УДК 538.945;537.312.8

СВЕРХПРОВОДИМОСТЬ КЕРАМИЧЕСКИХ ОБРАЗЦОВ La_{1.85}Sr_{0.15}CuO₄

© 2014 г. Н. В. Далакова¹, Б. И. Белевцев¹, Е. Ю. Беляев¹, Ю. А. Савина¹, О. И. Юзефович^{1, 2}, С. В. Бенгус^{1, 2}, Н. П. Бобрышева³

E-mail: dalakova@ilt.kharkov.ua

Представлен ряд эффектов влияния гранулярности на сверхпроводящие свойства керамического образца La_{1.85}Sr_{0.15}CuO₄, приготовленного методом твердофазного синтеза. Сверхпроводящий переход имеет ступенчатый характер. Обнаружены низкотемпературные особенности гистерезисного поведения магнитосопротивления, связанные с гранулярной структурой образца.

DOI: 10.7868/S0367676514040127

Поликристаллические (керамические) образцы ВТСП купратов с размером зерна несколько микрон можно описать как ансамбль сверхпроводящих гранул сверхпроводника II рода. Макроскопическая сверхпроводимость такой системы определяется межгранульными слабыми связями. Как правило, любое зерно в сверхпроводнике имеет несколько контактов с соседними зернами, так что объемный сверхпроводник представляет собой некоторое множество 3D джозефсоновских связей [1]. Межзёренные контакты любого зерна могут быть различного типа [2].

Сверхпроводящие резистивные переходы гранулированных сверхпроводников значительно шире, чем однородных сверхпроводников. Для таких систем нередко наблюдается двухступенчатый характер сверхпроводящего перехода. С понижением температуры происходит заметное понижение сопротивления при температуре T_{c0} , соответствующей переходу гранул в сверхпроводящее состояние, но из-за слабой связи между гранулами общее сопротивление еще не стремится к нулю. Дальнейшее поведение R(T) ниже температуры T_{c0} зависит от характера взаимодействия между сверхпроводящими гранулами [3]. При понижении температуры ниже *T*_{c0} усиливается джозефсоновская связь между гранулами, так что в сложной сети слабых связей между гранулами появляются прерывистые пути (или кластеры) нулевого сопротивления, вызывая дальнейшее падение сопротивления. В связи с неизбежным пространственным распределением толщины границ зерен (и, следовательно, сопротивлений контактов) этот резистивный переход в гранулированных сверхпроводниках имеет перколяционный характер. Когда температура непрерывно падает, сверхпроводящие кластеры растут, и (если пространственное разупорядочение сопротивлений контактов не очень велико) в конце концов при определенной температуре T_c (при которой сопротивление становится равным нулю) образуется бесконечный сверхпроводящий кластер. Эта температура может быть намного меньше, чем T_{c0} . Для таких гранулированных систем механизм захвата магнитного потока в области сверхпроводящего перехода остается до конца невыясненным. Окончательно не установлено, происходит захват в отдельных сверхпроводящих гранулах или же в замкнутых сверхпроводящих контурах.

В данной работе мы исследовали транспортные и магнитотранспортные свойства купрата La_{1.85}Sr_{0.15}CuO₄, полученного стандартным методом твердофазного синтеза. На стадии приготовления образец $La_{1.85}Sr_{0.15}CuO_4$ был протестирован посредством рентгеновских, магнитных и электронно-микроскопических исследований. Микроструктуру, элементный состав образца и состав отдельных фаз определяли методами сканирующей электронной микроскопии на сканирующем электронном микроскопе Cam Scan. Содержание меди и лантана определяли на EDS спектрометре LINK AN-10000. Содержание стронция определяли на высокочувствительном WDS спектрометре МІКROSPEС в пяти участках образца. Соотношение элементов в образце отвечало химической формуле. Размер зерна керамики составлял ≈(1-3) мкм.

На рис. 1 показаны кривые температурной зависимости магнитной восприимчивости исследованного образца, снятые с использованием СКВИД-магнитометра MPMS-XL5. Температура сверхпроводящего перехода T_{c01} в поле 10 Э, опре-

¹ Физико-технический институт низких температур имени Б.И. Веркина Национальной академии наук Украины, Харьков, Украина.

² International Laboratory of High Magnetic Fields and Low Temperatures, Wroclaw, Poland.

³ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Санкт-Петербургский государственный университет", химический факультет.

Рис. 1. Температурная зависимость магнитной восприимчивости образца La_{1.85}Sr_{0.15}CuO₄: светлые точки – H = 10 Э, темные точки – H = 10 кЭ.

деленная по наличию сигнала диамагнитного отклика, составила 35.6 К.

Температурные зависимости сопротивления были записаны для разных измерительных токов в диапазоне 0.01–10 мА. Кривые $\rho(T)$, записанные при токах 0.01-0.3 мА в области сверхпроводящего перехода совпадают. Температура начала сверхпроводящего перехода $T_{c0} = 44$ К (показана стрелкой на рис. 2), полученная из условия $d\rho/dT = 0$ (при J = 300 мкА), соответствует началу перехода в сверхпроводящее состояние отдельных гранул. Неметаллическое поведение R(T) при $T > T_{c0}$ $(d\rho/dT < 0)$ – это следствие слабой межгранульной связи. В области температур $T_{c0} < T < 200$ К сопротивление меняется примерно по логарифмическому закону ($\rho \propto \ln T$). При $T \ge 200$ К имеет место металлический тип проводимости. Ниже температуры начала перехода T_{c0} сопротивление довольно быстро уменьшается при понижении темпе-

Рис. 2. Температурные зависимости сопротивления образца $La_{1.85}Sr_{0.15}CuO_4$, записанные при разных токах: • – 0.3 мA, \bigcirc – 3 мA, \blacksquare – 10 мA.

ратуры до $T_{cJ} \cong 40$ К. При $T \le T_{cJ}$ начинает устанавливаться джозефсоновская связь между сверхпроводящими гранулами. В интервале ~40–35.6 К наблюдается ступенька сопротивления, после чего в результате образования перколяционных цепочек джозефсоновских связей между гранулами сопротивление довольно резко уменьшается до нуля (рис. 2). Сверхпроводящий переход полностью завершается при $T \approx 23$ К ($J \le 0.3$ мА).

При температуре начала сверхпроводящего перехода $T_{c0} = 44$ К на кривых $\chi(T)$ не обнаружено никаких особенностей. Найденное из магнитных измерений значение $T_{c01} = 35.6$ К существенно меньше температуры T_{cJ} . На резистивных кривых R(T)именно при $T_{c01} = 35.6$ К начинается резкое падение сопротивления до нуля. Отсюда следует, что диамагнитный отклик (рис. 1) появляется только в момент образования достаточно большого объема сверхпроводящей фазы и при наличии фазовой ко-

Рис. 3. Температурные зависимости сопротивления образца La_{1.85}Sr_{0.15}CuO₄, записанные в разных магнитных полях: H = 0.05; 0.1; 0.8; 2; 10; 50; 100; 140 кЭ. $\vec{H} \perp \vec{J}$.

герентности между сверхпроводящими гранулами. Таким образом, температура $T_{c01} = 35.6$ К отвечает переходу системы в состояние глобальной сверх-проводимости.

Резистивный сверхпроводящий переход довольно сильно зависит от величины тока (рис. 2) и от магнитного поля (рис. 3). При J = 3 мА переход уширяется в области $T < T_{cJ}$. При дальнейшем увеличении тока некоторые из самых слабых звеньев в перколяционных цепочках с наименьшим критическим током переходят в резистивное состояние, увеличивая общее сопротивление системы, и температура начала перехода T_{c0} заметно понижается (рис. 2, J = 10 мА).

Аналогичное влияние оказывает магнитное поле в температурной области ниже T_{c0} (рис. 3). При малых полях (H < 0.8 kЭ) магнитное поле разрушает фазовую когерентность между отдельными гранулами, в результате чего сопротивление резко увеличивается в области $T < T_{cJ}$ и сверхпроводя-

щий переход заметно уширяется. При увеличении поля до H = 10 кЭ начинается разрушение внутригранульной сверхпроводимости и температура начала сверхпроводящего перехода постепенно понижается. Таким образом, сравнительно слабый ток и небольшое магнитное поле подавляют джозефсоновские связи между гранулами, практически не влияя на внутригранульную сверхпроводимость. Однако эти небольшие изменения сильно влияют на характер резистивного перехода. Из представленных на рис. 2 и 3 данных следует, что критические поля и токи для сверхпроводящих гранул намного превышают критические поля и токи межгранульной среды. Ступенчатый характер сверхпроводящего перехода в неоднородных сверхпроводниках подробно рассмотрен в [4].

Исследование магниторезистивного эффекта обнаруживает ряд особенностей поведения магнитосопротивления (МС), которые коррелируют с результатами резистивных измерений. Выше T_{c0} наблюдается отрицательное MC. При $T < T_{c0}$ имеет место положительное МС. В области сверхпроводящего перехода (при $T = T_{cJ}$) происходит переход от гистерезиса МС против часовой стрелки (когда $\Delta R(H)$ при уменьшении поля H идет выше, чем при увеличении поля) к гистерезису МС по часовой стрелке. При $T < T_{cJ}$ гистерезис направлен по часовой стрелке и МС насыщается с ростом поля в сравнительно малых полях. При *T* > *T*_{cJ} гистерезис направлен против часовой стрелки и насыщение МС не происходит (рис. 4). Эти данные коррелируют с результатами рис. 3, согласно которым, при фиксированной температуре $T < T_{cI}$ сопротивление резко увеличивается в малых полях H < 0.8 кЭ, а затем практически не меняется с увеличением поля до 10 кЭ. Такое поведение соответствует почти полному подавлению межгранульной сверхпроводимости слабым магнитным полем $H = 0.8 \text{ к} \ni$ в области температур $\approx (20 - 35) \text{ K}$ (рис. 3, 4). При $T > T_{cJ}$ сопротивление постепенно увеличивается с ростом поля до 140 кЭ (рис. 3). В полях $H \le 10$ кЭ это увеличение происходит не так резко, как при $T < T_{cJ}$.

Высокотемпературные гранулированные сверхпроводники являются неоднородными сверхпроводниками, и их свойства обычно объясняются на основе двухуровневой модели критического состояния [5]. Эта модель описывает двухкомпонентную систему, состоящую из (i) сверхпроводящих зёрен с критическим током J_{cg} (и нижним и верхним критическими полями H_{c1g} и H_{c2g}) и (ii) межгранульной джозефсоновской среды с критическими токами и полями J_{cJ} , H_{c1J} и H_{c2J} . Сопротивление в смешанном состоянии такой неоднородной системы определяется прежде всего межгранульной связью. Джозефсоновская межкристаллитная среда чувствительна даже к небольшим изменениям

Рис. 4. Магнитополевые зависимости сопротивления образца La_{1.85}Sr_{0.15}CuO₄, записанные при трех разных температурах и токе J = 300 мкА. $\vec{H} \perp \vec{J}$.

тока и магнитного поля, в то время как эти изменения (при $J \le J_{cg}$ и $H \le H_{clg}$) не оказывают заметного влияния на внутригранульные сверхпроводящие свойства. Именно такое поведение системы демонстрируют рис. 2 и 3.

Параметром, который определяет поведение сопротивления в магнитном поле, является плотность магнитного потока (индукция) B_J межгранульной джозефсоновской среды. Отчетливая корреляция между B_J и сопротивлением смешанного состояния гранулированных ВТСП была продемонстрирована в [6].

На основе двухуровневой модели критического состояния [5] межгранульная индукция B_J определяется тремя вкладами: 1) приложенного магнитного поля, H_{ap} , 2) внутригранульной намагниченности, M_g и 3) межгранульной намагниченности, M_J . Из-за ослабления сверхпроводимости в межкристаллитной среде будет выполняться соотношение $M_J \ll M_g$, поэтому в некотором приближении межгранульная индукция $B_J = H_{ap}$ – $-M_g(H_{ap})C(H_{ap})$, где $C(H_{ap})$ – численный множитель, зависящий от формы гранулы. Отсюда следует, что гистерезис МС прежде всего определяется гистерезисным поведением внутригранульной намагниченности, которая характеризуется захватом потока. В сверхпроводящих гранулах зависимость $M(H_{ap})$ при уменьшении поля идет выше, чем при увеличении поля за счет захвата потока. При этом индукция гранулированного сверхпроводника В_J будет больше в возрастающем поле (согласно выражению для B_J). Это приводит к гистерезису по часовой стрелке (рис. 4, *T* = 20.39 K, *T* = 27.34 K). При $T \ge T_{cI}$ изучаемая гранулированная система не соответствует двухуровневой модели критического состояния [5], так как межкристаллитная джозефсоновская среда исчезает, и происходит переход к однокомпонентной системе сверхпроводящих гранул, так что в области $T_{cJ} \leq T < T_{c0}$ сверхпроводящая среда является однородной. Для однородного сверхпроводника характерен гистерезис против часовой стрелки, который объясняется захватом потока (рис. 4, T = 43.85 K).

Таким образом, мы показали, что поликристаллические образцы $La_{1.85}Sr_{0.15}CuO_4$ представляют собой неоднородную систему, в которой сверхпроводящая фазовая когерентность при температуре $T < T_{cJ}$ устанавливается посредством джозефсоновской связи между сверхпроводящими гранулами. Обнаружен новый эффект: переход при температуре T_{cJ} от гистерезиса МС против часовой стрелки ($T > T_{cJ}$).

Работа выполнена при частичной поддержке целевой комплексной программы фундаментальных исследований НАН Украины "Фундаментальные проблемы наноструктурных систем, наноматериалов, нанотехнологий" (грант № 26/13-Н).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Sheahen Thomas P.* Introduction to High-Temperature Superconductivity. N.Y.: Kluwer Acad., 2002. 580 p.
- Hilgenkamp H., Mannhart J. // Rev. Mod. Phys. 2002. V. 74. P. 485.
- Belevtsev B.I., Beliayev E.Yu., Naugle D.G. et al. // J. Phys.: Condens. Matter. 2007. V. 19. 036222.
- 4. Дмитренко И.М., Глухов А.М., Заика А.С. и др. // ФНТ. 1988. Т. 14. С. 1045.
- Ji L., Rzchowski M.S., Anand N., Tinkham M. // Phys. Rev. B. 1993. V. 47. P. 470.
- 6. Kopeliovich A.I. // Fiz. Tverd. Tela. 1990. V. 32. P. 3613.