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We present analytical, numerical, and experimental investigations of electromagnetic resonant

modes of a compact monofilar Archimedean spiral resonator shaped in a ring, with no central

part. Planar spiral resonators are interesting as components of metamaterials for their compact

deep-subwavelength size. Such resonators couple primarily to the magnetic field component of the

incident electromagnetic wave, offering properties suitable for magnetic meta-atoms. Surprisingly,

the relative frequencies of the resonant modes follow the sequence of the odd numbers as

f1:f2:f3:f4…¼ 1:3:5:7…, despite the nearly identical boundary conditions for electromagnetic fields

at the extremities of the resonator. In order to explain the observed spectrum of resonant modes, we

show that the current distribution inside the spiral satisfies a particular Carleman type singular

integral equation. By solving this equation, we obtain a set of resonant frequencies. The

analytically calculated resonance frequencies and the current distributions are in good agreement

with experimental data and the results of numerical simulations. By using low-temperature laser

scanning microscopy of a superconducting spiral resonator, we compare the experimentally

visualized ac current distributions over the spiral with the calculated ones. Theory and experiment

agree well with each other. Our analytical model allows for calculation of a detailed

three-dimensional magnetic field structure of the resonators. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4863835]

I. INTRODUCTION

Metamaterial is an artificially tailored media showing

unusual electrodynamic properties based on the use of the

resonant elements.1 At certain frequencies, the effective

magnetic permeability and the electrical permittivity both

become negative, resulting in, e.g., “left-handed” wave prop-

agation and, therefore, a negative index of refraction. The

standard design of such macroscopic structures, proposed

over decade ago, is a set of resonators incorporating

patterned metallic layers.2,3 The electrical and magnetic

meta-atoms are designed as sub wavelength size micro reso-

nators that couple primarily to either the electric or the mag-

netic field of the incoming electromagnetic wave. In first

experiments, various types of split-ring resonators (SRRs)

have been used as magnetic meta-atoms in order to achieve

effective negative magnetic permeability.3–5 The resonance

frequencies of such resonators are determined by the ratio

between the width of the gap l and the size R of the SRR

somewhat limiting the minimum size of the resonators. The

planar spiral resonators (PSRs) were proposed in order to

drastically reduce the resonator size relative to the

wavelength.5,6

The PSR operates as a distributed resonator having mul-

tiple resonance modes, and initial experiments with super-

conducting PSRs have shown numerous resonances.6,7 For

example, a monofilar PSRs with densely packed turns within

a diameter of 6 mm had the fundamental resonance mode at

a frequency of 74 MHz. This corresponds to a ratio of the

wavelength k to resonator diameter D of about 680,7 thus

demonstrating the potential of spiral structures for designing

ultra-compact resonators. Analyzing the experimental data

reported in Ref. 7, one can notice that the resonant frequen-

cies depend on the mode number n as fn� f1 (2n � 1), thus

following the odd number sequence with f1:f2:f3:f4…

� 1:3:5:7…. This seems rather surprising fact, as the RF

current flowing in the resonator has open boundary condi-

tions on both extremities of the spiral. In a conventional

one-dimensional transmission line cavity with two identical

open ends, the spectrum of the modes is just a set of evenly

spaced frequencies f1:f2:f3:f4…� 1:2:3:4… (see Fig. 1).

As we turn to the theoretical description of the electro-

dynamic properties of a PSR, we notice that a very low reso-

nance frequency in PSRs can be explained qualitatively by a

simple model considering the spiral as one-dimensional

transmission line resonator with the length L rolled in N
turns. As both ends of the transmission line are open-ended,

one can expect the first half-wave resonance at the

frequency

f1 ¼ c=2L; (1)

where c is the speed of light and the L is the length of the

transmission line. Assuming that for a ring-shaped monofilar

Archimedean spiral with no central part, all the turns have

approximately the same radius R
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L � 2pRN (2)

with N being the number of turns, one can obtain the n half-

wave mode resonance frequency fn as

fn � n
c

4pRN
; (3)

where n¼ 1, 2, 3,… Thus, for the fundamental mode n¼ 1 of

a resonator with, e.g., 100 turns, one expects the reduction of

the diameter to wavelength ratio by two orders of magnitude.

The ease to create a deep sub-wavelength, compact resonator,

using a planar spiral, is making this resonator a natural candi-

date for the magnetic component in metamaterials.

The rough estimate (3), as shown below, explains the

first resonance frequency within a factor of two and gives a

good idea of compactness of the resonator. Nevertheless,

this simplified approach fails to explain the spectrum of

higher modes. The spiral resonator has open circuit boundary

conditions at both extremities of its conductive line and

the expected spectrum has components evenly spaced in

frequency as in the left part of Fig. 1. Nevertheless, experi-

ments6,7 have shown that spectrum follows the odd number

series as in the right part of Fig. 1, indicating a deficiency of

the simplified approach. The difficulty to interpret the exper-

imental data6,7 for ring-shaped monofilar Archimedean reso-

nators in a simple qualitative way makes it important to

develop an analytical model in order to clarify the origin of

the odd series spectrum and the current distribution of the

standing waves at the resonance frequencies. We are mainly

interested in deriving the basic characteristic of a

resonator—the spectrum of inner modes (in the limit of

infinitely-weak coupling) and the RF current distribution

over resonator at each mode. A further question of how the

coupling circuit affects the spectral response can be solved

accurately on the basis of precise knowledge of anisotropic

distribution of electric and magnetic fields around the reso-

nator, specific for each mode.

In this paper, we present detailed experimental charac-

teristics of a ring-shaped monofilar Archimedean RF resona-

tor, we develop the analytical model of the resonator, and

finally use the obtained analytical relations to explain the

modal structure and spectrum observed in experiment. All

experiments have been carried out with planar Nb supercon-

ducting spiral resonators.

II. EXPERIMENT

A typical example of measured spectral response of a

weakly coupled superconducting Nb monofilar resonator is

presented in Fig. 2. The spiral has the shape of a ring, with

no central part (Fig. 2(a)). The resonator structure is etched

out of a 200 nm thick Nb film deposited on a quartz

substrate. The width of the resonator conductor line is 5 lm,

the spiral step is 10 lm, the outer diameter is 3 mm, and the

number of turns is 40. Following Ref. 7, measurements were

done in transmission mode by using two loops terminating

the transmitting (Fig. 2(b) “in”) and receiving (Fig. 2(b)

FIG. 1. The diagram showing the standing wave patterns for current in

low-loss transmission lines with symmetric (left) and asymmetric (right)

boundary conditions. The resonator with symmetric loads (open ends) has a

spectrum of the resonant modes with frequencies rising as integer numbers

f1:f2:f3…¼ 1:2:3… Uneven loads, like open circuit and short, lead to odd

number ratio in the frequency spectrum of the resonances: f1:f2:f3…

¼ 1:3:5… As we consider the spiral ring resonator (Fig. 2(a)) with open cir-

cuit loads at the both extremities of the line, one may expect the resonance

frequencies rising as integer numbers 1:2:3…. Contrary to the expectations,

as one can see in Fig. 2, the resonance spectrum of the ring follows the set

of odd numbers 1:3:5…, causing an intriguing question about the inner

modes structure of this resonator.

FIG. 2. Experimental and numerically simulated RF response of a ring-

shaped superconducting monofilar Archimedean resonator. The numbers at

the peaks denote the mode number n. The resonator is a superconducting 40-

turn Nb spiral with external diameter of 3 mm and internal diameter of

2.2 mm. A simplified view of the spiral (with less turns) is shown in insert

(a). The data are obtained by measuring transmission magnitude |S21|

through a spiral resonator in a setting shown in inset (b). The superconduct-

ing spiral was placed inside the cryostat and weakly magnetically coupled to

a pair of loops, one above and another below the spiral. The transmission

coefficient S21 was measured twice: with the resonator material in the nor-

mal state at 10 K (S21 10 K), and after cooling the sample to the temperature

of liquid helium 4.2 K, (S21 4 K), at which Nb is superconducting. The data

plotted by the blue solid line are the ratio of transmission |S21 4 k|/|S21 10 K|.

The ratio of the resonance frequencies of a ring-shaped spiral resonator

closely follows the set of odd numbers: f1:f2:f3:f4…¼ 1:3:5:7… The higher

order resonance peaks are rapidly getting weaker, and the even peaks are

generally weaker than the odd ones. The numerical simulations (dotted line)

are in reasonably good agreement with the experimental results. The simu-

lated S21 curve is obtained as a difference in simulated transmission data for

the superconductive (ideal conductor) and for a lossy resonator material of

the same geometry, similar to the experiment.
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“out”) ports of the coaxial cables connected to a vector net-

work analyzer. The sample was mounted in a liquid helium

cryostat (Fig. 2(b)). At the resonance frequency, the resona-

tor provides a stronger coupling between the loops, giving a

narrow spike in the transmission versus frequency depend-

ence curve S21(f). In order to calibrate our setup, we meas-

ured the transmission S21(f) through the system at a

temperature above the critical temperature of Nb, close to

10 K (S21 10 K). At this temperature, the resonator material

(Nb) is in the normal state, and, due to the losses in Nb, the

resonator has nearly no effect on the transmission S21(f). The

data plotted in the Fig. 2 are the measured transmission at

4.2 K (with superconducting Nb, S21 4.2 K), normalized with

respect to the measured transmission spectrum at 10 K (with

normal Nb, S21 10 K). One can see sharp peaks at the reso-

nance frequencies with the contrast of up to 20 dB. The fre-

quencies of resonances approximately follow the odd

numbers series: f1:f2:f3:f4…� 1:3:5:7… The amplitude of

the response drops rapidly with increasing of the mode num-

ber, indicating a weaker coupling at higher modes.

In this work, we are mainly focused on deriving the

basic characteristic of a resonator—the spectrum of the inner

modes (in the limit of infinitely weak coupling) and their RF

current distribution over the resonator. Therefore, in the

experiment, we used low coupling settings, having the

S21(f) 10 K in the �80 to �50 dB range and having the max-

imum coupling at the resonance peaks of the S21(f) 4.2 K

below �40 dB. Only the first resonance frequency was

slightly affected by the coupling circuit. The paper by

Ghamsari et al.8 gives a very good explanation to this effect.

At higher modes, the topology of RF magnetic field of

the spiral resonator changes. As a result, in experiment, the

half-wave sections of the standing wave are coupled with

opposite sign to RF probes, canceling each other. The cou-

pling of resonator second mode to the uniform magnetic field

is close to zero, and a small finite coupling always present in

experiments is due to the second-order details of geometry of

the coupling elements. The coupling at the even modes is

weak, and the effect of coupling elements on resonance fre-

quency there is limited. For the same reason of topology of

RF magnetic field of the spiral resonator, the coupling at the

odd modes, higher than the first, is reduced. In our experi-

ment, the influence of the coupling elements on the resonance

frequency is negligible, starting from the second mode.

The standing wave patterns of a similar spiral resonator

have been tested with the low-temperature laser scanning

microscope.7 Experimental images shown in Fig. 3 are pre-

senting the current amplitudes of standing waves at the reso-

nance frequencies of a spiral resonator of the shape shown in

Fig. 2(a). The numbers at the images denote the resonance

mode number n and the dashed lines indicate the spiral boun-

daries. A laser beam focused on the surface of the supercon-

ductor leads to a local increase in temperature and breaking

of Cooper pairs via direct absorption of photons. Both these

effects lead to a local depression of superconductivity in the

Nb circuit, affecting the transmission of the RF signal (S21)

through the resonator in the experimental setup presented in

Fig. 2(b). The variation of S21 is recorded and plotted as a

map as a function of the laser beam position on the sample.

The strongest response (brighter area) occurs in the parts of

the resonator with the largest RF current amplitude, which

has the major contribution to the transmitted signal. One can

note that the standing waves in the spiral resonator have

nearly perfect cylindrical symmetry, and that the number of

maxima in the radial direction corresponds to the mode num-

ber n of half-wavelengths k/2 fitting the spiral extremities.

Also, we have to mention a non-uniformity of the internode

distances in standing waves (the lateral maximums are nar-

rower), and the variation of the maximum amplitude (higher

in the center and weaker at the edges). Both effects can be

seen in previous experimental data6 and were not explained

before.

III. ELECTRODYNAMIC MODEL OF A PLANAR SPIRAL
RESONATOR

In the following, we present an analytical approach to

study the electrodynamics of planar spiral resonators. Our

goal is to obtain analytical expressions for the frequencies of

resonant modes, as well as electric and magnetic field spatial

distributions around the spiral resonator. We study a ring-

shaped monofilar spiral Archimedean resonator of a finite

length and with many densely packed turns. The schematic

of such a spiral resonator is shown in Fig. 4. We consider the

case of lossless conductor, which corresponds to a supercon-

ducting spiral. The total number of turns is N. The current
~j ~q; tð Þ flows along the spiral. Such a geometry is character-

ized by the angle u which changes from 0 to 2pN, and a

FIG. 3. Scanning laser-microscope images of the standing waves at the resonance frequencies of a ring-shaped spiral niobium resonator. The numbers at the

images denote the mode number n and the dashed line marks the boundaries of the Archimedean spiral. The laser beam scanned across the sample is locally

suppressing superconductivity in the resonator, affecting the transmission of RF signal (S21) through the resonator (measured in experimental setting shown in

Fig. 1(b). The contrast is proportional to the variation of the transmission coefficient S21, which is recorded and plotted as a function of the laser beam position,

thus mapping the amplitude distribution of RF current in the superconducting resonator. The strongest response (brighter regions) is located in the areas with

the maximum RF current. One can note that the standing waves in the spiral resonator show a high symmetry, and that the number of RF current antinodes

along the radial direction corresponds to the resonance number n.
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corresponding change of a polar coordinate q. The equation

of an Archimedean spiral is written as

q uð Þ ¼ Re 1� auð Þ; (4)

where the parameter a ¼ d
2pRe
¼ Re�Ri

2pReN � 1, Re and Ri are the

external and the internal radius of the spiral, and d is the dis-

tance between the adjacent turns.

The following analysis is similar to the one carried out

in Refs. 9 and 10 for an infinite helical coil. We neglect the

transversal current inhomogeneity in the wire, and present

the coordinate and the time dependent vector-potential in the

following form (in cylindrical coordinates):

~A z; r; hð Þ ¼ eixt l0I

4p

ð
e�i~k~R

R
w sð Þd~s; (5)

where I is the amplitude of the current excited in the spiral,

k¼ x
c is the wave vector, s is the coordinate along the spiral,

and wðsÞ describes normalized inhomogeneous current flow-

ing along the spiral. Here, R is the distance between the

observation point with coordinates z; r; hð Þ and the point on

the spiral with coordinates 0; q;uð Þ.
The electric ~E ~r; tð Þ and magnetic ~H ~r; tð Þ fields are deter-

mined via the vector-potential ~A as

~E ~r; tð Þ ¼ 1

ixe0l0

~r ~r~Að Þ � ix~A; (6)

~H ~r; tð Þ ¼ 1

l0

~r � ~A½ �: (7)

In order to obtain the coordinate dependence of the vector-

potential, we use the following geometrical relationships:

dsr ¼ du q sin h� uð Þ � Rea cos h� uð Þ½ �; (8)

dsh ¼ du q cos h� uð Þ � Rea sin h� uð Þ½ �: (9)

On other hand, the distance R can be expressed as

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ D2

p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ r2 þ R2

e 1� auð Þ2 � 2rRe 1� auð Þcos u� hð Þ
q

:

(10)

We use the well-known representation of e�ikR/R in the fol-

lowing form:11

e�ikR

R
¼
ð1

0

xdx

4p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � k2
p J0 Dxð Þe�

ffiffiffiffiffiffiffiffiffi
x2�k2
p

jzj: (11)

From Eq. (11), one can see that the electromagnetic field

decays in the direction perpendicular to the spiral plane.

Using the relationship11

J0 Dxð Þ ¼
X1

m¼�1
eim u�hð ÞJmðxrÞJm xRe 1� auð Þ

� �
; (12)

we obtain the vector-potential Aðz; r;uÞ as

Ar ¼ eixt l0I

4p

X1
m¼�1

ð2pN

0

duwðsÞ dsr

du
eim u�hð Þ

�
ð1

0

xe
�
ffiffiffiffiffiffiffi
x2�k2
p

jzj
dx

4p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � k2
p JmðxrÞJm xRe 1� auð Þ

� �
; (13)

and

Ah ¼ eixt l0I

4p

X1
m¼�1

ð2pN

0

duwðsÞ dsh

du
eim u�hð Þ

�
ð1

0

xe
�
ffiffiffiffiffiffiffi
x2�k2
p

jzj
dx

4p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � k2
p JmðxrÞJm xRe 1� auð Þ

� �
: (14)

Taking into account that the most important contribution

occurs from the terms with m¼61, we simplify Eqs. (13)

and (14) as follows:

Ar ¼ eixt l0I

4p

ðRe

Ri

dqwðqÞ
ð1

0

xe
�
ffiffiffiffiffiffiffi
x2�k2
p

jzj
dx

4p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � k2
p J1ðxrÞJ1ðxqÞ; (15)

Ah ¼ eixt l0I

4p

ðRe

Ri

dq
qwðqÞ

Rea

ð1

0

xe
�
ffiffiffiffiffiffiffi
x2�k2
p

jzj
dx

4p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � k2
p J1ðxrÞJ1ðxqÞ: (16)

In Eqs. (15) and (16), the function wðqÞ describes the inho-
mogeneous current distribution across the spiral. In order to

obtain the resonant frequencies, we apply boundary condi-

tions specific to the spiral case, i.e., the component of elec-

tric field parallel to the wire Es is equal zero. This condition

can be written as

ReaEr þ rEhjz¼0 ¼ 0: (17)

FIG. 4. Sketch of a ring-shaped spiral resonator with many turns. The polar

coordinates q and u are the coordinates of the point on spiral; r and h are the

coordinates of the observation point in the plane of the spiral. Re and Ri are

external and internal radiuses of spiral, accordingly.
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Using Eqs. (6) and (7), we obtain

Er ¼
1

ixe0l0

d

dr

1

r

d

dr
rArð Þ

� �
(18)

and

Eh ¼ �ixAh: (19)

To obtain the resonant frequencies, we use the following

approximations: The wave vector k is much smaller than a

typical inverse size of inhomogeneities in current distribu-

tion w(q), i.e., k� 1
Re�Ri

� 1
Re

, and the planar spiral is a

rather narrow one, i.e., Re � Ri� Re.

Taking into account all the previous, Eq. (18) can be

rewritten as

Er ¼
1

ixe0l0

d2

dr2
Ar: (20)

In this case, Eqs. (15) and (16) can be also greatly simpli-

fied as

Arðz ¼ 0Þ ¼ aAhðz ¼ 0Þ ¼ l0Ieixt

ð4pÞ2
ðRe

Ri

dqwðqÞln Re

jq� rj: (21)

Moreover, by making use of Eqs. (18)–(20), we obtain the

dependence of the vector-potential Ar at the coordinate r
(for Ri< r<Re, i.e., inside the spiral) in a simple oscillatory

form:

Ar z ¼ 0ð Þ ¼ l0Ieixt

Re 4pð Þ2
F rð Þ; (22)

F rð Þ ¼ cos pr þ /ð Þ; (23)

where the wave vector p is determined as p¼x/(ca).

The parameters p and u corresponding form of the cur-

rent distribution w have to be found from the integral

equation

ðRe

Ri

dqwðqÞln Re

jq� rj ¼ FðrÞ: (24)

The solution of this so-called Carleman type singular integral

equation is written in the following form:12

w xð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p

ð1

�1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

p
F
0

yð Þdy

y� x
� 1

ln
2Re

w

ð1

�1

F yð Þdyffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

p
2
64

3
75:

(25)

Here, 2w ¼ Re � Ri is the spiral’s width, and the dimension-

less coordinate x is counted from the middle of spiral, i.e.,

�1< x< 1. Substituting Eqs. (23) into (25), we obtain the

current distribution as follows:

w xð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p

ð1

�1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

p
sin pwyþ /ð Þdy

y� x

2
64

þ
p J0 pwð Þcos /ð Þ

ln
2Re

w

3
75; (26)

where J0 (x) is the Bessel function of the first kind.11

The current distribution w(x) has to satisfy the open-

ended spiral boundary conditions w(�1)¼w(1)¼ 0. It is

possible to satisfy these boundary conditions only for partic-

ular values of pn and, therefore, xn. Moreover, there are even

solutions for w(x) as sin /ð Þ ¼ 0, and odd solutions as

cos /ð Þ ¼ 0. For the even solutions, we obtain the transcend-

ent equation determining the values of pn as follows:

ln
2Re

w
pwJ1ðpwÞ ¼ J0ðpwÞ: (27)

For the odd solutions, we obtain another transcendent equa-

tion as

J0ðpwÞ ¼ 0: (28)

Finally, we obtain the set of resonant frequencies as

fn ¼
capn

2p
¼ ca

4w
cn; (29)

where cn ¼ p
2

pnw can be found from Eqs. (27) and (28). The

index n corresponds to mode number and it is the number of

oscillations of the current distribution w(x) inside the spiral.

Taking into account a ¼ d
2pRe
¼ Re�Ri

2pReN � 1 and 2w ¼ Re � Ri,

we obtain

fn ¼
c

2L
cn ¼ f0cn: (30)

Here n¼ 1, 2, 3…, and L is the total length of the conductive

line in the spiral resonator, and f0 ¼ c=2L is the fundamental

resonance frequency of a straight-line resonator of length L.

Solving Eqs. (27) and (28) for parameters of the sample

used in our experiment, we obtained the frequency correction

factor values cn listed in Table I. Notice here that the calcu-

lated sequence of the resonance frequencies for the modes of

the ring-shaped spiral resonator is closely following the odd

numbers series 1:3:5:7…, thus yielding an appropriate pre-

diction of the spectrum of the inner modes. The fundamental

resonance frequency f1 of a ring-shaped spiral is very close

to half of the resonance frequency (1=2 f0) of a straight-line

resonator with the same length of conductor. For the higher

order resonances, cn is asymptotically approaching the mode

number n, giving a result similar to our simplified estimate

(3). The resonance frequencies are equidistant along the fre-

quency axis with an increment equal to f0¼ c/2L, similarly

to the case of a straight-line resonator.

The above analytical model makes it possible to calcu-

late the profile of the standing waves of the modes of the spi-

ral using Eq. (26) and, therefore, to calculate the distribution

of the magnetic field around the resonator. The predicted
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resonance frequencies and RF current distributions are com-

pared with experimental data in Sec. IV.

IV. RESULTS AND DISCUSSION

First, in order to verify our analytical predictions for the

resonance mode frequencies, we performed numerical simu-

lation with HFSS Eigenmode using the same spiral resonator

geometry as in the analytical model. In both models, we con-

sider a free-standing spiral without coupling coils. The HFSS

Eigenmode tool is designed to calculate the resonance fre-

quencies for an isolated structure, with no external probes.

The resonance frequencies predicted by numerical and ana-

lytical models match well, having a constant relative offset

below 1%, except for the first mode (see Table I). We sup-

pose that this discrepancy occurs due to the fact that the spi-

ral ring used in the simulation (and experiment) is not as

narrow as expected in the analytical model, having an inner

to outer diameter ratio of about 0.7. The numerically calcu-

lated correction factor 2cnum is also presented in Table I.

Remarkably, both analytical and numeric sets of resonance

frequencies closely follow the sequence of the odd numbers

f1:f2:f3…¼ 1:3:5….

Second, we compare the analytical model prediction

with the experimental data. In the experiment (Fig. 2), the

superconducting spiral resonator is located on a crystalline

quartz substrate with a dielectric constant of about er¼ 4.5.

It is known that the effective dielectric constant for a struc-

ture at the interface of the dielectric and air is approximately

eeff¼ (erþ 1)/2. To explain our experiment with the analyti-

cal model, we thus have to assume eef f ¼ 2:75, which

reduces the speed of light by the square root of the effective

dielectric constant to about 0.60 of its value in vacuum.

Experimental data and model prediction for the first seven

modes are summarized in Table II. Most of resonance fre-

quencies fan predicted by analytical model match experimen-

tal data fexp within 2%. We note that the most significant

discrepancy between analysis and experiment is at the funda-

mental resonance frequency. We argue that this deviation is

related to a strong coupling of the resonator fundamental

mode to the input and output ports of our setup (wire loops

that terminate coaxial lines near the sample), which is not

accounted for by the model. The magnetic coupling strength

changes for different modes due to the varying distribution

of RF magnetic field around the spiral. A stronger resonator

coupling leads to a bigger effect of the reactance of coupling

elements, causing a shift in the resonator frequency.8

The waveforms of the inner modes of the spiral resona-

tor are given by Eq. (26) of the analytical model. We calcu-

lated the normalized current amplitudes for the first five

resonance modes. The results are presented in Fig. 5. In the

same plot, we also show the measured amplitudes for the

TABLE I. Resonance frequency correction factor for Eq. (30).

Mode

number

Correction factor

analytical

Correction factor

numeric (HFSS)

Ratio

numeric/analytical

n 2c 2cnum cnum/c

1 1.046 1.144 1.094

2 3.062 3.133 1.023

3 5.000 5.036 1.007

4 7.029 7.066 1.005

5 8.999 9.029 1.003

6 11.019 11.051 1.003

7 13.000 13.019 1.001

8 15.014 15.028 1.001

9 17.000 17.005 1.000

10 19.011 19.012 1.000

TABLE II. Experimental and analytical resonance frequencies.

N Experiment fexp (GHz) Analytical fan (GHz) fexp / fan

1 0.195 0.145 1.333

2 0.444 0.424 1.047

3 0.709 0.692 1.024

4 0.981 0.973 1.009

5 1.250 1.246 1.003

6 … 1.525 …

7 1.789 1.800 0.995

FIG. 5. Measured (dots) and analytically calculated (lines) amplitudes of

current in the ring-shaped spiral resonator for the first three resonance modes

(a) and for the fifth mode (b). RF-current amplitude is plotted as a function

of radial coordinate across the spiral width. The coordinate-1 corresponds to

the inner edge of the ring-shaped spiral and the coordinate 1 is at the outer

edge of the spiral. The experimental data are extracted from measurements

presented in Fig. 3. The inner to outer spiral radius ratio is about 0.7. The

model shows very good agreement with experimental results, even for a not

so narrow spiral. Note the shorter lateral lobes in the standing wave structure

adjacent to the edges of the spiral. They indicate a higher phase speed of

waves at the edges of the spiral.
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same modes. The amplitude is plotted as a function of the

distance along the radial direction. The abscise coordinate

�1 corresponds to the inner edge of the ring-shaped spiral,

and the coordinate 1 is at the outer edge of the spiral, as in

Eq. (26). The experimental values of the amplitudes are

obtained from the scanning laser microscopy data presented

earlier in Fig. 3. The measured laser beam photo-response

signal13 has a profile proportional to the local value of RF

current density squared, JRF
2(x,y). One can see that the

model is predicting rather well the location of the maxima

and minima in the standing wave structure for all three

modes.

Figure 5(b) presents a comparison between the meas-

ured and calculated current amplitudes for the 5th mode of

the spiral resonator. The agreement of prediction with

experiment is very good, with exception of the data at the

inner edge of the spiral, apparently related to some experi-

mental imperfection. We suppose that shorter lateral lobes in

the standing wave structure adjacent to the edges of the spi-

ral can be related to a higher phase velocity of electromag-

netic waves at the edges of the spiral. The same feature can

be also seen in Fig. 5(a) for the third mode. It can be argued

that the enhanced phase velocity of light at the inner and

outer extremities of the spiral leads to the shift of the series

of resonant mode frequencies towards the series of odd num-

bers f1:f2:f3…¼ 1:3:5…, which is different from the case of

open-ended straight-line resonator characterized by evenly

spaced frequencies f1:f2:f3…¼ 1:2:3… (or equivalently,

f1:f2:f3…¼ 2:4:6…).

We used Eq. (26) in order to calculate the magnetic field

structure around the resonator at the different modes.

Magnetic field patterns are symmetrical with respect to the

axis of symmetry of the spiral, and one can get complete

information about the field structure by considering its distri-

bution in the vertical plane containing the symmetry axis, as

presented in Fig. 6. Here, the vertical dotted line is the spiral

axis of symmetry, and the horizontal straight line marks the

spiral plane. The bold straight lines are the cross-sections of

the ring-shaped spiral conductive strip and the digits are the

mode numbers. Starting with the second mode, the magnetic

field is mainly confined to the near field area of the resonator,

about twice the diameter of the spiral. This feature leads to a

reduction of the spiral coupling to the external magnetic RF

field for the higher modes, as already argued above. Another

apparent attribute is that for the even modes, the coupling is

weaker than for the odd modes.

V. CONCLUSION

We performed analytical, numerical, and experimental

investigations of electromagnetic resonant modes of a com-

pact monofilar Archimedean spiral resonator shaped in a

ring, with no central part. Such resonator couples primarily

to the magnetic field component of the incident electromag-

netic wave, offering properties suitable for magnetic meta-

atoms and, in general, for creating compact micro-resonators

with magnetic coupling. We studied experimentally the spec-

trum of the inner modes of the superconducting spiral reso-

nator and obtained the detailed profiles of the standing

waves inside the resonator. Despite the nearly identical

boundary conditions for electromagnetic fields at the extrem-

ities of the resonator, the relative frequencies of the resonant

modes of the spiral approximately follow the sequence of the

odd numbers as f1:f2:f3:f4…¼ 1:3:5:7… This particularity of

the resonant modes is well explained by our analytical

model. This model quantitatively describes the electrody-

namics of the ring-shaped spiral resonator with no central

part. The current distribution inside the spiral satisfies a par-

ticular Carleman type singular integral equation, solution of

which yields a set of resonant frequencies. The calculated

resonance frequencies and the waveform current distribu-

tions are found in good agreement with experimental data

and the results of numerical simulation. The analytical model

provides detailed 3D-patterns of the RF magnetic field

around the resonator and makes it possible to explain the

strength of its coupling to the environment circuitry.

In conclusion, we emphasize that taking into account the

spiral geometry allows us to explain the non-uniformity of

the width of maximums in the standing wave (due to non-

uniformity phase speed across the spiral), and also to explain

the variation of the maximum amplitudes (due to a non-

uniformity of the characteristic impedance of the line).

Although both effects have been observed experimentally, it

was not explained before.

Compared with numerical simulations, the developed

analytical model has a substantial advantage for clarifying

the structure of the resonant modes and helps accelerating

FIG. 6. Magnetic field lines calculated in a plane perpendicular to the spiral at the first three resonance frequencies. The vertical dotted line is the spiral axis of

symmetry and the horizontal straight line marks the spiral plane. The bold straight lines are for the cross-sections of the ring-shaped spiral conductive strip and

the digits stand for the corresponding mode numbers. Starting with the second mode, the magnetic field is mainly confined to the near field area, about twice

the diameter of the spiral.
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evaluation of the characteristics of metamaterials made of

such micro-resonators.
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