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Abstract Using the microscopic formalism of Eilenberger equations, a three-band
Ginzburg-Landau theory for the intraband dirty limit and clean interband scattering
case is derived. Within the framework of this three-band Ginzburg-Landau theory, ex-
pressions for the critical temperature Tc and the temperature dependence of the upper
critical field Hc2 are obtained. Based on some special cases of the matrix of interac-
tion constants, we demonstrate the influence of the sign of the interband interaction
on the critical temperature and the upper critical field as compared with a two-band
superconductor where it plays no role. We study also analytically and numerically
the effect of its magnitude.

Keywords Three-band superconductor · Ginzburg-Landau theory · Critical
temperature · Upper critical field

1 Introduction

Most of the real superconductors exhibit multiple Fermi surface sheets. Especially
in the context of recently discovered iron pnictide superconductors [1] it becomes
more and more clear that the frequently adopted two-band approach doesn’t allow
for quantitative fits for various physical properties and a study of more complex ef-
fective three-band [2, 3] or even higher multiple band cases is necessary. According
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to the recently introduced generalized density functional theory including also an su-
perconducting order parameter within the framework of the Bogolyubov—de Gennes
theory, molecular hydrogen at significantly high pressure, demonstrates a Fermi sur-
face with different and disconnected sheets, whose electrons are strongly coupled
with inter- and intramolecular phonon modes [4]. This combination gives rise to
anisotropic three-band superconductivity with a critical temperature up to room tem-
perature.

Other examples of superconductors, where a three-band approach should be used
for the description of superconducting properties, are doped fullerides. In Refs. [5, 6]
it was pointed out that an important factor determining the magnitudes of the crit-
ical temperature of the superconducting doped fullerenes is the extent to which the
Cooper pairs are delocalized over the three bands at the Fermi level.

In the context of exotic three-band superconductors also the first p-wave super-
conductor Sr2RuO4 is worth to be mentioned [7]. Hence, the study of three-band
superconductors is not an academic problem but a challenge to study in more detail
the mentioned above complex real systems. For that purpose the present approach
provides a reasonable starting point.

Finally, within a phenomenological approach (extended Ginzburg-Landau ap-
proach taking into account higher order terms) for three-band superconductors under
certain conditions novel stable topological defects like phase solitons and unusual
fractional vortices have been predicted [8–10]. Moreover, recently it was found that
multi-band superconductivity with weak interband coupling may exhibit a hidden
critical point [11]. To understand which of the real compounds will meet these spe-
cial conditions requires a comprehensive description within these phenomenological
models in order to detect the predicted and mentioned above peculiarities experimen-
tally.

In spite of the natural observations of three gaps, less is known for other thermo-
dynamic properties. In this context the interpretation of experimental upper critical
field data in terms of multiband models beyond single-band strong coupling theo-
ries [12] and two-band model approximations [13–23] is highly desirable. From a
theoretical point of view, the possibility of an unusual broken time-reversal symme-
try and accompanying frustration phenomena for the ground states of systems with
odd-numbered bands and repulsive interband couplings between them has been at-
tracted considerable attention [24–29].

Here, we derive Ginzburg-Landau (GL) equations for three-band superconduc-
tors from quasi-classical Usadel equations for the case of a dirty superconductor in
the sense of strong intraband scattering by non-magnetic impurities. However, at the
same we ignore for the sake of simplicity impurity induced elastic interband scat-
tering. Its effect is qualitatively well-known: a reduction of the critical temperature,
especially in the case of repulsive interband couplings and a corresponding change
of the symmetry of the ground state towards a standard so-called s++-symmetry pro-
vided the intraband couplings are strong enough to yield a finite Tc-value. In cases
when the different bands involve different orbitals that scattering can be weak and
ignored in the first approximation. Anyhow, in principle, this scattering can be also
incorporated into a Ginzburg-Landau functional as has been shown for the case of
two-band superconductivity for instance in Refs. [30, 31]. We postpone the consid-
eration of this interesting and important issue for the general three-band situation to



J Low Temp Phys (2013) 173:247–263 249

a future study. Finally, we note that our theory in the present form cannot be ap-
plied also to cases with nodal order parameters as in the d- or p-wave cases since
there nonmagnetic intraband impurities are pair-breaking like magnetic impurities in
conventional s++-superconductors.

The aim of the present paper is twofold: (i) to provide general equations to be
applied in forthcoming papers to real materials with the aim to find real candidates
among them for the experimental detection of the predicted exotic properties men-
tioned above and (ii) to consider some special cases which demonstrate clearly the
richness of higher order multiband models as compared to frequently used two-band
cases. Thus, it is not the aim of our paper to describe the new and subtle physics
related to unusual vortices and other exotic excitations mentioned above, the more
that there might be limitations for such problems to be attacked within a simple GL-
approach [8–10] as we use here. Instead our results for unusual shapes of the upper
critical field Hc2(T ) reported below might be helpful to select possible promising
candidates among the increasing number of real materials suitable for such searches.
(iii) To find preliminary parameter and temperature regions, although formally be-
yond the formal validity of a Ginzburg-Landau theory based description, where the
unusual behavior obtained here (e.g. low-temperature peculiarities of the upper criti-
cal field, see below) suggests to perform calculations also within more sophisticated
approaches to check or to refine our findings but with much higher numerical efforts.

2 Derivation of Ginzburg-Landau Equations

Generally, Usadel equations can be derived from the Eilenberger equations using the
same formalism as for a single-band (see for instance Refs. [32, 33]) or a two-band
superconductor (see A. Gurevich [16]). In the present three-band case, the Usadel
equations take the following form:

ωf1 − D1

2

(
g1Π

2f1 − f1Π
2g1

) = Δ1g1 + Γ12(g1f2 − g2f1) + Γ13(g1f3 − g3f1),

(1)

ωf2 − D2

2

(
g2Π

2f2 − f2Π
2g2

) = Δ2g2 + Γ21(g2f1 − g1f2) + Γ23(g2f3 − g3f2),

(2)

ωf3 − D3

2

(
g3Π

2f3 − f3Π
2g3

) = Δ3g3 + Γ31(g3f1 − g1f3) + Γ32(g3f2 − g2f3).

(3)

These Usadel Eqs. (1)–(3) have to be supplemented with three self-consistency
equations for the three order parameters Δi :

Δi = 2πT
∑

j

ωD∑

ω>0

λijfj . (4)

Here Π ≡ ∇ + 2πi
Φ0

A. The index i = 1–3 in Eq. (4) denotes the band number.
The Green’s functions gi and fi are connected by the normalization condition
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g2
i + |fi |2 = 1 and depend on the spatial coordinates and the Matsubara frequen-

cies ω = (2n+ 1)πT . Di are the intraband diffusivities due to nonmagnetic impurity
scattering, Ni are the partial density of states on the Fermi surface for the electrons of
the i-th band, λij are the dimensionless interaction constants (electron-phonon (bo-
son), electron-electron, etc. couplings depending on the pairing mechanism) and Γij

are the interband scattering rates, which take into account the effect of non-magnetic
impurity scattering.

Neglecting the interband (impurity induced) scattering terms and using the method
of successive approximations, we obtain the corresponding GL-equations, valid
strictly speaking, in the vicinity of Tc (see Appendix A):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
πD1
8Tc

Π2Δ1 − 7ζ(3)

8π2T 2
c
|Δ1|2Δ1 + Δ1 ln

( 2γ 〈ω0〉
πT

)]
N1 det(λ)

= Δ1(λ22λ33 − λ23λ32)N1 − Δ2(λ12λ33 − λ13λ32)N2
+Δ3(λ12λ23 − λ13λ22)N3,

[πD2
8Tc

Π2Δ2 − 7ζ(3)

8π2T 2
c
|Δ2|2Δ2 + Δ2 ln

( 2γ 〈ω0〉
πT

)]N2 det(λ)

= −Δ1(λ21λ33 − λ23λ31)N1 + Δ2(λ11λ33 − λ13λ31)N2
−Δ3(λ11λ23 − λ21λ13)N3,[

πD3
8Tc

Π2Δ3 − 7ζ(3)

8π2T 2
c
|Δ3|2Δ3 + Δ3 ln

( 2γ 〈ω0〉
πT

)]
N3 det(λ)

= Δ1(λ21λ32 − λ22λ31)N1 − Δ2(λ11λ32 − λ31λ12)N2
+Δ3(λ11λ22 − λ12λ21)N3.

(5)

Let’s introduce

α1 =
(

ln

(
2γ 〈ω0〉

πT

)
− λ22λ33 − λ23λ32

det(λ)

)
N1 = (l − a1)N1,

α2 =
(

ln

(
2γ 〈ω0〉

πT

)
− λ11λ33 − λ13λ31

det(λ)

)
N2 = (l − a2)N2, and

α3 =
(

ln

(
2γ 〈ω0〉

πT

)
− λ11λ22 − λ12λ21

det(λ)

)
N3 = (l − a3)N3,

where l = ln(
2γ 〈ω0〉

πT
), a1 = λ22λ33−λ23λ32

det(λ)
, a2 = λ11λ33−λ13λ31

det(λ)
, a3 = λ11λ22−λ12λ21

det(λ)
, and

det(λ) is the determinant of the matrix λij . Note that ai are the minors Mij of the
matrix of interaction constants lying on the main diagonal, i.e. ai = Mii/det(λ).

Furthermore, we denote the effective interband interaction coefficients as:

γ12 = (λ12λ33 − λ13λ32)N2

det(λ)
= γ̃12N2, γ13 = (λ13λ22 − λ12λ23)N3

det(λ)
= γ̃13N3,

γ21 = (λ21λ33 − λ23λ31)N1

det(λ)
= γ̃21N1, γ23 = (λ11λ23 − λ13λ21)N3

det(λ)
= γ̃23N3,

γ31 = (λ31λ22 − λ21λ32)N1

det(λ)
= γ̃31N1, and

γ32 = (λ11λ32 − λ31λ12)N2

det(λ)
= γ̃32N2, where γ̃ij = (−1)i+j+1Mji/det(λ).
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Then, the GL-equations using also Ki = πDiNi

8Tc
and βi = 7ζ(3)Ni

8π2T 2
c

, can be rewritten

finally as:

⎧
⎨

⎩

K1Π
2Δ1 − β1|Δ1|2Δ1 + α1Δ1 + γ12Δ2 + γ13Δ3 = 0,

K2Π
2Δ2 − β2|Δ2|2Δ2 + α2Δ2 + γ21Δ1 + γ23Δ3 = 0,

K3Π
2Δ3 − β3|Δ3|2Δ3 + α3Δ3 + γ31Δ1 + γ32Δ2 = 0.

(6)

3 The Critical Temperature of a Three-Band Superconductor

It can be shown (see Appendix B) that the linearized system of Eq. (6) for the deter-
mination of Tc is equivalent to the secular equation for the coupling matrix:

⎛

⎝
λ11 − Λ λ12 λ13

λ21 λ22 − Λ λ23
λ31 λ32 λ33 − Λ

⎞

⎠ = 0. (7)

The critical temperature is given by the general expression (in units with kB = 1 and
� = 1):

Tc = 2γ 〈ω0〉
π

exp

(
− 1

Λ(r)

)
, (8)

where Λ(r) is the largest positive real eigenvalue of the matrix λij and 〈ω0〉 is the
cut-off frequency in the spirit of a BCS-type approach. Within a more microscopical
based strong coupling (Eliashberg-theory) picture 〈ω0〉 represents an effective fre-
quency, which reflects the energy of the involved bosons which provide the glue for
the superconducting pairing. Thereby it’s assumed for the sake of simplicity that this
energy is roughly the same for all interaction channels.

Notice that in accordance with the Anderson-theorem, the intraband impurity scat-
terings measured by the diffusivities Di have been dropped out.

Here, our main interest is focused on the influence of the signs of the interband
couplings constant.

If the third band is absent or decoupled from the first two bands, Eq. (7) naturally
reduces to the well-known case for two-band superconductivity:

[Λ − λ33]
[
Λ2 − (λ11 + λ22)Λ + (λ11λ22 − λ12λ21)

] = 0, (9)

and the corresponding solution reads:

Λ
(2-band)
1,2 = λ11 + λ22 ± √

(λ11 − λ22)2 + 4λ12λ21

2
, λ3 = λ33. (10)

Let’s introduce λ+ = λ11 +λ22 +λ33, m = M11 +M22 +M33 and w = det(λ). Using
these notations we rewrite Eq. (7) as:

Λ3 − λ+Λ2 + mΛ − w = 0. (11)
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The roots of Eq. (11) are

Λ1 = λ+
3

+ 1

3
3

√
1

2

(
2λ3+ − 9λ+m + 27w

) + √
Q

+ 1

3
3

√
1

2

(
2λ3+ − 9λ+m + 27w

) − √
Q, (12)

Λ2 = λ+
3

− 1 − i
√

3

6
3

√
1

2

(
2λ3+ − 9λ+m + 27w

) + √
Q

− 1 + i
√

3

6
3

√
1

2

(
2λ3+ − 9λ+m + 27w

) − √
Q, (13)

Λ3 = λ+
3

− 1 + i
√

3

6
3

√
1

2

(
2λ3+ − 9λ+m + 27w

) + √
Q

− 1 − i
√

3

6
3

√
1

2

(
2λ3+ − 9λ+m + 27w

) − √
Q, (14)

where the discriminant Q given by the expression

Q = 4λ3+w − λ2+m2 − 18λ+mw + 27w2 + 4m3

108

has been used.
Depending on the sign of the discriminant Q, we have three distinct real roots, if

Q < 0, one real root and two complex conjugated roots, if Q > 0 and multiple real
roots, if Q = 0. Below we will study some simple special cases.

(i) First we readdress the case considered in Ref. [24] with equal intraband
and interband couplings., i.e. λ11 = λ22 = λ33 = k0 and λ12 = λ21 = λ13 = λ31 =
λ23 = λ32 = k1, where k0, k1 > 0. It means λ+ = 3k0, m = 3k2

0 − 3k2
1 and w =

k3
0 + 2k3

1 − 3k0k
2
1 . Substituting these redefined parameters into the expression for

the discriminant Q we obtain that Q = 0. Then, Eq. (11) has two real roots for all k0
and k1:

Λ1 = k0 + 2k1,

Λ2,3 = k0 − k1.
(15)

As mentioned above, we must choose the largest eigenvalue, i.e. Λ1 = k0 + 2k1
for k1 > 0. Compared with two-band superconductivity for which in our terms
Λ(2-band) = k0 + |k1| holds, the presence of the third band enhances the critical tem-
perature (according to Eqs. (8) and (10)).

In case of repulsive interband couplings one has k1 < 0, which for two-band super-
conductivity leads to the so-called s±-pairing symmetry frequently discussed in the
context of iron pnictides. In other words, here we are left with λ11 = λ22 = λ33 = k0
and λ12 = λ21 = λ13 = λ31 = λ23 = λ32 = −|k1|. Then, the largest eigenvalue is
Λ2,3 = k0 + |k1| and it’s the same as for the two-band superconductor, i.e. for re-
pulsive interband couplings the inclusion of a third band doesn’t affect Tc in contrast
to the case of attractive interband couplings.
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Fig. 1 The distribution of the
largest eigenvalues of the matrix
of the interaction constants of a
three-band superconductor with
interband couplings, only (see
the matrix (16)). The black lines
divide the figure on two regions
with corresponding eigenvalues.
The dark red and the dark blue
parts exhibit the highest and the
lowest Tc-value, respectively
(Color figure online)

This is a noteworthy qualitative feature of a three-band superconducting system
that distinguishes it from a two-band superconductor where the sign of the interband
coupling constant plays no role (see Eq. (9)). So we can conclude that at least for this
set of parameters the existence of the third band increases the critical temperature for
attractive interband couplings or leaves it unchanged for repulsive counter parts.

(ii) Let us consider another case of a non-trivial three-band superconductor which
was investigated in Ref. [26], where the coupling matrix with repulsive interband
interaction constants, only, has the form:

⎛

⎝
0 k1 k1
k1 0 k2
k1 k2 0

⎞

⎠ . (16)

From this matrix we have for the discriminant of Eq. (11) Q = − (k2
1−k2

2)2(8k2
1+k2

2)

27 ,
which is non-positive for all k1 and k2. Hence, Eq. (11) has three real solutions as in
the previous case:

Λ1 = −k2, (17)

Λ2 = 1

2
k2 − 1

2

√
8k2

1 + k2
2, (18)

Λ3 = 1

2
k2 + 1

2

√
8k2

1 + k2
2 . (19)

Next, we determine the regions of k1 and k2, where the first root yields the largest
eigenvalue, then the region for the second root and finally that for the third one,
respectively.

We plot the peculiar phase diagram (Fig. 1), which demonstrates the distribution of
eigenvalues versus the values of interband coefficients and found out that for arbitrary
real non-zero values of k1 and k2. Λ1 and Λ3 yield always the largest eigenvalue (in
the corresponding regions) for this matrix of the interaction constants.

The corresponding two-band superconductor has an eigenvalue of Λ(2-band) = |k1|
and the presence of the third band always leads to an enhancement of Tc. Thereby the
enhancement for attractive couplings exceeds that for repulsive ones for the same
modulo |k2|.
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(iii) The experimental data for some iron-based pnictide superconductors have
been described in the literature [2, 3] in terms of a reduced three-band model with the
matrix of interaction constants:

⎛

⎝
λ11 λ12 λ13
λ21 λ22 0
λ31 0 λ33

⎞

⎠ , (20)

where band 1 is a hole band centered around the Γ -point and band 3 is an electron
band centered at the corner of the Brillouin zone to be connected by the nesting
vector with band 1. Band 2 was attributed to another electron or hole band in the
case of the electron (Co) doped Ba-122 system [2] and the strongly hole (Na) doped
Ca-122 system [3], respectively. For all these cases the results obtained in the present
paper might be of potential interest for the description of magnetic properties of such
iron-based superconductors to be considered elsewhere.

For this matrix the secular Eq. (11) reads:

−λ31λ13(λ22 − Λ) + (λ33 − Λ)
[
(λ11 − Λ)(λ22 − Λ) − λ12λ21

] = 0. (21)

If we assume that the intraband interactions for the second and the third band coin-
cide, then Eq. (21) reduces to

(λ11 − Λ)(λ22 − Λ) − λ12λ21 − λ31λ13 = 0, (22)

with the solutions

Λ1,2 = λ11 + λ22

2
± 1

2

√
(λ11 − λ22)2 + 4λ12λ21 + 4λ13λ31, (23)

which remind the solutions for a two-band superconductor with renormalized (effec-
tive) interband coupling constants λ12λ21 → λ12λ21 + λ31λ13. Such non-universal
renormalization might explain the success of phenomenological two-band models.
Here, independent of the signs of the interband couplings, Tc is always enhanced by
the third band coupled to one band, only.

4 The Upper Critical Field of a Three-Band Superconductor

Now we turn to the investigation of the most important magnetic property, i.e. the
upper critical field Hc2. We assume that the vector potential A = (0,Hx,0), so the
magnetic field is directed along the z axis.

We will look for solutions of the GL equations (6) in the form Δi = Ci exp(− x2

2ξ2 ).
This yields a system of linearized equations for the determination of Hc2:

⎧
⎪⎨

⎪⎩

(
α1 − 2πK1Hc2

Φ0

)
C1 + γ12C2 + γ13C3 = 0,

γ21C1 + (
α2 − 2πK2Hc2

Φ0

)
C2 + γ23C3 = 0,

γ31C1 + γ32C2 + (
α3 − 2πK3Hc2

Φ0

)
C3 = 0.

(24)
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Introducing the dimensionless parameters

hc2 = 2πK1Hc2

Φ0
, d12 = D2

D1
, d13 = D3

D1
, n12 = N2

N1
,

n13 = N3

N1
, and

T

Tc

= t,

we obtain: Hc2:
⎧
⎨

⎩

(l − a1 − hc2)C1 + γ̃12n12C2 + γ̃13n13C3 = 0,

γ̃21C1 + (l − a2 − d12hc2)n12C2 + γ̃23n13C3 = 0,

γ̃31C1 + γ̃32n12C2 + (l − a3 − d13hc2)n13C3 = 0.

(25)

Here l = ln
( 2γ 〈ω0〉

πT

) ≈ 1 + 1
Λ(r) − t . From Eq. (25) we obtain the general equation for

hc2:

det

⎛

⎝
1 + 1

Λ(r) − t − a1 − hc2 γ̃12n12 γ̃13n13

γ̃21 (1 + 1
Λ(r) − t − a2 − d12hc2)n12 γ̃23n13

γ̃31 γ̃32n12 (1 + 1
Λ(r) − t − a3 − d13hc2)n13

⎞

⎠

= 0. (26)

Next, we derive for each case which was considered above, the T -dependence of the
upper critical field. To understand the influence of the third band on hc2(t), we con-
sider the same dependence for a two-band superconductor with the matrix

( λ11 λ12
λ21 λ22

)
.

Note that for a two-band superconductor hc2(t) doesn’t depend on the sign of the
interband interactions. It will be shown below that this degeneracy is lifted by the
presence of a third band, at least for the cases we considered in Sect. 3.

(i) For both cases we adopt n12 = n13 = 1 and a1 = a2 = a3 = a = k0+k1
k2

0+k0k1−2k2
1

,

γ̃12 = γ̃21 = γ̃13 = γ̃31 = γ̃23 = γ̃32 = γ̃ = k1
k2

0+k0k1−2k2
1

and ηa = 1 + 1
k0+2k1

for at-

tractive interband couplings and, ηr = 1 + 1
k0+|k1| for repulsive ones. Taking into

account these redefinitions we simplify Eq. (26):

A(h)h3
c2 + B(h)h2

c2 + C(h)hc2 + D(h) = 0, (27)

A(h) = −d12d13, (28)

B(h) = (d12 + d13 + d12d13)(η − a − t), (29)

C(h) = −(1 + d12 + d13)(η − a − γ̃ − t)(η − a + γ̃ − t), (30)

D(h) = (η − a + 2γ̃ − t)(η − a − γ̃ − t)2. (31)

Based on the numerical solution of Eq. (27) we plot the T -dependencies of the up-
per critical field for the cases (1) with very small and very large ratios of diffusion
coefficients for weak and strong interband coupling (see Fig. 2). We remind that for
a two-band superconductor there is no difference between attractive and repulsive
interband interactions.
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Fig. 2 T -dependencies of the upper critical field of a two-band (red lines) and three-band superconductor
(black lines) with vanishing and very large ratios of diffusive coefficients for attractive (a, c) and repulsive
(b, d) interaction. Solid lines are strong attractive interaction with k0 = 1 and k1 = 0.3 (panel a, c) and
strong repulsive interactions with k0 = 1 and k1 = −0.3 (panel b, d). Dotted line are weak attractive and
repulsive interaction with k0 = 1 and k1 = 0.003 (panel a, c) and k0 = 1 and k1 = −0.003 (panel b, d),
respectively (Color figure online)

Strong repulsive interaction leads to an increase of Hc2(0) for very small d12 and
d13 while weak (attractive or repulsive) interband interactions don’t change practi-
cally the magnitude of Hc2(0) and the linear shape of hc2(t) (see Fig. 2(a), (b)). Also
we note that for the case of very large d12 and d13 there are almost no differences in
the temperature evolution of hc2(t) between the repulsive and attractive interaction
(see Fig. 2(c), (d)). In addition, a strong interband coupling sufficiently decreases the
slope of hc2(t) near Tc for both values of d12 and d13 especially in the case of an
attractive interaction. For a weak interaction, regardless of the sign of the interband
coupling and the values of d12 and d13, we observe a linear dependence of hc2(t)

with a constant slope, which slightly decreases in the close vicinity of Tc.
In order to clarify possible reasons for the very small slope of hc2(t) in the vicinity

of Tc for two- and three-band superconductors with strong interband interactions, we
determine the temperature, at which the slope of hc2(t) starts to increase strongly. For
this purpose we use the minimum curvature of hc2(t) in the interval t ∈ [0,1], i.e. we

solve the equation d3hc2
dt3 = 0.

First we solve this equation for a two-band superconductor with the matrix of
intra- and interband coefficients

( k0 k1
k1 k0

)
. The temperature T

(2)∗ , where this sharp tran-
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sition takes place is defined by the expression:

T
(2)∗

Tc

= 1 − |k1|
k2

0 − k2
1

. (32)

It’s interesting to note that T
(2)∗ doesn’t depend on the ratio of the diffusive con-

stants for a two-band superconductor. From Eq. (32) we get for k0 = 1 and k1 = 0.3
(strong interband interaction) T

(2)∗ ≈ 0.67Tc in accordance with the data from Fig. 2
(solid red lines) and for k0 = 1 and k1 = 0.003 (weak interband interaction) we obtain
T

(2)∗ ≈ 0.997Tc (dotted red lines), very close to Tc.
For a three-band superconductor the temperature, where the hc2(t) dependence

shows a maximum value of the curvature, is determined by the expressions

T
(3+)∗
Tc

= 1 − k1(2d − 1)

(d − 1)(k2
0 + k0k1 − 2k2

1)
, (33)

for attractive interband interactions (k1 > 0) and

T
(3−)∗
Tc

= 1 − |k1|(d − 2)

(d − 1)(k2
0 + k0k1 − 2k2

1)
, (34)

for repulsive (k1 < 0) ones. Solving Eq. (27) to determine the third derivative,
we assumed d12 = d13 = d for the sake of simplicity. For instance, for d = 0.01,
k0 = 1 and k1 = 0.3 (strong attractive interaction) from the expression (33) we
get T

(3+)∗ ≈ 0.73Tc (solid black line in Fig. 2a) and for k0 = 1 and k1 = 0.003
(weak attractive interaction) T

(3+)∗ ≈ 0.997Tc (dotted black line on the Fig. 2b);
for d = 100 and the same sets of the attractive interaction constants we obtain
T

(3+)∗ ≈ 0.46Tc and T
(3+)∗ ≈ 0.994Tc in accordance with the data from Fig. 2c. If

d = 0.01, k0 = 1 and k1 = −0.3 (strong repulsive interaction) the expression (34)
would give a negative value of T

(3−)∗ , which means that there is no curvature in the
investigated temperature interval (solid black line in Fig. 2b), while for k0 = 1 and
k1 = −0.003 (weak repulsive interaction) we obtain T

(3−)∗ ≈ 0.994Tc (dotted black
line in Fig. 2b). Finally, for d = 100k0 = 1 and k1 = −0.3 we have T

(3−)∗ ≈ 0.43Tc

and for k0 = 1 and k1 = −0.003 with the same d the minimum curvature of hc2
appears at T

(3−)∗ ≈ 0.997Tc.
In Appendix C it is shown that for any set of the interband coupling constants

d2hc2(t)

dt2 ≥ 0, which means that for a three-band superconductor with the matrix of
interaction constants

⎛

⎝
k0 k1 k1
k1 k0 k1
k1 k1 k0

⎞

⎠ ,

there are no inflection points on the hc2(t)-curves (at least within the GL approach)
and the upper critical field shows always an upward curvature in sharp contrast with
a single-band superconductor.
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Fig. 3 T -dependencies of the upper critical field of a three-band superconductor without intraband pairing
interactions and with attractive and repulsive interband interaction (black and green lines, respectively) for
very large (panel a) and very small (panel b) ratios of diffusive coefficients (as shown in the legends).
The interaction constants are k1 = 0.3, k2 = 0.1 and k1 = −0.3, k2 = −0.1 as compared with two-band
superconductor (red lines) (Color figure online)

Fig. 4 The T -dependent ratios of upper critical fields for two-band and three-band superconductors in
the case of different dirtyness of bands (as shown in the legends). Solid curves: three-band superconductor
with attractive interband interactions. Dotted lines: the same as before with repulsive couplings

(ii) From the matrix of interaction coefficients we have a1 = − k2
2k2

1
, a2 = a3 =

− 1
2k2

, γ̃12 = γ̃21 = γ̃13 = γ̃31 = − 1
2k1

, γ̃23 = γ̃32 = − 1
2k2

. Here we applied numerical
solution of Eq. (26) and plotted hc2(t) for limiting cases of vanishing and very large
d12 and d13 (see Fig. 3).

Note that for such a matrix of the interaction coefficients slightly nonlinear de-
pendencies with a negative curvature of the hc2(t) curves do occur at variance with
the above considered cases. It’s important to note that the temperature dependences
of the upper critical field h

(3+)
c2 (t) and h

(3−)
c2 (t) for three-band superconductors with

attractive and repulsive interband interaction split asymmetrically from the h
(2)
c2 (t)

curve for the two-band superconductor (see Fig. 4).
Noteworthy, the ratio of hc2(t) for a two-band and three-band superconductor with

attractive interband coupling for very large d12 and d13 do absolutely coincide with
that for the inverse values (small) d12 and d13 for a three-band superconductor with
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Fig. 5 T -dependencies of the upper critical field of a pseudo-three-band and a two-band superconductor
(black and red lines, respectively) with very large (a) and vanishing (b) ratios of the diffusive coefficients
(see legends). The coupling constants are λ11 = 1, λ22 = λ33 = 0.5 and λ12 = λ21 = λ13 = λ31 = 0.3
(solid lines) and λ12 = λ21 = λ13 = λ31 = 0.003 (dotted lines). The curves for the case of repulsive
interband interactions fully coincide with the attractive counter part shown here (see text). Inset on the
subfigure (b) represents the temperature behavior of the upper critical field at low temperature (Color
figure online)

repulsive interband interactions. Analogously, the ratio of hc2(t) for a three-band and
two-band superconductor with repulsive interband couplings and very large d12 and
d13 absolutely coincide also with the same ratio for very small d12 and d13 of a three-
band superconductor with attractive interband coupling.

(iii) For the pseudo-three-band model we apply again the numerical solution of
Eq. (26) for strong and weak attractive/repulsive interactions in the limits of vanishing
and very large d12 and d13. In the numerical analysis we found out that there are no
differences between repulsive and attractive interaction for all values of λij and the
relationships for this model coincide with those for two-band superconductors on a
qualitative level.

Another noteworthy feature of the obtained hc2(t) solutions shown in Fig. 5(b)
is the strong increase of hc2(t) at low temperature for a three-band superconductor
with weak interband coupling and small d12 and d13 resulting in a doubling of Hc2(0)

compared with Hc2(0) of a two-band superconductor with the same parameters. It is
also interesting to note that a very slight upturn of hc2(t) is already visible for the
corresponding two-band superconductor at very low temperatures (see the inset in
Fig. 5(b)).

Furthermore, it is also seen that by a strong interband coupling Hc2(0) is enhanced
at low d12 and d13 but reduced at high d12 and d13. The latter effect is found to be
more pronounced for three-band than for two-band superconductors.

5 Conclusions

Based on a microscopic formalism we have derived the Ginzburg-Landau equations
for dirty intraband three-band superconductors. Within this approach we have exam-
ined the influence of a third band on the critical temperature and the temperature
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dependence of the upper critical field. We have considered some special cases of the
matrix of interaction constants and have demonstrated explicitly the richness of three-
band models as compared to frequently used two-band cases. In particularly, we have
shown that in contrast to two-band superconductors the character (sign) of the in-
terband interaction affects the value of the critical temperature and the temperature
dependences of the upper critical field. The results of our analysis can be helpful for
a characterization of the magnetic properties of some iron-based superconductors.

In future we plan to compare our results obtained within the three-band approach
and the recently extended GL two-band formalism by Shanenko et al. [34–36].
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Efremov, B. Holzapfel, Jeroen van den Brink, and A. Omelyanchouk are kindly acknowledged. Y.Y. thanks
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Appendix A: Derivation of Ginzburg-Landau Equations

For the anomalous Green functions fi we get:

fi = Di

2ω2
∇2Δ

i
− |Δi |2Δi

2ω3
+ Δi

ω
. (A.1)

Substituting fi into the self-consistency Eqs. (4) after the summation over the Mat-
subara frequencies we have finally

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δ1N1 = λ11N1
[

πD1
8Tc

Π2Δ1 − 7ζ(3)

8π2T 2
c
|Δ1|2Δ1 + lΔ1

]

+λ12N2
[

πD2
8Tc

Π2Δ2 − 7ζ(3)

8π2T 2
c
|Δ2|2Δ2 + lΔ2

]

+λ13N3
[

πD3
8Tc

Π2Δ3 − 7ζ(3)

8π2T 2
c
|Δ3|2Δ3 + lΔ3

]
,

Δ2N2 = λ21N1
[

πD1
8Tc

Π2Δ1 − 7ζ(3)

8π2T 2
c
|Δ1|2Δ1 + lΔ1

]

+λ22N2
[

πD2
8Tc

Π2Δ2 − 7ζ(3)

8π2T 2
c
|Δ2|2Δ2 + lΔ2

]

+λ23N3
[

πD3
8Tc

Π2Δ3 − 7ζ(3)

8π2T 2
c
|Δ3|2Δ3 + lΔ3

]
,

Δ3N3 = λ31N1
[

πD1
8Tc

Π2Δ1 − 7ζ(3)

8π2T 2
c
|Δ1|2Δ1 + lΔ1

]

+λ32N2
[

πD2
8Tc

Π2Δ2 − 7ζ(3)

8π2T 2
c
|Δ2|2Δ2 + lΔ2

]

+λ33N3
[

πD3
8Tc

Π2Δ3 − 7ζ(3)

8π2T 2
c
|Δ3|2Δ3 + lΔ3

]
.

(A.2)

In order to obtain the GL equations, we multiply the first equation by λ22λ33 −λ23λ32,
the second equation by −(λ12λ33 − λ13λ32) and the third equation by λ12λ23 −
λ13λ22. Then we sum these three expressions over Matsubara frequencies and finally
obtain the GL equations (6) for Δ1, Δ2, and Δ3.
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Appendix B: The Determination of the Critical Temperature

Tc can be found from the linearization of the GL system (6):
⎧
⎨

⎩

α1Δ1 + γ12Δ2 + γ13Δ3 = 0,

α2Δ2 + γ21Δ1 + γ23Δ3 = 0,

α3Δ3 + γ31Δ1 + γ32Δ2 = 0.

(B.1)

which leads to the cubic equation:

α1α2α3 − γ32γ23α1 − γ31γ13α2 − γ12γ21α3 + γ12γ31γ23 + γ13γ21γ32 = 0, (B.2)

or using the phenomenological constants γij introduced in the main paper:

(l − a1)(l − a2)(l − a3) − γ̃32γ̃23(l − a1) − γ̃31γ̃13(l − a2) − γ̃12γ̃21(l − a3)

+ γ̃12γ̃31γ̃23 + γ̃13γ̃21γ̃32 = 0. (B.3)

Equation (B.3) can be rewritten as:

l3 − (a1 + a2 + a3)l
2 + (a1a2 + a1a3 + a2a3 − γ̃12γ̃21 − γ̃31γ̃13 − γ̃32γ̃23)l

+ γ̃32γ̃23a1 + γ̃31γ̃13a2 + γ̃12γ̃21a3 + γ̃12γ̃31γ̃23 + γ̃13γ̃21γ̃32 = 0. (B.4)

Comparing Eq. (B.3) with the general form of a cubic equation and bearing in mind
the representation of the coefficients ai and γij , we get

l3 + Bl2 + Cl + D = 0, (B.5)

where

B ≡ − 1

det(λ)

∑

i

Mii,

C ≡ M11M22 + M11M33 + M22M33 − M12M21 − M13M31 − M23M32

det2(λ)
,

D ≡ M11M23M32 + M13M22M31 + M12M21M33 − M13M21M32 − M12M23M31 − M11M22M33

det3(λ)
.

Depending on the sign of the discriminant Z = 18BCD − 4B3D + B2C2 − 4C3 −
27D2 we have three distinct real roots, if Z > 0, one real root and two complex
conjugate roots, if Z < 0 and three real roots, if Z = 0.

If we expand the coefficients B , C and D in terms of the coupling constants λij and
simplify the obtained expressions, we reveal that Eq. (B.5) for determination of the
critical temperature is equivalent to the secular equation for the coupling matrix (7).

Appendix C: The Curvature of the Upper Critical Field

In the case (i) the upper critical field is determined by the equation:

A(h)h3
c2 + B(h)h2

c2 + C(h)hc2 + D(h) = 0, (C.1)
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where

A(h) = −d12d13, (C.2)

B(h) = (d12 + d13 + d12d13)(η − a − t), (C.3)

C(h) = −(1 + d12 + d13)(η − a − γ̃ − t)(η − a + γ̃ − t), (C.4)

D(h) = (η − a + 2γ̃ − t)(η − a − γ̃ − t)2. (C.5)

Let’s consider the simple case when d12 = d13 = d and a = k0+k1
k2

0+k0k1−2k2
1

, γ̃ =
k1

k2
0+k0k1−2k2

1
and ηa = 1 + 1

k0+2k1
(attractive interband interaction).

Then the second derivative yields

d2hc2

dt2
= 1

2

1

d(k2
0 + k0k1 − 2k2

1)

× 8d(d − 1)2k2
1(k2

0 + k0k1 − 2k2
1)2

((
t − (d−1)(k2

0+k0k1−2k2
1)−2dk1+k1−2

√
2dik1

(k2
0+k0k1−2k2

1)(d−1)

)(
t − (d−1)(k2

0+k0k1−2k2
1)−2dk1+k1+2

√
2dik1

(k2
0+k0k1−2k2

1)(d−1)

)) 3
2

(C.6)

After further simplifications we obtain

d2hc2

dt2
= 1

2

1

d(k2
0 + k0k1 − 2k2

1)

× 8d(d − 1)2k2
1(k2

0 + k0k1 − 2k2
1)5

(((k2
0 + k0k1 − 2k2

1)(d − 1)2t − (d − 1)(k2
0 + k0k1 − 2k2

1) − 2dk1 + k1)2 + 8dk2
1)

3
2

= 4(d − 1)2k2
1(k2

0 + k0k1 − 2k2
1)4

(((k2
0 + k0k1 − 2k2

1)(d − 1)t − (d − 1)(k2
0 + k0k1 − 2k2

1) − 2dk1 + k1)2 + 8dk2
1)

3
2

≥ 0.

(C.7)

Analogously it can be shown for repulsive interband interactions, that d2hc2
dt2 is non-

negative, too.
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34. A.A. Shanenko, M.V. Milošević, F.M. Peeters, A.V. Vagov, Phys. Rev. Lett. 106, 047005 (2011)
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