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Based on the numerical solution of the non-stationary (time-dependent) Ginzburg–Landau

equations, we investigated the evolution of the order parameter of superconducting channels of

different length under applied voltage (so-called voltage-driven regime). We calculated the

current-voltage characteristics for channels of different lengths and found out the origin of their

characteristic disorder oscillations. For very long channels in a certain voltage interval we revealed

chaotic dynamics of the order parameter. The collected data allowed us to plot the most complete

and detailed phase diagram of the resistive state of the superconducting channel in the voltage-driven

regime. VC 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4791774]

1. Introduction

The Ginzburg-Landau theory predicts that below the

critical temperature Tc a narrow channel, depending on the

magnitude of the current flowing through it, is either in a ho-

mogeneous superconducting phase or in the normal state. By

the narrow channel we assume such a quasi-one-dimensional

system, the transverse dimensions of which are less than or

on the order of the coherence length and the depth of pene-

tration of the magnetic field. In this case, we also assume

that the length of the channel is sufficiently large and

exceeds the depth of penetration of the electric field into the

system.

However, the experiments showed that above the

Ginzburg-Landau critical current the superconducting state

in the quasi-one-dimensional thread does not disappear com-

pletely, but is transformed into the so-called resistive state,

in which the superconducting and normal regions co-exist

simultaneously.1,2 Despite the fact that the superconductivity

in the system did not completely collapse, the presence of

normal domains leads to the appearance at the ends of the

channel of a non-zero potential difference. Moreover, in this

case we also observe electromagnetic radiation with charac-

teristics similar to Josephson ones.2,3

The latter circumstance is direct evidence that the resis-

tive state in narrow superconducting wires has non-

equilibrium nature. Therefore, for accurate description it is

necessary to use the appropriate kinetic equations. However,

due to the complexity and bulkiness of the mathematical ap-

paratus that accompanies their analysis, dynamic problems

of superconductivity are often solved using the simpler non-

stationary (time-dependent) Ginzburg-Landau (GL) equa-

tions, which are derived from the above kinetic equations in

the limit of the critical temperature of the superconductor.

An important advantage of the time-dependent Ginzburg-

Landau equations is their visual clarity, since for the descrip-

tion of non-equilibrium superconductivity the language used

is that of the order parameter, which reflects the macroscopic

quantum properties of the superconductor.

It is for this reason that the problem of stability of cur-

rent states in a superconductor in the resistive phase has

been investigated using time-dependent Ginzburg-Landau

equations since the 70s of the last century. In the framework

of phenomenological formalism it has been shown that to

preserve the macroscopic coherence it is imperative in cer-

tain parts of the system for the order parameter phase to slip

by 2p with a simultaneous conversion of its modulus to

zero.4 Such areas, comparable in size to the coherence

length, were called phase slip centers (PSC), in the case of a

quasi-one-dimensional superconductor, and phase slip lines

(PSL), if the superconducting system is a wide thin film (a

two-dimensional object).

Traditionally, the existence of such topological defects

in a superconducting system, whether it is a quasi-one-

dimensional channel or a two-dimensional wide thin film, is

detected by observing the jumps and their temperature de-

pendence on the current-voltage characteristics (CVC) of the

samples.2,5 With the advent of low-temperature laser scan-

ning microscopy it became possible to literally visualize the

dynamics of the resistive state of a superconductor, namely,

to observe the appearance of normal domains in it and keep

track of how the pattern of the state changes with changing

external conditions (temperature, voltage, current). Rela-

tively recently, similar studies of the evolution of the resis-

tive state and, therefore, the dynamics of PSL were carried

out for a wide thin film of tin in the current-driven regime.6

Numerical analysis of the GL equations shows that the

character of formation of PSC in a quasi-one-dimensional

system depends on the conditions that create the resistive

state of the superconductor (the voltage-driven regime and

the current-driven regime), and on the length of the super-

conducting channel. Traditionally, the vast majority of publi-

cations, both theoretical and experimental, are dedicated to

the investigation of the dynamics of PSC produced in a given
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current. However, as shown in a number of theoretical stud-

ies, in the voltage-driven regime certain features may appear

in the dynamic behavior of the order parameter of the quasi-

one-dimensional superconductor, which are not present in

the current-driven regime, but are reflected in the current-

voltage characteristics of such systems.

In particular, the latter experiments have shown7 that the

superconducting narrow channel in the voltage-driven re-

gime has a non-trivial S-shaped feature. In the same article,

using the time-dependent GL equations with a non-zero gap,

the authors provide a theoretical description of this remark-

able behavior of the CVC. Moreover, in the course of numer-

ical solution of the equations for a decoupling factor much

smaller than one, disordered current density fluctuations

superimposing on the CVC of the channel were discovered.

As for the dynamic behavior of the order parameter in

the voltage-driven regime, its theoretical analysis has been

carried out in Ref. 8. There, using the numerical solution of

the time-dependent gapless (the pairing factor equals infin-

ity) GL equations, the authors traced the nature of formation

of PSC in the narrow superconducting channel without

investigating the dependence of the transition to different

modes of behavior of the PSC on the length of the channel

and the voltage range.

The authors of Ref. 9 were able to refine the quantitative

dynamics of the resistive state of the superconducting wire

in the voltage-driven regime. In the framework of the time-

dependent Ginzburg-Landau equations, they built a phase

diagram indicating for which lengths and voltages we should

expect the transition from the single PSC regime to the 2

PSC regime, and from the 2 PSC regime to the region where

the solutions of the GL equations become more complex.

However, they were not able to describe the dynamics of the

order parameter in this region.

In this paper, based on the numerical solution of the time-

dependent Ginzburg-Landau equations, we investigate the

dynamics of the resistive state of quasi-one-dimensional fila-

ments of varying lengths in the voltage-driven regime with a

visualization of the behavior of the order parameter modulus.

Based on these data, a detailed version of the phase diagram

of such a system has been built as a function of the length and

the magnitude of the voltage applied to it, compared with

analogous characteristics given in Ref. 9. In this diagram we

mark not only those voltage–length ranges, for which one or

two PSC form in the channels, but we also indicate the area

where the disordered nature of PSC formation with chaotic

with respect to time behavior of the order parameter mani-

fests. In addition, we propose a qualitative theory that explains

the appearance of current density oscillations in the CVC of

quasi-one-dimensional narrow superconducting channels.

2. Basic equations

The time-dependent GL equations for the investigated

system in dimensionless units have the form

uð@twþ iUwÞ � @2
x w� swþ jwj2w ¼ 0; (1)

j ¼ �@xU� iðw�@xw� w@xw
�Þ: (2)

In the above equations, the length is measured in units of co-

herence length n0¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p�hD=8kBTc

p
at T¼ 0, where D¼ (1/3)

vFl is the diffusion coefficient, and the time is in units of

t0¼ p�h/8kBTc. Moreover, w is a complex value—a dimension-

less order parameter normalized to w0¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8p2k2

BT2
c=7fð3Þ

p
; U

corresponds to the electrostatic potential, which is measured

in units of �h/2et0, j—the density of current flowing through

the system—is composed of additive contributions of the nor-

mal quasiparticle flow and the Cooper condensate and is

expressed through j0¼ cU0/16p2 k0
2 n0, where k0 is the Lon-

don penetration depth of the magnetic field at T¼ 0. The tem-

perature s¼ 1� (T/Tc), introduced in the equations, will be

assumed to be 0.1 (T¼ 0.9 Tc).

Parameter u is a numerical parameter depending on the

superconducting properties of the material, which is equal to

the ratio of the relaxation time of the order parameter modu-

lus to the relaxation time of its phase. According to the mi-

croscopic theory, u takes on values depending on the degree

of contamination of the superconductor with impurities,

including magnetic ones. If tsTc� 1, where ts is the relaxa-

tion time by magnetic impurities, then u¼ 12. If timpTc� 1,

where timp is the time of scattering by the impurities, the pa-

rameter u is set to equal p4/14f(3)� 5.79. However, strictly

speaking, the assumption of a wide range of values of u does

not contradict the microscopic theory, so there are no restric-

tions on the choice of an arbitrary positive value for this pa-

rameter. For this reason we have chosen u¼ 1.

Equations (1) and (2) must be supplemented by boundary

and initial conditions corresponding to the voltage-driven re-

gime. Based on the selected set of normalizing parameters,

these conditions are as follows:

wð0; tÞ ¼ jwð0Þj; wðL; tÞ ¼ jwð0ÞjexpðiVtÞ; (3)

Uð0; tÞ ¼ 0; UðL; tÞ ¼ V; (4)

wðx; 0Þ ¼ jwð0Þj; Uðx; 0Þ ¼ Vðx=LÞ; (5)

where L is the length of the channel, |w(0)|¼
ffiffiffi
s
p

is the equi-

librium value of the order parameter modulus, and V is the

voltage applied.

The time-dependent Ginzburg-Landau equations (1) and

(2) with the boundary and initial conditions (3)–(5) are

solved numerically by the Runge-Kutta method of order 4

with the substitution of the time and space derivatives with

finite-difference schemes. In the process of numerical simu-

lation a time step was chosen to equal 0.01, and the mini-

mum size of the spatial grid was 0.5, i.e., half of the

coherence length of the first order parameter at T¼ 0. Also

note that to obtain CVC, current density averaging occurred

in the time interval between 500 and 10 000. This initial

value was chosen to avoid any influence of various kinds of

relaxation processes occurring in the channel initially.

3. Results and discussion

A characteristic feature of a superconducting channel in

the voltage-driven regime is the S-like shape of the CVC. In

the process of numerical solution of Eqs. (1)–(5) it can be

found that this feature does not hold for all systems, but only

for those whose length exceeds the specified value of

L(S)� 21 (Fig. 1).

In order to shed light on the cause, we studied the evolu-

tion of the order parameter in a channel whose length is
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smaller, larger, and significantly larger than the critical value

of L(S). By evolution we mean the process showing the

change of the order parameter modulus along the entire

length of the specified channel with time.

We found that for the systems with L<L(S) for all val-

ues of applied voltage only one PSC is realized, periodi-

cally emerging in their center (Fig. 2), the frequency of

emergence and the size of which increase with increasing

voltage.

For a channel with L>L(S) the evolution of the order pa-

rameter is a bit more complicated. To illustrate this, the

channel was investigated with L¼ 25>L(S), i.e., where CVC

begins to curve and becomes S-shaped, as shown in Fig. 1.

As long as the voltage to the channel is small, there is only

one PSC arising in the center of the filament (Fig. 3(a)).

However, starting from the voltage V� 0.07 and time

T2PSC� 2900 (see Fig. 3(b)) there is a tendency for two PSC

to rise in the system. Initially, the only existing PSC begins

to "wobble" along the length of the channel, forming two

PSC symmetrically oscillating out of phase, the distance

between which increases with time and then fixates at a cer-

tain value (Fig. 3(c)). Increasing the voltage to V¼ 0.1 leads

to the repetition of the same scenario, i.e., “rocking” of one

of the PSC with the subsequent formation of two PSC oscil-

lating out of phase in symmetrically arranged centers of the

channel halves, but now at a much earlier point in time

T2PSC� 800 (Fig. 3(d)). By increasing the voltage to

V¼ 0.12, we observed the increase of T2PSC� 1100 (Fig.

3(d)). The results of numerical simulations show that a fur-

ther increase in the voltage increases the value of T2PSC.

Such a relationship exists until the voltage V� 0.18, after

which the system returns to the existence of a single, central

PSC (Fig. 3(e)), increasing in size and turning into a normal

domain with increasing voltage. Interestingly, for the chan-

nels with an S-shaped CVC at the initial time in the appropri-

ate voltage range two PSC are not formed initially, they are

the result of a kind of “splitting” of the central PSC.

After analyzing quasi-one-dimensional systems with

L>L(S), we were able to make an interim conclusion: the be-

ginning and end of the curvature (the exit to linear depend-

ence) of the CVC, i.e., the upper and lower S-shaped

portions, correspond to the moment of appearance and disap-

pearance in the system of more than one PSC. We believe

that this is the main cause of the S-shaped CVC.

FIG. 1. The CVC of quasi-one-dimensional superconducting channels of

different lengths in the voltage-driven regime.

FIG. 2. The evolution of order parameter modulus in the channel with L¼ 20. The scale of the change of the order parameter modulus is shown on the right.

The dark areas correspond to PSC.
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Once the length exceeds another characteristic value

L(Sþoscil)� 28, in the S-shaped section of the CVC of the

channel disordered oscillations begin to superimpose onto

the current density in the form of sharp bends (Fig. 1). With

increasing length the number and the amplitude of these

"deformations" increase, gradually "filling" the entire S-

shaped region of the CVC. To clarify the reasons for this

phenomenon, we again turned to the analysis of the evolu-

tion of the order parameter modulus in the channels for fila-

ments whose length exceeds L(Sþoscil).

To start, we examined the system with L¼ 35, the length

of which exceeds L(Sþoscil). As long as the voltage applied to

the system does not exceed V� 0.03, a single PSC is present

in the channel, intermittently emerging in its center (Figure

4(a)). In a range of voltages 0.03<V< 0.07 some time

T2PSC later, the central PSC begins to sway, leading to the

appearance of two PSC oscillating out of phase and symmet-

rical relative to the center (Fig. 4(b)).

After the voltage reaches V� 0.07, two symmetrical

PSC, located in the centers of the channel halves and oscil-

lating synchronously, initially form in the channel (Fig.

4(c)). With further increase in voltage a tendency to suppress

the order parameter modulus in the central part of the system

and the emergence of the third PSC are observed in the chan-

nel. Indeed, once the voltage exceeds V> 0.17, the third

PSC forms in the center of the channel, whose dimensions

vary in a periodic manner (Fig. 4(d)).

When increasing the voltage to V� 0.2 (Fig. 4(d)) it was

found that the “side” PSC (located in the halve centers of the

channel) begin to make periodic motions towards the central

PSC, thus forming a central region, where the order parame-

ter is strongly suppressed.

FIG. 3. The evolution of order parameter modulus in the channel with L¼ 25. The scale of the change of the order parameter modulus is shown on the right.

The dark areas correspond to PSC.
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At V� 0.23 the offsets of these two “side” PSC become

so great that at some point in time they begin to merge with

the central PSC, forming a normal domain (Figure 4(e)),

which increases in size with increasing voltage. Above

V� 0.36 this normal domain finally combines with the two

“side” PSC, filling almost the entire channel. The time, as in

the case of the channels with length L<L(S), is responsible

for the exit of the CVC to linear dependence.

It is important to note that the beginning of the curvature

of the CVC of the channel with L¼ 35 corresponds to the

transition from the regime with a single PSC to two symmet-

rically arranged PSC oscillating out of phase, which con-

firms the above hypothesis that the distortion of the CVC is

caused by the appearance of the second PSC. In addition,

note that each kink in the CVC corresponds to the voltage at

which changes occur in the dynamics of behavior of the

PSC, in particular, the transition to in-phase oscillations or

rocking of the “side” PSC.

As shown by numerical calculation, the above behavior

of the order parameter for L¼ 35 is qualitatively inherent to

longer channels. However, if the size of a long channel is

over L>L(chaos)� 46, then in a certain voltage range, falling

in the middle of the S-shaped region of the CVC, more than

three PSC form, and the more the length of the channel

exceeds the critical value of L(chaos), the more vibrational

modes the new PSC have.

To illustrate the “wealth” of behavior of the order pa-

rameter in these channels we show its evolution for a system

with L¼ 70.

According to the results of a numerical study, the forma-

tion of the first central PSC occurs in the region of very

small voltages V< 0.004, and the smaller the voltage, the

more time is required for the emergence of a single PSC

(Fig. 5(a)). In a narrow voltage range 0.004�V< 0.035 two

PSC located at the halve centers of the channel already oscil-

late in the system (at first out of phase, and then in-phase)

FIG. 4. The evolution of order parameter modulus in the channel with L¼ 35. The scale of the change of the order parameter modulus is shown on the right.

The dark areas correspond to PSC.
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with a frequency that increases with the voltage (Fig. 5(b)).

The formation of the third, central PSC occurs starting from

voltage V� 0.035 (Fig. 5(c)), and with increasing voltage

there is an increase in the oscillation frequency of the PSC

and their synchronization. The appearance of new (i.e., more

than three) PSC occurs when the voltage applied to the sys-

tem exceeds V� 0.155. Further increase in voltage is accom-

panied by an increase in the number of their vibrational

modes (Figs. 5(d) and 5(e)).

Such a pattern is observed up to V� 0.3–0.35, after

which, as the value of the voltage approaches V� 0.52, a

certain order is established in the vibrations of new PSC.

Now, their oscillations are almost periodic (Fig. 5(e)).

Above V> 0.52 the system returns to the regime of three

PSC, and the size of the central PSC compared to the same

in the voltage range 0.035�V< 0.155 is substantially

greater. Once the voltage is even greater V> 0.72, the cen-

tral PSC, which continues to grow, absorbs the "side" PSC,

forming a normal domain, which fills almost the entire

channel.

It will be proven below that in a certain range of vol-

tages, if the length of channels exceeds L>L(chaos), the sys-

tem exhibits chaotic behavior of the order parameter. That is

why to mark the transition value of the length, after which

the superconducting system becomes chaotic, the superscript

«chaos» was selected.

Indeed, we will now take a look at how the power spec-

trum of the time dependence of the current density, i.e., the

parameter, which is expressed through the space-time varia-

tion of the order parameter, evolves for the channel with

L¼ 70 at different voltages (Fig. 6).

Fig. 6 shows that for voltages in the range 0.155<V
< 0.52, the power spectrum of the function j(t) has no dis-

tinct single lines, which, in principle, suggests the existence

FIG. 5. The evolution of order parameter modulus in the channel with L¼ 70. The scale of the change of the order parameter modulus is shown on the right.

The dark areas correspond to PSC.
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of chaotic dynamics in the time dependence of the current

density and the order parameter in particular.

Of course, the demonstration of the multi-peak structure

of the power spectrum of current density in the voltage range

corresponding to the formation of more than three PSC is

insufficient to prove the chaotic behavior of the order param-

eter. Usually, as a criterion for the existence of chaos for a

time series, which here is a set of values of the function j(t),
the positivity of the leading Lyapunov exponent is used, for

the assessment of which it is necessary to define a local coef-

ficient of “divergence” of neighboring trajectories, and then

to average. The complexity of the procedure is in the deter-

mination of such a section of trajectories, where they could

still be considered “close”, as this section in particular is

used to determine the local coefficient of “divergence.” The

absence of a reliable criterion of “closeness” often leads to

inaccuracies in the calculation of the leading Lyapunov

exponent and makes this method of detecting chaos less

reliable.

Therefore, to verify the presence of chaotic behavior in

a given system other tests are often employed. For example,

for a quasi-one-dimensional superconducting filament in the

current-driven regime, the presence of chaos was determined

by means of the Poincar�e section.10

In this paper, for the detection of chaotic behavior we

decided to use a more reliable method—the method of calcu-

lating the correlation entropy K2. Because this feature sets

the lower limit of the Kolmogorov-Sinai entropy K,11 which,

in turn, is equal to the average sum of the positive Lyapunov

exponents (for the one-dimensional reflection, it is the Lya-

punov exponent),12 then positive correlation entropy K2> 0

is a sufficient condition for the existence of chaos.

Note that direct determination of the Kolmogorov-Sinai

entropy is also associated with considerable difficulties, so it

is convenient to use the estimate of the Kolmogorov-Sinai

FIG. 6. Evolution of the power spectrum of the function j(t) for a channel with L¼ 70 for voltages V: 0.05 (a), 0.2 (b), 0.3 (c), and 0.45 (d).

FIG. 7. Phase diagram of the resistive state of a superconducting channel in

the voltage-driven regime. Each region corresponds to one, two, three PSC,

or to the regime with the increasing in size normal domain. The red region

approximately limits the state with more than three PSC. In this region, the

dynamics of the order parameter are chaotic. The dashed line indicates a

conditional transition for short channels from the single PSC regime to the

state in which the normal domain is realized. The diagram is based on data

(indicated by dots), obtained by numerical solution of the GL equations.
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entropy shown below through correlation entropy, in particu-

lar, the definition of which is easier, although it is also asso-

ciated with a number of technical problems caused by the

necessity of numerical calculation of limits

K2 ¼ lim
e!0

lim
m!1

ln
Cðm; eÞ

Cðmþ 1; eÞ � K; (6)

where

Cðm; eÞ ¼ lim
n!1

1

n2

Xn

p;q¼1

h e�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

m

Xm�1

s¼0

½jpþs � jqþs�2
vuut

0
@

1
A

is the generalized correlation integral, h(z)—the Heaviside

function, e—the element of phase space, tp—sampling time,

the choice of which is important, since it determines how

many values need to be considered in the summation to cal-

culate the correlation integral with reasonable accuracy.

Usually, the sampling interval is selected in such a way that

each subsequent value jp¼ j(tp) adds the most information or

correlates with the previous one as little as possible.

We investigated the time series j(t) for a wide range of

lengths of superconducting channels and for voltage ranges

from zero to where the CVC becomes linear. We found that

in the range of voltages, for which more than three PSC arise

in the system, the correlation entropy is greater than zero.

This means that the specified voltage range can be clearly

interpreted as an area where the dependence of current density

on time, and hence the order parameter behave chaotically.

Based on the data we have represented the most complete

and detailed phase diagram of the resistive state of the super-

conducting channel in the voltage-driven regime (Fig. 7).

Conclusion

The dynamics of the order parameter for superconduct-

ing channels of different lengths have been visualized in this

paper. The evolution of this dynamic with increasing voltage

was investigated, and the critical values of the lengths were

determined, at which the transition occurs from the regime

of one PSC in the system to the regime of two, three, and so

on. The CVC for a wide range of channel lengths was calcu-

lated, and it was then found that the occurrence of the S-

shaped CVC and the imposed upon it “deformations” for

channels with a length greater than L(Sþoscil) are associated

with the emergence of more than one PSC and their subse-

quent evolutionary changes under the influence of applied

voltage. The correlation entropy of the time dependence of

the current density for channels of different lengths was cal-

culated, and it is shown that in a certain range of voltages in

systems that are longer than L(chaos), the order parameter

behaves chaotically over time, leading to non-periodic

behavior of the majority of PSC in the central channel.

The data collected allowed us to construct the most com-

plete phase diagram of the resistive state of a superconduct-

ing channel in the voltage-driven regime.

We note that the transport properties of quasi-one-

dimensional superconducting channels have recently again

attracted the attention of researchers. This is due to the fact

that the coherent quantum PSC, which is the subject of theo-

retical studies,13 has been experimentally demonstrated in

Ref. 14. Of course, the description of the quantum properties

of PSC should be carried out within the framework of the

microscopic theory,13 but, for a preliminary assessment of

parameters of the samples, simplified phenomenological

models can be useful.

As for experimental studies, to complete the picture,

along with the study of the CVC it would be interesting to

investigate the structures in which this quasi-one-dimensional

channel is shorted by a superconducting ring. To study such

PSC of interferometers, relatively simple radio frequency

technology can be used, described in detail in Ref. 15.

Indeed, in the study of stream Josephson qubits, carried

out using this technique, the transition between the classical

(localized states16) and the quantum (quantum superposition

of states17) modes has been detected experimentally.18 We

believe that similar results can be obtained for the PSC of

interferometers.
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