for high driving
amplitudes. The interaction of the qubit with photons of two harmonics can be used for the creation of quantum
amplifiers or attenuators.
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I. INTRODUCTION

A number of experiments with strongly driven super-
conducting qubits have been interpreted in terms of inter-
ference between multiple Landau-Zener trajectories [1] or
multiphoton transitions [2]. Several years ago, the Chalmers
group demonstrated that the dynamics of a qubit in an
intense microwave field can be convincingly described by the
dressed-state model [3]. Indeed, a system composed of qubits
coupled to the electromagnetic fields in resonators represents
a mesoscopic analog of atoms coupled to light fields in optical
cavities, and similar effects have been studied on atomic
systems [4–6]. Due to this analogy the mathematical apparatus
applied for describing the atomic systems can be adapted to
the mesoscopic ones.

In this paper, we consider the situation of a qubit coupled to
two driving fields. Similar doubly driven systems have already
been used for the two-tone spectroscopy [7] (also referred
to as the pump-probe technique [8,9]). Here, by driving the
qubit with one and probing the system at another (probe)
frequency the energy-level structure can be reconstructed.
It can be realized experimentally by making use of two
excited resonators [10,11] or two modes of the same resonator
[3,12–14].

The notion of dressed states [15–18] can be extended to
two driving signals. In this case, one can describe the aggregate
system in terms of the doubly dressed states [19–21]. Note that
this approach is in contrast to the Floquet method, in which
the Floquet states make the quasiclassical counterpart of the
dressed states and their energies [9,22,23].

In particular, due to the energy and information transfer
between the subsystems, the designated signal can be amplified
or attenuated [15]. Indeed, recently the amplification and
attenuation of a probe signal was studied in a number of
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experiments [24–26]. Such processes can be important for
microwave engineering, including quantum amplifiers and
attenuators. In the work by Oelsner et al. [25] such kind
of amplification was demonstrated. Here, the dynamics is
as follows: one mode induces Rabi oscillations in the qubit
and, when the frequency of these oscillations is adjusted to
the second signal frequency, resonant interaction can result
in amplification or damping of the latter signal [27–30].
For a practical realization, the Rabi frequency is tuned into
resonance with the oscillator and thus provides a qubit-
resonator energy exchange. Similar effects were detected a
long time ago [31] as NMR amplification at the Rabi frequency.
Since the solid-state quantum systems are scalable and tunable,
the effect of direct Rabi transitions can be used for microwave
quantum engineering.

The purpose of this paper is to study in detail the doubly
driven qubit-resonator system and to demonstrate its applica-
tion to a realistic system. To this end, we develop a theoretical
formalism to describe the transmission of a probe signal at the
resonator’s fundamental frequency. Our approach is general
and valid over a wide range of parameters. In particular, the
weak-probe limit can be relevant for probing the energy levels
of the qubit-resonator system. We not only discuss this case
close to the Rabi frequency, but also consider the resonant
excitation of the coalesced system for both strong driving and
strong probing signals. This allows us to derive analytic results
for the qubit dressed, first, by the driving field and, second,
by the probing field. Importantly, our formalism explains
qualitatively and quantitatively the experimental results.

The rest of the paper is organized as follows. In Sec. II
the Hamiltonian of the qubit interacting with two modes
of the driven resonator is introduced and the energy spec-
trum of the total system is calculated. The details of those
derivations are presented in the Appendix, where it is shown
that the aggregate system after transformations can be de-
scribed as a dressed qubit. The same transformations modify
the master equation, which includes the relaxation rates, as it
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is described in Sec. III. The solution of the Lindblad equation
with the parameter-dependent relaxation rates is the subject
of Sec. IV. In particular, it is demonstrated that the driving in
one harmonic influences the signal at other harmonics via the
qubit. The corresponding experimental results are presented in
Sec. V.

II. DOUBLY DRESSED STATES

Consider a transmission-line λ/2 resonator with a single
flux qubit in it. The resonator is assumed to be driven by two
signals: a low-amplitude probing signal, with a frequency ωp

close to the resonator’s fundamental frequency ωr, and a high-
amplitude driving signal, with a frequency ωd. The driving
frequency is considered to be close to the third-harmonic
frequency, and hence one has to take into account this very
harmonic component in the Hamiltonian.

In the experimental realization [25,32] the observables
relate to the fundamental mode and the system can be described
by the reduced Hamiltonian traced over the third-harmonic
resonator mode. In the Appendix we have rewritten the total
system’s Hamiltonian so that it includes the strong driving
signal as the renormalization of the qubit’s Hamiltonian, which
can be interpreted in terms of the dressed states. There, we
start from the bare qubit, characterized by Hqb = −�

2 τx − ε0
2 τz

in terms of the Pauli matrices τi ; it has the bare energy-
level distance �E =

√
�2 + ε2

0. The qubit is considered to
be coupled to the two-mode resonator and the coupling
characterized by the value g1. So, the total Hamiltonian in
the rotating-wave approximation (RWA) is written as follows
[see Eqs. (A9), (A14), (A18)]:

H̃ = − ε̃

2
σz + �̃

2
σx + �ωra

†a − �gε(a + a†)σz

+ ξp(aeiωpt + a†e−iωpt ). (1)

This describes the dressed qubit interacting with the resonator
with the renormalized coupling gε = g1ε0/�E and probed by
the signal with the amplitude ξp. The qubit is now described
by the Pauli matrices σi and the resonator is described by
the photon annihilation and creation operators, a and a†. The
dressed bias ε̃ and the tunneling amplitude �̃ are defined by
the driving frequency ωd and amplitude Ad either in the weak-
driving regime, at Ad < �ωd,

ε̃ = �E − �ωd, �̃ = �Ad/2�E, (2)

or in the strong-driving regime, where the energy bias is
defined by the detuning from the k-photon resonance, ε̃ →
ε̃ (k), and the renormalized tunneling amplitude is defined by
the oscillating Bessel function, �̃ → �̃(k), as follows:

ε̃ (k) = �E − k�ωd, �̃(k) = �
k�ωd

ε0
Jk

(
Ad

�ωd

ε0

�E

)
. (3)

These values define the dressed energy levels, Ẽ± = ±�̃E/2,
where the distance between the energy levels is

�̃E =
√̃

ε 2 + �̃2, (4)

which gives the dressed Rabi frequency 	R = �̃E/�. The
Hamiltonian (1) directly brings us to the problem of a qubit
interacting with a weakly driven fundamental-mode resonator,

e.g., [33], with the following changes of notation for the bias
and gap in the Hamiltonian with the dressed ones: ε0 → ε̃

and � → �̃.
Diagonalization of the time-independent part of the Hamil-

tonian (1), i.e., at ξp = 0, gives the energy levels for the system
of the qubit coupled to two modes of the resonator—the doubly
dressed states:

E±,n = �ωr(n + 1) ± �	n

2
, Egr = −�δω̃qb

2
, (5)

	n =
√

4g̃ 2(n + 1) + δω̃2
qb, n = 0,1,2, . . . , (6)

δω̃qb = �̃E/� − ωp g̃ = g1
ε0

�E

�̃

�̃E
. (7)

The probing signal is described by the last term in Hamil-
tonian (1). When the photon energy �ωp equals the energy
difference E±,n − Egr, resonant energy exchange between the
probing signal and the doubly dressed states takes place. This
resonant condition then reads

ωrn ±
√

g̃ 2(n + 1) +
(

δω̃qb

2

)2

+ δω̃qb

2
= ωp − ωr. (8)

Whether the energy exchange bears an amplifying or attenuat-
ing character depends on the relaxation parameters, which is
the subject of the next section.

In particular, at weak resonant probe (ωp = ωr) and when
the coupling is negligible (g1 � ωr,�), from Eq. (8) we obtain
two sorts of resonance conditions (in agreement with the
results of the semiclassical Floquet formalism [9,34]). The
first one does not include resonator excitation: n = 0 and

δω̃qb = 0. (9)

This corresponds to a direct exchange of excitation between
the probing signal and the dressed qubit: �ωp = �̃E. In
other words, the probing signal frequency matches the qubit’s
Rabi frequency: ωp = 	R = �̃E/�. The second resonance
condition involves the resonator excitation: n = 1 and

δω̃qb = ωp. (10)

This describes the two-photon process at 2�ωp = �̃E [30].
We note that the resonant conditions (9) and (10) can

alternatively be obtained by neglecting in Eq. (1) the qubit-
resonator interaction and the probing signal, g = ξp = 0. Then
we obtain the energy levels for the qubit-resonator system
E0

±,n = ±�̃E/2 + �ωrn. The resonant condition which in-
volves the energy exchange between the probing signal and
the dressed qubit, �ωp = E0

+,n − E0
−,n′ , gives at weak resonant

probing (ωp = ωr) two sorts of resonances. The first one does
not include resonator excitation: n = n′. This corresponds to
Eq. (9). In other words, the probing signal frequency matches
the qubit’s Rabi frequency: ωp = 	R = �̃E/�. The second
sort of resonance involves the resonator excitation: n �= n′.
For example, for n − n′ = 1 we have 2�ωp = �̃E, which
describes the two-photon process.

For the following calculations we switch to the dressed-
qubit eigenstates and after another RWA related to the probing
signal we obtain the time-independent Hamiltonian in the form
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FIG. 1. (Color online) Bare, dressed, and doubly dressed energy
levels. The bare qubit’s energy levels, ±�E/2, are shown in (a); when
they are matched by the driving frequency ωd, the qubit is resonantly
excited. (At higher values of the bias ε0, the bare-qubit multiphoton
excitation should be studied.) The position of the resonance, �ωd =
�E, is described by the avoided crossing of the dressed-state levels;
the dressed and averaged energy levels, ±�̃E/2 = ±�	R/2, are
plotted in panel (b). When the dressed energy levels are matched by
the second (probe) signal, �ωp = �̃E, a resonance interaction of the
coalesced system is expected, Eq. (9). Also a resonance condition
is given by the two-photon process (10). This is visualized as the
avoided crossings of the doubly dressed states, plotted in panel (c).

(as it is described in the Appendix)

HRWA = �
δω̃qb

2
σ̃z + �δωra

†a

+ �g̃(aσ̃ † + a†σ̃ ) + ξp(a + a†), (11)

where δωr = ωr − ωp and σ̃ = 1
2 (̃σx − iσ̃y) is the qubit low-

ering operator and here the tilde relates to the new basis.
Finally, in Fig. 1 we illustrate the energy levels studied in

this section. The parameters for the graph were taken for the
system of Ref. [25]: �/h = 3.7 GHz, ωr/2π = 2.59 GHz and
ωd/2π = 3ωr/2π = 7.77 GHz, Ad/h = 7 GHz, g1/2π = 0.8
MHz, and ωp = ωr. Figure 1 can be seen as the graphical
description of dressing the dressed qubit, which can be
considered as the mesoscopic tunable analog of the atomic
systems, as in Ref. [35]. We also note that for the small value
of the coupling taken (g1 � ωr,�), the splitting (which defines
the difference between the dressed and doubly dressed levels)
is small, as shown in the inset. The solid lines describe the
doubly dressed levels, while the dotted lines are for the dressed
levels, ±�̃E/2 + n�ωr.

III. “DRESSED RELAXATION”

The Lindblad equation for the system can be written in
terms of the bare qubit and resonator states as follows [36]:

ρ̇ = − i

�
[H,ρ] +

∑
α

Lα[ρ], (12)

where the index α numerates different relaxation channels and
the respective Lindbladian superoperators are given by the
formulas

Lκ = κ

(
aρa† − 1

2
{a†a,ρ}

)
, (13)

L↓ = �1

(
σρσ † − 1

2
{σ †σ,ρ}

)
, (14)

Lφ = �φ

2
(σzρσz − ρ). (15)

These could also be written in the unified form

Lα = LαρL†
α − 1

2 {L†
αLα,ρ}

= 1
2 [Lαρ,L†

α] + 1
2 [Lα,ρL†

α]. (16)

with the operators Lα given by the following: Lκ = √
κa,

L↓ = √
�1σ , Lφ = √

�φ/2σz. Here κ is the decay rate of the
photons in the resonator, �1 and �φ are the qubit’s relaxation
and dephasing rates.

After the transformations described in the previous section
we arrive at the Lindblad equation in the form of Eq. (12) with
the dressed Hamiltonian HRWA and with the dressed relaxation
terms: L̃ = Lκ + L̃↓ + L̃↑ + L̃φ,

L̃↓ = �̃↓

(
σ̃ ρ̃ σ̃ † − 1

2
{̃σ †σ̃ ,ρ̃}

)
, (17)

L̃↑ = �̃↑

(
σ̃ †ρ̃ σ̃ − 1

2
{̃σ σ̃ †,ρ̃}

)
, (18)

L̃φ = �̃φ

2
(̃σzρ̃ σ̃z − ρ̃ ) . (19)

[Namely, to obtain these formulas, we applied the transfor-
mation S̃ (see the Appendix) to the original Lindbladians and
kept only the terms which survive under the RWA; this means
keeping only the terms which contain 1̂, σ̃z, or the product
of σ̃ and σ̃ †.] Thus, the dressed Lindbladian superoperators
in the sum

∑
α L̃α[ρ̃] can be written in the compact form

of Eq. (16), where Lκ = √
κa, L↓ =

√
�̃↓σ̃ , L↑ =

√
�̃↑σ̃ †,

Lφ =
√

�̃φ/2σ̃z. Here the tunable dressed rates for relaxation,
excitation, and dephasing [30,37] are given by the expressions

�̃↓/↑ = �1

4

(
1 ± ε̃

�̃E

)2

+ �φ

2

�̃2

�̃E
2 , (20)

�̃φ = �1

2

�̃2

�̃E
2 + �φ

ε̃2

�̃E
2 . (21)

The Lindbladian Lκ describes the relaxation in the resonator,
L̃↓/↑ describe both the relaxation and excitation in the qubit,
while L̃φ relates to the dephasing [30]. Note that these
“dressed” relaxation rates appear due to taking into account
photons of the driving field, but neglecting the weak probing
signal.

From Eq. (20) one can estimate the interplay of the
relaxation and excitation in the driven qubit. We note that
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the difference between the excitation and relaxation rates is

�̃↑ − �̃↓ = �1̃ε/�̃E, (22)

and the rates are equal at ε̃ = 0, while for the red and blue
detuning, at ε̃ ≷ 0, we have �̃↑ ≷ �̃↓ and either excitation or
relaxation dominates.

In the limit of strong driving, the qubit’s Hamiltonian is
given by Eq. (A22), which coincides in form with Eq. (A18).
This allows us immediately to obtain the dressed relaxation
rates in the vicinity of the kth resonance (where �E −
k�ωd � �E) by simply replacing ε̃ → ε̃(k) and �̃ → �̃(k)

in formulas (20) and (21).
To understand the impact of the effective relaxation terms,

we consider the reduction of the Lindblad equation to the
Bloch-type one, similar as in Ref. [38]. Therefore, we start
with the Lindblad equation for the density matrix of the
dressed qubit (neglecting the resonator fundamental mode):
ρ̃ = ∑

i,j=0,1 ρij |i〉〈j |. Then from Eqs. (12) and (17)–(19) we
obtain for the free qubit evolution (taking into account that
ρ00 = 1 − ρ11)

ρ̇11 = −(�̃↑ + �̃↓)ρ11 + �̃↑,
(23)

ρ̇01 = −�̃2ρ01, �̃2 = �̃φ + �̃↑ + �̃↓
2

.

From here, in particular, it follows that the equilibrium
population of the excited state is defined by the rate �̃↑:
ρ

eq.

11 = �̃↑/(�̃↑ + �̃↓).

IV. IMPACT OF THE QUBIT’S DRIVING ON THE
TRANSMITTED SIGNAL

The dynamical behavior of the system is described by
the Lindblad equation (12) in combination with the Hamil-
tonian (11). The stationary solution can be found by assuming
ρ̇ = 0. In the limit of small driving amplitude, as, e.g., in
Ref. [33], an analytic solution is possible.

From Eq. (12) we obtain the equation of motion for the
expectation value of any quantum operator A,

d〈A〉
dt

= − i

�
〈[A,HRWA]〉 + Tr(AL̃), (24)

where 〈A〉 = Tr(Aρ), 〈[A,H ]〉 = Tr([A,H ]ρ), the trace is
over all eigenstates of the system. In our system, the trace
in Eq. (24) is over the photon states of the fundamental mode
|n〉 and the two qubit states |±〉. For the expectation values of
the operators a, σ̃ , σ̃z, n = a†a we obtain the following system
of equations (also called Maxwell-Bloch equations):

d〈a〉
dt

= −iδω′
r〈a〉 − ig̃〈̃σ 〉 − i

ξp

�
, (25)

d 〈̃σ 〉
dt

= −iδω̃′
qb〈̃σ 〉 + ig̃〈aσ̃z〉, (26)

d 〈̃σz〉
dt

= −i2g̃(〈aσ̃ †〉 − 〈a†σ̃ 〉) − �̃+〈̃σz〉 − �̃−, (27)

d〈aσ̃ †〉
dt

= i(δω + iG)〈aσ̃ †〉 − ig̃(〈̃σ †σ̃ 〉 + 〈a†aσ̃z〉) − i
ξp

�
σ̃ †,

(28)

d〈aσ̃z〉
dt

= −(iδωr + Q)〈aσ̃z〉 + ig̃〈σ̃ 〉 + �̃−〈a〉

−i
ξp

�
〈̃σz〉 − 2ig̃〈aaσ̃ †〉 + 2ig̃〈a†aσ̃ 〉, (29)

d〈n〉
dt

= −κ〈n〉 + ig̃(〈aσ̃ †〉 − 〈a†σ̃ 〉) + i

�
ξp(〈a〉 − 〈a†〉),

(30)

where �̃± = �̃↓ ± �̃↑, δω′
r = δωr − iκ/2, δω̃′

qb = δω̃qb −
i�̃2, δω = ωqb − ωr, G = �̃2 + κ/2, Q = κ/2 + �̃+. These
equations present only the first few of the infinite ladder of
coupled equations, which include the higher-order correla-
tions.

The stationary solution for this system can be found
analytically if we restrict the Hilbert space by n = 0,1 states
only, which is justified for small amplitude probe signals
(see, for example, Ref. [33]). However, in real experiments
the number of fundamental photons is not so low [39]. In
order to study this case we analyze below the full set of
equations (25)–(30).

By solving these equations we can obtain the transmission,
as probed by a network analyzer, which is defined in the way
adopted in quantum optics [12,26,33],

t = i
�κ

2ξp
〈a〉. (31)

First we find the stationary solutions to the above equations
for the case when the interaction between the qubit and the
resonator is absent, g̃ = 0. We obtain 〈̃σ 〉0 = 0,

〈a〉0 = − ξp

�δω′
r

, (32)

〈̃σz〉0 = − �̃−
�̃+

. (33)

From Eq. (32) we obtain the transmission amplitude for the
bare resonator,

|t0| = �κ

2ξp
|〈a〉0| = κ√

κ2 + 4δω2
r

, (34)

and from Eq. (30) we obtain the average photon number,

〈n〉0 = − ξp

�κ
2Im〈a〉0 = 4ξ 2

p

�2
(
4δω2

r + κ2
) . (35)

It follows that the condition for small 〈n〉 is ξ 2
p /�

2κ2 � 1.
In order to proceed further, we truncate the above infinite

system of equations. In Eqs. (28) and (29) we neglect the
correlations which contain three operators 〈a†aσ̃z〉, 〈aaσ̃ †〉,
〈a†aσ̃ 〉. This is justified if 〈n〉 is small. In terms of the density
matrix this condition is equivalent to 〈0|ρ|0〉 � 〈n|ρ|n〉, where
n �= 0. This means that the state n = 0 is more populated than
other states with n �= 0. For example, in Eq. (28) the term
〈a†aσ̃z〉 is neglected as compared with 〈̃σ †σ̃ 〉 = (1 + 〈̃σz〉)/2.

Next, we consider the qubit-resonator system in the absence
of an external probe, ξp = 0, g̃ �= 0. Then from the steady-
state solution of Eqs. (27) and (28) we find the steady-state
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polarization of the qubit in the resonator:

〈̃σz〉0 = − �̃− + A

�̃+ + A
, (36)

where

A = 2̃g 2G

(δω)2 + G2
, (37)

and the average photon number in fundamental mode:

〈n〉ξp=0 = 1

κ

A�̃�
�̃+ + A

. (38)

Finally, we analyze the full set of truncated equations (25)–
(30). Considering the probing signal ξp to be weak, the
qubit operators acquire only small corrections: 〈̃σz〉 = 〈̃σz〉0 +
O(ξ 2

p ), 〈̃σ 〉 = O(ξp). Hence, keeping the first-order approx-
imation in ξp we obtain from Eqs. (25), (26), and (29) the
stationary solutions for the intracavity field,

〈a〉 = −ξp

�

δω̃′
qb

Sg̃ 2 + δω̃′
qbδω

′
r

, (39)

where

S = δω̃′
qb[�̃− + i 〈̃σz〉0δω

′
r]

g̃ 2(1 + 〈̃σz〉0) + iδω̃′
qb(δω′

r−i�̃+)
. (40)

Equation (39) together with Eq. (31) defines the transmission
amplitude. In particular, when the excitation rate is disre-
garded, �̃↑ = 0, we have 〈̃σz〉0 = −1. If, in addition, the
relaxation rates are small (�̃−,�̃+ � δω′

r) we get S = −1
and recover from (39) the result of Ref. [33] obtained in
the single-excitation regime (in the first approximation in the
probing-signal amplitude ξp).

From Eq. (30) the average number of the fundamental-mode
photons can be found by

〈n〉 = − ξp

�κ
2Im〈a〉 + ig̃

κ
(〈aσ̃ †〉 − 〈a†σ̃ 〉)

= ξ 2
p

�2κ

κ|δωqb|2 + ig̃ 2(Sδω′∗
qb − S∗δω′

qb)

|Sg̃ 2 + δω′
qbδω

′
r|2

+ 〈n〉ξp=0. (41)

A solution can also be found in the limit of large
excitation numbers, 〈n〉 � 1, with a semiclassical approach.
Equations (25)–(27) can be solved for an arbitrary value
of ξp, by removing the quantum correlations, with the
assumption that the expectation values with qubit and photon
operators factorize 〈aσ̃z〉 = 〈a〉〈̃σz〉, etc. This is justified when
the photon number is large, 〈n〉 � 1 [40–42]. Then for
the stationary solutions, Eqs. (25)–(27) are equal to zero
and the right-hand side can be rewritten in a more transparent
form, excluding 〈̃σ 〉,

〈a〉 = −ξp

�

δω̃′
qb

〈̃σz〉g̃ 2 + δω̃′
qbδω

′
r

, (42)

�̃+〈̃σz〉 + �̃− = 2i
ξp

�
(〈a〉 − 〈a†〉) + 2κ〈a〉〈a†〉. (43)

Incidentally, the solution of the above equations gives, to first
approximation of the amplitude ξp, the formulas (33) and (39),
being simplified to the result of Ref. [33], which is, strictly

speaking, beyond the region of the validity of the semiclassical
approximation.

Note that the formula (33) correctly describes the k-photon
excitations of the qubit (as, e.g., in Refs. [43,44]), i.e., for
small deviations ε̃(k) = �E − k�ωd the stationary upper-level
occupation probability is described by Lorentzians positioned
at �E(ε0) = k�ωd:

P
(k)
up = 1

2
(1 − 〈̃σz〉) ≈ 1

2

�̃(k)2

�1
�2

ε̃(k)2 + �̃(k)2
, (44)

where �2 = �φ + �1/2.

V. EXPERIMENT

To prove the theoretical description above, we fabricated
a coplanar waveguide resonator with resonance frequency
of ωr/2π= 2.59 GHz and a loss rate of κ/2π = 44 kHz.
Two qubit loops, with sizes of 14 × 7 μm2 for the first and
5 × 5 μm2 for the second qubit are placed in the center of
the resonator. With a high quality factor of the resonator
(Q ≈ 70 000) and rather weak resonator-qubit couplings we
ensure that the decoherence of the coupled system is not
significantly increased in comparison to that of a bare qubit.
Indeed, we estimated the added width by the strong driving
signal as

√〈N〉κ . So, even for photon numbers ranging up
to one million it is still in the same order as the qubit’s
decoherence, which is expected to be of the order of several
10 MHz. In that way the definition of true energy states and
corresponding resonance conditions is justified. The sample
was measured in a dilution refrigerator at a base temperature
of about 20 mK. With independent measurements the minimal
level spacings �(1)/h = 6 GHz and �(2)/h = 9.4 GHz, the
persistent currents I (1)

p = 60 nA and I (2)
p = 100 nA, and the

coupling constants g(1)
1 /2π = 8 MHz and g

(2)
1 /2π = 4 MHz

are defined for both qubits (similar to Ref. [32]). Here
superscripts (1) and (2) denote the number of the qubit.

In a first set of experiments the bigger qubit was studied. A
driving signal at the fifth harmonic of the resonator ωd = 5ωr

with a constant power was chosen. (We note that considering
the fifth harmonic instead of the third does not change any point
in the theoretical description of the system except of putting
different values for the driving frequency.) The transmission
was measured at small detunings δωr from the resonator’s
fundamental mode, while the energy bias ε0 of the qubit
was varied. The experimental results are shown in Fig. 2(a)
together with simulations using Eq. (31) in Fig. 2(b). It can
be seen that a good agreement between the two was achieved
for a relaxation rate �1/2π = 4 MHz and a pure dephasing
�φ/2π = 200 MHz.

We find that if the qubit is detuned, the transmission
amplitude is independent of the bias ε0 and is described by
the Lorentzian-shaped dependence on the frequency detuning,
Eq. (34). When the frequency of the probing signal is
close to the Rabi frequency ωp ≈ 	R = �̃E/�, a resonant
energy exchange between the qubit and the fundamental
mode of the resonator results in amplification or attenuation
of the transmitted signal at red or blue detuning (̃ε ≷ 0)
correspondingly. The observation of such amplification was
recently reported by Oelsner et al. in Ref. [25]. This can
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FIG. 2. (Color online) (a) Measured normalized transmission
amplitude |t | for the first qubit (see text) while a strong driving signal
is applied. The results are plotted in dependence on the detuning
between qubit frequency and driving signal (controlled by the qubit
bias ε0), and the probing frequency detuning δωr = ωp − ωr. The
amplification and the attenuation of the transmitted signal is found
in agreement with the resonance conditions, �ωp = �̃E, Eq. (9).
(b) Normalized transmission calculated for the same parameters as in
(a) following Eq. (31) together with Eq. (39).

be explained by the domination of relaxation or excitation;
see Eqs. (20) and (22). Note that the inversion 〈̃σz〉, which
defines the difference between the occupation probabilities
of the upper and lower qubit’s levels, can be estimated with
Eq. (33). This together with Eq. (22) gives positive and
negative inversion for ε̃ > 0 and ε̃ < 0, respectively. The effect
of amplification and attenuation of the transmitted signal can

be related to the increase or decrease of the cavity photon
number. In this sense one can term these as lasing and cooling
of the resonator as in Ref. [30].

In order to test our model in the strong driving regime,
where Eq. (2) is replaced by Eq. (3), we analyze the response
of the system as a function of the driving amplitude. Here
we consider the case where the qubit gap is higher than the
driving frequency. For this purpose the smaller qubit was
used. The transmission at the fundamental mode, ωp = ωr,
was measured while changing the frequency of the driving
signal around the third-harmonic frequency, and consequently
the driving amplitude at the qubit. The results are shown in
Fig. 3, together with calculated data following from Eq. (31).
Several sharp lines of amplification (dark) and damping (light)
were experimentally observed. The number of lines increases
with increasing power and each of the lines corresponds to a
resonance condition between the dressed states and the probing
signal. To understand their origin, calculated transmission data
was added into each plot. We split these theoretical plots into
regions and for each of them use Eq. (31) with different index k

in Eq. (3). For high powers we note that the levels of one step of
the dressed ladder are equivalent to the ones of the stairs above
or below. In that way, we assume that Eq. (31) is valid also for
those regions where resonances between the lower level of one
stair and the higher level of the lower stair occur. To account
for these interaction we replace the splitting of the dressed
states �̃E

(k)
by ωd − �̃E

(k)
. This makes it possible to relate

each of the resonance lines to one index k and to an interaction
directly between the Rabi levels or levels of different stairs.

We find a quantitative agreement between the theoretical
predictions and the experiment for a relaxation rate �

(2)
1 /2π =

(a)

k=1

experiment
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0.2 (b)
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FIG. 3. (Color online) Normalized transmission amplitude through the resonator at a probing frequency ωp = ωr for different driving
amplitudes ranging from about −131 dBm in (a) to −117 dBm in (g) in 2-dBm steps at the input of the resonator. The transmission is plotted
as a function of the energy bias ε0 of the second qubit and the driving frequency detuning δωd = ωd − 3ωr. The driving frequency is changed
only around the third harmonic in the order of its linewidth (about 6κ). The presented results correspond to a symmetric power dependence
around the center frequency of the third harmonic, since the resonator acts as bandpass filter. Each plot is split into an experimental (positive
detuning) and a theoretical (negative detuning) part. For the calculations the figures were split into regions for which Eq. (31) was used with a
certain index k in Eq. (3). Several features were highlighted with black rectangles to interrelate theory and experiment (see text).
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6 MHz and a pure dephasing �
(2)
φ /2π = 100 MHz of the

second qubit. As examples we highlight several regions with
black rectangles. Direct resonances between the Rabi levels
are marked in plot (a) for k = 1 and in (d) for k = 2. Note
that for k = 1 no amplification is observed since the driving
frequency is chosen below the qubit gap. In Fig. 3(d) the power
dependence of the resonance lines for k = 2 show a similar
dependence as in Ref. [30]. The marked regions for damping in
subplot (f) and amplification in (g) correspond to interactions
between levels of different stairs with the fundamental mode
and indices k = 3 and k = 2, respectively.

The representation of Fig. 3 gives the possibility to follow
the formation of the resonance lines and their change for in-
creasing power. Note that the slight differences in the positions,
which become more pronounced for higher driving powers,
are due to the limitation of our model: we only consider two
dressed levels. Therefore, the dynamics of the system contains
only the influence of the k-photon resonance, and the theoret-
ical predictions are close to the experiment where their influ-
ence dominates. For instance, when different resonance lines
come close to each other, the two-level approximation breaks
down. For describing the full dynamics it would be necessary
to either include more levels of the dressed ladder or to add
corrections to the energy levels in one manifold (on one stair of
the dressed ladder) introduced by the stairs above and below.

Our experimental results show that in the strong driving
limit levels of different photon numbers are strongly coupled
and yield corrections to the level splitting of the Rabi levels.
Furthermore, due to the strong mixing of the levels in the high
driving case, resonance conditions can be defined between
each adjacent pair of levels.

VI. CONCLUSIONS

We have considered the situation when a two-level system
(qubit) is coupled to two quantum oscillators. The emphasis
was made on the specific solid-state realization of a flux
qubit coupled to a transmission-line resonator, which is driven
close to a harmonic and probed at the fundamental frequency.
The former driving signal is not directly observable and
was included into the considerations by the qubit’s dressed
states. Similarly, the interaction of the dressed qubit with
the resonator’s fundamental mode can be considered as the
second dressing of the qubit’s dressed states. When the energy
of the probing photons matches the dressed energy levels, a
resonant energy exchange results in either the amplification or
attenuation of the probing signal, depending on the tunable
relaxation rates. We have presented a detailed theoretical
description of those processes, as well as related the results to
other studies, such as Refs. [9,30,38]. Our theoretical findings
together with the experimental results, presented here and in
Ref. [25], are useful for the description of the qubit-resonator
systems in terms of the dressed states, especially since the high
quality of the resonator together with the rather weak coupling
between the resonator and the qubit prevent the energy levels
from smearing out. In other words, although the driving signal
is strong, the added decoherence is still small, so that sharp
resonance conditions were observed. Furthermore, the idea of
transferring energy from one resonator’s mode to another via
a single qubit may be useful for further applications.
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APPENDIX: DRESSED-STATE HAMILTONIAN

1. Hamiltonian of the system

Quantization of the resonator eigenmodes results in the
following expressions for the current and voltage operators
and the Hamiltonian [33]:

I (x) =
∑ √

�ωj

Lr
(aj + a

†
j ) cos kjx, (A1)

V (x) = −i
∑ √

�ωj

Cr
(aj − a

†
j ) sin kjx, (A2)

Hr =
∑

�ωja
†
j aj , (A3)

where kj = πj/l, ωj = vkj , v = 1/
√

LC, and aj and a
†
j are

the annihilation and creation operators for the photons of the
j th mode in the resonator. If the two signals (the probing
one and the driving one) are close to the fundamental and
the third-harmonic components, we have the following for
the relevant values: the current at x = 0 (which defines the
inductive coupling to the qubit; see Hint below),

I (0) = Ir0[(a1 + a
†
1) +

√
3(a3 + a

†
3)], Ir0 =

√
�ωr

Lr
, (A4)

the voltage at the boundaries (which defines coupling the
resonator to the driving field; see Hμw below),

V

(
± l

2

)
= ±iVr0[(a1 − a

†
1) −

√
3(a3 − a

†
3)],

(A5)

Vr0 =
√

�ωr

Cr
,

and the resonator’s Hamiltonian

Hr = �ωra
†
1a1 + 3�ωra

†
3a3. (A6)

The interaction between the two-mode resonator and the
flux qubit is described with

Hint = MI (0)Iqb = −�[g1(a1 + a
†
1) + g3(a3 + a

†
3)]τz,

(A7)
�g1 = MIr0Ip, g3 =

√
3g1,

where M is the mutual loop-resonator inductance.
The driving Hamiltonian originates from the energy of

the left coupling capacitance C0, HC0 = C0�V 2. Here the
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probe + drive voltage to the left is the input voltage Vin =
Vp sin ωpt + Vd sin ωdt , which couples to the voltage in the
resonator, V (−l/2). Then leaving only the slowly rotating
terms, we obtain

Hμw = ξp(a1e
iωpt + a

†
1e

−iωpt ) + ξd(a3e
iωdt + a

†
3e

−iωdt ),
(A8)

ξp = 1

2
C0VpVr0, ξd =

√
3

2
C0VdVr0.

So, we have obtained the total Hamiltonian for the doubly
driven qubit-resonator system (in which we rename the
intracavity photon operators a1 ≡ a and a3 ≡ d):

Htot = Hqb + Hr + Hint + Hμw, (A9)

Hqb = −�

2
τx − ε0

2
τz, (A10)

Hr = �ωra
†a + 3�ωrd

†d, (A11)

Hint = −�[g1(a + a†) + g3(d + d†)]τz, (A12)

Hμw = ξp(aeiωpt + a†e−iωpt ) + ξd(deiωdt + d†e−iωdt ). (A13)

2. Reduced Hamiltonian

Thus, we have the Hamiltonian for the qubit–two-mode
resonator system. There, in respect to the experiment, we
can assume the probe signal ξp to be relatively weak, so
that 〈n〉 = 〈a†a〉 � 1, while the driving signal is relatively
strong, ξd � ξp, so that 〈N〉 = 〈d†d〉 � 1. Observables are
related to the former mode, and hence the latter mode can
be traced out. In this way, one can obtain the reduced
Hamiltonian, which describes the system of the one-mode
resonator + dressed qubit. Then one can discuss the dressed
relaxation as, e.g., in Refs. [30,38], which approach allows us
to proceed analytically.

We now consider the Hamiltonian of the qubit + third-
harmonic driving in order to transform it to the dressed-state
qubit Hamiltonian,

Hqb+d. = −�

2
τx − ε0

2
τz + 3�ωrd

†d + �g3(d + d†)τz

+ ξd(deiωdt + d†e−iωdt ). (A14)

This does not include the probe signal (first harmonic), since
all the operations in this subsection would not affect it.

First, let us eliminate the time dependence from the driving
by applying the unitary operator U1 = exp(iωdtd

†d). We
obtain the new Hamiltonian

H1 = U1Hqb+d.U
†
1 + i�U̇1U

†
1

= −�

2
τx − ε0

2
τz + �(3ωr − ωd)d†d

+ �g3(de−iωdt + d†eiωdt )τz + ξd(d + d†). (A15)

For a large intracavity photon number 〈N〉, the driving field can
be described as a coherent state. Averaging the Hamiltonian
with respect to the coherent state |α〉 (note d|α〉 = α|α〉) yields

H2 = 〈H1〉 = 〈α|H1|α〉 = −�

2
τx − ε0 + Ad cos ωdt

2
τz,

(A16)

where Ad = 4α�g3, α = √〈N〉, and two constant terms
�(3ωr − ωd)〈N〉 and 2αξd have been omitted.

Next, we rewrite the Hamiltonian H2 in the eigenbasis
of its time-independent part, using the transformation S =
exp(iςτy/2) with tan ς = −�/ε0,

H ′
qb = −�E

2
σz − Ad cos ωdt

2

(
ε0

�E
σz − �

�E
σx

)
, (A17)

which allows for the subsequent application of the rotating-
wave approximation (RWA).

3. RWA for weak driving

For relatively weak driving (Ad < �ωd) we will use the
conventional version of RWA. (Note that the conditions
Ad < �ωd and 〈N〉 � 1 are consistent for weak coupling
g3 � ωd .) For this we make the transformation with U =
exp(−iωdtσz/2) and, omitting fast-rotating terms, obtain

H̃qb = UH ′
qbU

† + i�U̇U † � − ε̃

2
σz + �̃

2
σx, (A18)

where ε̃ = �E − �ωd, �̃ = �Ad/2�E. Diagonalization of
this Hamiltonian gives the dressed energy levels, Eq. (4).
These transformations would also affect the interaction term,
Eq. (A12): τz → ε0

�E
σz − �

�E
σx , where the second term can

be neglected in RWA, while the first term results in the renor-
malization of the coupling coefficient: g1 → gε = g1ε0/�E.
Collecting all together, we obtain Hamiltonian (1). Then we
move to the dressed-qubit eigenstates, using the transformation
S̃ = exp(iχσy/2) with tan χ = �̃/ ε̃, and get

H̃ ′ = �̃E

2
σ̃z + �ωra

†a + �gε(a + a†)

×
(

ε̃

�̃E
σ̃z + �̃

�̃E
σ̃x

)
+ ξp(aeiωpt + a†e−iωpt ). (A19)

Then the second RWA is made with Up = exp[iωpt(a†a +
σ̃z/2)], and, omitting the fast-rotating terms, we obtain
Hamiltonian (11).

4. RWA for strong driving

To apply RWA to the Hamiltonian (A17) in the limit
of strong driving, we consider the following unitary
transformation: W = exp(−iησz/2), where η is given by the
integral from the second term in Eq. (A17),

η = ε0

�E

Ad

�ωd
sin ωdt. (A20)

This results in the new Hamiltonian

H ′′
qb = −�E

2
σz + �̃ cos ωdt(σeiη + σ †e−iη)

= −�E

2
σz + �̃

2
(eiωdt + e−iωdt )

×
∞∑

l=−∞
Jl

(
Ad

�ωd

ε0

�E

)
(σeilωdt + σ †e−ilωdt ). (A21)

Then the RWA consists in applying another transformation,
W2 = exp(−ikωdtσz/2), and omitting the fast time-dependent
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terms. We obtain in the vicinity of the kth resonance, where
�E − k�ωd � �E, the following:

H̃
(k)
qb = − ε̃(k)

2
σz + �̃(k)

2
σx, (A22)

where

ε̃ (k) = �E − k�ωd, (A23)

�̃(k) = �
k�ωd

ε0
Jk

(
Ad

�ωd

ε0

�E

)
. (A24)

Then for the dressed energy distance we obtain �̃E
(k) =√̃

ε(k)2 + �̃(k)2 or explicitly [9,45]

�̃E
(k) =

√
(�E − k�ωd)2 +

[
�

k�ωd

ε0
Jk

(
Ad

�ωd

ε0

�E

)]2

.

(A25)

In particular, at weak driving only the levels with k = 1
are relevant and J1(x) ≈ x/2; then �̃(1) ≈ �̃ and �̃E

(1)

coincides with �̃E, obtained in the weak-driving limit, Eq. (4).
Moreover, in the limit ε0 � � this gives

�̃E
(k) =

√
(ε0 − k�ωd)2 + [�Jk(Ad/�ωd)]2, (A26)

which is in agreement with the results of RWA used, e.g., in
Refs. [38,43].

Applying the above transformations would also affect the
qubit-resonator interaction term. As the result we obtain
the total Hamiltonian in the RWA, given by Eq. (1) with
the substitutions ε̃ → ε̃(k) and �̃ → �̃(k).
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