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Two basic physical models, a two-level system and a harmonic oscillator, are realized on the

mesoscopic scale as coupled qubit and resonator. The realistic system includes moreover the

electronics for controlling the distance between the qubit energy levels and their populations and to

read out the resonator’s state, as well as the unavoidable dissipative environment. Such rich system is

interesting both for the study of fundamental quantum phenomena on the mesoscopic scale and as a

promising system for future electronic devices. We present recent results for the driven

superconducting qubit–resonator system, where the resonator can be realized as an LC circuit or a

nanomechanical resonator. Most of the results can be described by the semiclassical theory, where a

qubit is treated as a quantum two-level system coupled to the classical driving field and the classical

resonator. Application of this theory allows to describe many phenomena for the single and two coupled

superconducting qubits, among which are the following: the equilibrium-state and weak-driving

spectroscopy, Sisyphus damping and amplification, Landau–Zener–Stückelberg interferometry, the

multiphoton transitions of both direct and ladder-type character, and creation of the inverse population

for lasing. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3701717]

I. INTRODUCTION

A quantum system, subjected to external driving, can ex-

perience resonant transitions between its energy levels. Con-

servation of total energy assumes absorption or emission of

several photons of the driving field. Such multiphoton proc-

esses play an important role in atomic and molecular systems

interacting with electromagnetic field.1 For example, the

multiphoton resonant spectroscopy is one of the methods to

probe the structure of atoms and molecules.2 This technique

has the advantage of observing highly excited states by using

relatively low frequencies. The concept of another applica-

tion, the multiphoton excitation microscopy, is based on the

multiphoton excitation of the fluorescent dyes molecules.3–5

This technique allows imaging biochemical objects with

high spatial resolution.

Recent development of fabrication and measurement

techniques enabled a study of the wide spectrum of quantum

phenomena in superconducting structures. During the past

years it has been clearly shown that specially designed mac-

roscopic superconducting circuits, which include Josephson

junctions, behave quantum mechanically similar to a quan-

tum particle in a potential well. Under certain conditions,

these objects demonstrate the coherent superposition

between their macroscopically distinct quantum states. It is

important to note that this is a pure quantum effect which

has no classical analogue and can be used for a number of

intrigued applications. If the circuit’s dynamics can be

described in the frame of the two-level approximation, such

a two-level quantum system is called a qubit. The advance in

the study of different phenomena in superconducting qubits

can be found in the reviews.6–10

In general, superconducting Josephson circuits can be

described as multilevel quantum systems. By analogy, such

systems are called artificial atoms, while coupled qubits sys-

tems behave as artificial molecules. An interesting problem

is how phenomena, known from atomic physics, will appear

for these artificial atoms and molecules. Note that the fol-

lowing features differ these mesoscopic-size quantum sys-

tems from their microscopic counterparts: a high level of

controllability by electronic means, coupling to the

macroscopic-size read-out devices, and unavoidable dissipa-

tive environment.

For characterization and controlling the states of super-

conducting qubits the one-photon spectroscopy was done by

using relatively weak driving.11–18 Matching of the ground

and higher states with the one-photon energy was exploited

to probe the upper levels of the Josephson-junction

circuits.19–26 With increasing driving power, the multiphoton

excitations were used to study the features of the artificial

atoms both for the two-level dynamics27–31 and when the

upper levels were involved.32–36 For strong driving, the

width of the resonance lines periodically tends to zero,

which can be described as the destructive Landau–Zener–

Stückelberg interference.37 Respective interferograms dis-

played double-periodical dependence of the upper-level

occupation probability on the energy bias and the driving

amplitude.38–43

Two and more coupled qubits can be treated as artificial

molecules. Being excited by a resonant microwave field,

they display one-photon transitions.44–51 Alternatively, at

smaller frequencies, the two-qubit systems can experience

multiphoton transitions.52–55
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In this article we review the observations of the multi-

photon transitions in single and coupled superconducting

qubits probed by a classical resonator, and also we present

the respective theory. Having the purpose of presenting and

describing specific results for the multiphoton transitions,

our consideration is limited to the Josephson-junction qubits.

We note however that similar phenomena can be studied in

different quantum objects, which can be described as two- or

multi-level systems, such as quantum wires and dots,56–60

nitrogen vacancy centers in diamond,61,62 ultracold

atoms,63–65 nanomechanical and optomechanical setups,66–68

electronic spin systems, two-dimensional electron gas, and

graphene.69–71

The paper is organized as follows. In Sec. II we use the

method of an asymptotic expansion for the qubit–resonator

system in order to obtain the resonator characteristics. This

formalism allows us to separate the dynamics of the rela-

tively slow resonator and fast qubit. Then, in Sec. III, we

consider the multiphoton dynamics of an isolated two-level

system. Later the formulas of those two sections will be

applied for the description of the experimentally observed

multiphoton excitations in single qubits (Sec. IV) and in

coupled qubits systems (Sec. V).

II. SEMICLASSICAL THEORY OF THE QUBIT–RESONATOR
SYSTEM

For characterization of a quantum system different tech-

niques can be applied. One of the possible solutions is to use

the so-called parametric transducer.72 A key element in any

parametric transducer is an optical or a radiofrequency auto

oscillator. A transducer, coupled to the quantum system of

interest, is constructed so, that quantum system dynamics

causes a change of the phase or/and the amplitude of its

oscillations. A phase (amplitude) shift provides information

about the dynamics of a quantum system. In particular, for

probing the qubit’s state, several types of oscillators have

been already used: an LC tank circuit,73,74 a nanomechanical

one,43,75 and a transmission line resonator.76,77 If the resona-

tor quantization energy �hxp is smaller than the thermal exci-

tation energy kBT, the resonator can be considered as a

classical oscillator. Then the qubit–resonator system can be

treated semiclassically: here a qubits quantum system is

driven by a classical field and probed by a classical oscilla-

tor. It is important to note that the similar approach is well

known in quantum optics — many phenomena in the atom-

light system can be described by making use of this semi-

classical model.2

In this work we present the semiclassical description of

some observed effects for the resonator–qubits systems. We

will not consider here the situation of coupling the qubits sys-

tems to a high-frequency resonator, which can be realized as a

transmission line resonator. The quantum properties of this

qubit–resonator system are not described by the semiclassical

model. For recent works in this field see, e.g., Refs. 78–82

and references therein and also Refs. 83–85, where the multi-

photon excitations were used to drive transitions between the

multiple energy levels of the qubit–resonator system in the

strong coupling regime.

Another note here should be made about the term

“multiphoton processes.” In the context of the semiclassical

approach, it relates to the energy of several photons which is

absorbed or emitted by the quantum system. In the broader

sense the term “multiphoton” can relate to other processes

employing the quantum nature of the electromagnetic field,

see Ref. 86 for a review of the nonclassical phenomena in

entangled multiphoton systems.

This section is devoted to the properties of the qubit–

resonator system. It will be shown that in the frame of the

semiclassical approach the influence of the qubit on the reso-

nator can be described by the “renormalization” of the oscilla-

tor constants. For instance for a mechanical resonator it can

be quantified by introducing the equivalent qubit’s-state-

dependent elasticity coefficient and damping factor. In

the case of inductive/capacitive coupling, the qubit’s impact

on the resonator can be described by introducing the qubit’s-

state-dependent effective inductance/capacitance, while the

losses can be described by the effective resistance. For

concreteness, we will consider two realistic systems: the flux

qubit inductively coupled to the tank circuit87 and the charge

qubit capacitively coupled to the nanomechanical resonator.88

A. Krylov–Bogolyubov formalism for qubit–resonator
system

First let us consider the mechanical resonator as a spring

with the elasticity k0, the damping factor k0 (which is

assumed to be small), and loaded with mass m, as shown in

Fig. 1(a). The oscillator has eigenfrequency x0 ¼
ffiffiffiffiffiffiffiffiffiffi
k0=m

p
and the quality factor Q0¼mx0/k0. Its state is influenced by

the qubit through the force �Fq and is driven by the probe pe-

riodical force �Fp sin xpt. Here the small parameter � is intro-

duced explicitly to emphasize the small qubit–resonator

coupling as well as the amplitude of the external harmonic

force �Fp, which enables us to make use of the asymptotic

expansion method. The external nonlinear force is assumed

FIG. 1. Qubit (quantum two-level system) coupled to a classical resonator.

(a) Schematic diagram of the model qubit–resonator system. The qubit is

represented by the two-level system with the two states, � and þ, and with

the energy difference DE. The resonator is demonstrated as the spring oscil-

lator with the elasticity coefficient k0. As described in the main text, influ-

ence of the qubit on the resonator can be described by introducing the

effective elasticity coefficient keff, which includes the qubit’s-state-depend-

ent (or, parametric, for brevity) elasticity coefficient kq. (b) The flux qubit

coupled via the mutual inductance M to the LC resonator. This can be

described by introducing effective qubit’s-state-dependent inductance Leff,

which includes the parametric inductance Lq in parallel to the tank’s induct-

ance L0. (c) The impact of the charge qubit on the nanomechanical resona-

tor’s state can be described by introducing the effective qubit’s-state-

dependent capacitance Ceff, which includes the parametric capacitance Cq in

parallel to the resonator’s capacitance C0.
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to depend on the variable x and its derivative only,

Fq¼Fq(x, dx/dt).
The displacement x is the solution of the motion

equation,

m
d2x

dt2
þ k0

dx

dt
þ k0x ¼ �Fq x;

dx

dt

� �
þ �Fq sin xpt: (1)

The oscillations in the nonlinear system described by Eq. (1)

can be reduced to oscillations in an equivalent linear system
by making use of the Krylov–Bogolyubov technique of as-

ymptotic expansion.89 Specifically, in the first-order approxi-

mation with respect to a qubit–resonator coupling parameter

and close to the principal resonance, xp�x0, the equivalent

linear system is characterized by the effective amplitude-

dependent elasticity coefficient keff(v) and the effective

damping factor keff(v) (see Chapter 7 in Ref. 89),

m
d2x

dt2
þ keffðvÞ

dx

dt
þ keffðvÞx ¼ �Fq sin xpt; (2)

x ¼ v cos ðxptþ dÞ; (3)

keffðvÞ ¼ k0 �
�
pv

ð2p

0

~Fqðv;wÞ cos w dw � k0 þ kq; (4)

keffðvÞ ¼ k0 þ
�

pvx0

ð2p

0

~Fqðv;wÞ sin w dw � k0 þ kq; (5)

where ~Fqðv; wÞ � Fqðx; dx=dtÞ ¼ Fqðv cos w; �xpv sin wÞ.
Note that in Eq. (2) both v and d are time-dependent values.

In Eqs. (4) and (5), we have introduced the parametric
elasticity coefficient kq and damping factor kq. In this context

the adjective quantum is sometimes used instead of

“parametric” to emphasize that it is the qubit-state-depend-

ent, i.e., it is defined by the quantum properties of the

coupled system. In what follows, by simply changing the

notations we will see that the parametric elasticity coefficient

gives either parametric inductance or parametric capaci-

tance, when coupling is inductive or capacitive, respectively,

while the parametric damping factor will give us the para-

metric resistance. Note that in Eqs. (4) and (5) the parametric

terms kq and kq are of the first order in the small parameter

of the problem �.

This linearization procedure allows to obtain important

information even without solving equations of motion. In

particular, the effective resonance frequency of the linear-

ized system xeff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
keff=m

p
gives the expression for the fre-

quency shift,

Dx ¼ xeff � x0 ¼
kq

2mx0

: (6)

For physical interpretations it is important to emphasize

that the application of the linearization technique resulted in

the substitution of the nonlinear force by the linear one,

F � �Fq x;
dx

dt

� �
! Fq ¼ �kqx� kq

dx

dt
: (7)

This latter “parametric” force describes the work done by

the quantum system over the resonator; the respective energy

transfer during one period is the following:

W ¼
ð2p=xp

0

Fq
dx

dt
dt ¼ �pxpv2kq: (8)

This, in dependence on the sign of the parametric damping

factor kq, describes periodical extraction or pumping of the

energy by the quantum system out of or into the resonator.

This is known as the Sisyphus damping and amplification.90

The solution of Eq. (2) in the first approximation in � is

given by the expression (3) with the amplitude v¼ v(t) and

the phase shift d¼ d(t) slowly varying in time. For these

values the asymptotic expansion method gives the following

system of equations (see Chapter 15 in Ref. 89):

dv

dt
¼ � keffðvÞ

2m
v� �Fp

mðx0 þ xpÞ
cos d; (9)

dd
dt
¼ xeffðvÞ � xp þ

�Fp

mvðx0 þ xpÞ
sin d: (10)

In the regime of stationary oscillations: dv/dt¼ dd/dt¼ 0,

and we obtain equations for the amplitude v and the phase

shift d, which can be written in the form

tan d ¼ kqðvÞ
x0keffðvÞ

; (11)

v ¼ � �Fq cos d
x0keffðvÞ

: (12)

In what follows it will be demonstrated that the phase shift d
and the amplitude v can be directly observed experimentally,

which gives the information about the quantum system

through the values of the parametric elasticity coefficient kq

and damping factor kq.

B. Inductive coupling with LCR resonator. Parametric
inductance

Now we consider as an illustrative case the system of a

flux qubit (with geometrical inductance L and average cur-

rent Iqb) coupled inductively to the LCR tank circuit, as

shown in Fig. 2. The approach, presented here, is the devel-

opment of the theory in Refs. 91–93. The quantum system is

considered to be weakly coupled via a mutual inductance

M to the classical tank circuit. The circuit consists of the in-

ductor L0, capacitor C0, and the resistor R0 connected, for

the specification, in parallel. The tank circuit is biased by the

current Ibias, and the voltage on it V can be measured.

The flux qubit can be described by the pseudospin

Hamiltonian,94

H ¼ �D
2

rx �
eðtÞ
2

rz; (13)

eðtÞ ¼ e0 þ A sin xt; (14)

where the diagonal term e is the energy bias, the off-

diagonal term D is the tunneling amplitude between the wells

(which corresponds to the definite directions of the current

in the loop) and rx,z are the Pauli matrices.

To obtain the equation for the tank circuit voltage, we

write down the system of equations for the current in the

three branches, namely, through the inductor (IL), the
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capacitor (IC), and the resistor (IR) (in particular, for systems

with superconducting elements see, e.g., Ref. 95),

Ibias ¼ IL þ IC þ IR; (15)

IC ¼ C0
_V ; IR ¼ V=R0; (16)

V ¼ L0
_IL � _Ue; (17)

where Ue is the flux through the inductor of the tank circuit.

This flux is the response of the quantum system to the flux,

induced in it by the current IL. It follows that the voltage V
in the current-biased tank circuit (Ibias¼ IA sin xpt) is

described by the following nonlinear equation,

C0

d2V

dt2
þ R�1

0

dV

dt
þ L�1

0 V ¼ �
_UeðV; _VÞ

L0

þ IAxp cos xpt:

(18)

The external flux Ue is assumed to be proportional to the

coupling parameter k2¼M2/LL0� 1 and to depend on time

via the voltage V and its time derivative _V . Equation (18) for

the voltage V coincides with the nonlinear equation (1) for

the variable x with obvious change of the notations.

Thus, the formalism presented in the Sec. II A is directly

applicable for the given problem. Specifically, in the first

order approximation with respect to the coupling parameter k2

and close to the principal resonance (xp � x0 � 1=
ffiffiffiffiffiffiffiffiffiffi
L0C0

p
),

the equivalent linear system is characterized by the effective

resistance Reff and inductance Leff as following:

C0

d2V

dt2
þ R�1

eff

dV

dt
þ L�1

eff V ¼ IAxp cos xpt; (19)

V ¼ v cos ðxptþ dÞ; (20)

1

ReffðvÞ
¼ 1

R0

þ 1

RqðvÞ
; (21)

1

LeffðvÞ
¼ 1

L0

þ 1

LqðvÞ
: (22)

Here Q0¼x0C0R0 is the quality factor of the unloaded tank

circuit (at Ue¼ 0) and the parametric (qubit’s-state depend-

ent) resistance Rq and inductance Lq are given by the

formulas

I

RqðvÞ
¼ � Q0

pvR0

ð2p

0

~_Ueðv;wÞ sin w dw; (23)

I

LqðvÞ
¼ 1

pvL0

ð2p

0

~_Ueðv;wÞ cos w dw; (24)

where
~_Ueðv;wÞ � _UeðV; _VÞ ¼ _Ueðv cos w;�vxp sin wÞ. The

resonant frequency xeff becomes amplitude-dependent and

is shifted by

Dx ¼ xeffðvÞ � x0 ¼
x0L0

2LqðvÞ
: (25)

The phase shift d and the amplitude v depend on the probing

frequency detuning n0: (x0�xp)/x0 and the qubit state

(via Lq and Rq). In the stationary regime they are given by

the solution of the system of equations,

tan d ¼ 2Q0

Reff

R0

n0 þ
L0 � Leff

2L0

� �
;

v ¼ IAReff cos d;

8<
: (26)

which can also be rewritten alternatively in terms of the

effective quality factor Qeff¼x0C0Reff(v) and effective fre-

quency shift neff¼ [xeff(v)�xp]/x0.

Thus, the observable values—the amplitude v and the

phase shift d—are defined by Eqs. (26), which depend on the

response of the measurable system, UeðV; _VÞ. As we dis-

cussed above, strictly speaking, the dynamics of the tank cir-

cuit has to be considered jointly with the dynamics of the

qubit (corresponding calculations see, e.g., in Ref. 96). How-

ever, in what follows we consider two illustrative limiting

cases, when the dynamics of the qubit can be treated sepa-

rately from the dynamics of the tank circuit. For simplifica-

tion we introduce phenomenologically the relaxation time T1

which is caused by the coupling to the environment and to

the tank as well.

1. Low-quality qubit (T1�T): Phase shift probes the
parametric inductance of qubit

First case which allows to detach the equations for the

qubit and resonator, is when all the qubit’s characteristic

times, and in particular the relaxation time T1, are smaller

than the tank’s period T¼ 2p/x0. Then the equations for the

tank voltage can be averaged over the period of fast oscilla-

tions. Then the time derivative of the flux Ue, induced by the

qubit in the tank circuit can be described as

_Ue ¼ M _Iqb ¼ M
@Iqb

@U
_U; (27)

where U¼UdcþMIL is the flux in the qubit’s loop, which

consists of the time-independent part Udc and of the flux,

induced by the current IL in the tank’s inductor. This can be

rewritten by introducing the effective inductance of the

qubit, L�1 ¼ @IqbðUÞ=@U, and the characteristic inductance

value ~L ¼ M2L�1. Then _Ue ¼ ~LðILÞ _IL and for the tank volt-

age we have V ¼ L0
_IL � _Ue ¼ ðL0 � ~LðILÞÞ _IL. In the first

approximation in k2 in the expression _Ue ¼ ~LðILÞ _IL we can

insert IL found from this equation

FIG. 2. Flux qubit coupled inductively to an LCR (tank) circuit. The flux

qubit is pierced by the magnetic flux Ux induced by the current in the con-

trolling coil and by the current in the tank’s inductor. The qubit is coupled

via the mutual inductance M to the tank circuit. The resonant tank circuit

consists of the inductor L0, capacitor C0, and resistor R0; the circuit is biased

with an RF current Ibias. The tank voltage V is the measurable value.

286 Low Temp. Phys. 38 (4), April 2012 Shevchenko, Omelyanchouk, and Il’ichev

 This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:  134.160.214.34

On: Fri, 22 Nov 2013 06:17:07



ILðtÞ �
1

L0

ð
Vdt � v

x0L0

sin ðxptþ dÞ: (28)

Then from Eqs. (23) and (24) we have R�1
q ¼ 0 (hence

Reff¼R0) and

L0

Lq
¼ k2L

p

ð2p

0

L�1ðv;wÞ cos2 w dw; (29)

where the qubit’s effective inductance is defined by the total

flux U, piercing the qubit’s loop

L�1ðv;wÞ � @IqbðUÞ
@U

����
U¼Udcþ M

L0x0
v sin w

: (30)

Then for the phase shift d and the voltage amplitude v we

obtain97

tan d � 2Q0n0 þ Q0

L0

Lq
; v � IAR0 cos d; (31)

which is the generalization of the result of Ref. 98 for the

case when the qubit can be in the superpositional state,

which is taken into account here by the expectation value of

the current Iqb. If the bias current amplitude IA is small

enough to be ignored in Eq. (30), then

L�1
q ¼ k2 L

L0

L�1; L�1 � @Iqb

@Udc

;

tan d � 2Q0n0 þ k2Q0LL�1; v � IAR0 cos d: (32)

At the resonant frequency n0¼ 0, the phase shift d is pro-

portional to the inverse inductance of the qubit L�1. Here it is

worthwhile to emphasize the expression for the parametric in-

ductance, which is expressed via the derivative of the expecta-

tion value of the current in the qubit’s loop Iqb ¼ �Iphrzi,

L�1
q ¼ �L�1

0 k2 LIp

U0

@hrzi
@fdc

: (33)

2. Higher-quality qubit (T1.T ): Parametric resistance due to
qubit’s lagging

Another illustrative situation, where the qubit’s dynamics

can be considered separately from the resonator’s one, is the

case when the qubit relaxation time T1 is of the same order as

the tank’s period T, namely, T1. T. The qubit’s response to

the resonator probing signal can be phenomenologically

described by introducing the lagging time t0 ¼ t�T1, so that

instead of Eq. (27) we have

_UeðtÞ ¼ ~LðILðt0ÞÞ _ILðt0Þ: (34)

In this way, the qubit’s response depends on the current in

the tank IL¼ IL(t0), which is given by

ILðt0Þ � p
v

x0L0

ðC sin ðxptþ dÞ � S cos ðxptþ dÞÞ (35)

with S¼ sin (xpT1) and C¼ cos (xpT1). For the small bias

current Eqs. (21), (22) and (34), (35) result in the following

expressions for the parametric inductance and resistance,

L0=Lq � Ck2LL�1; R0=Rq � �Sk2Q0LL�1: (36)

By analogy with Eq. (33), the latter phenomenological equa-

tion can be rewritten in the form explicitly demonstrating its

quantum character,

R�1
q ¼ S

k2Q0

R0

LIp

U0

@hrzi
@fdc

: (37)

By making use of Eq. (8), we obtain that the energy trans-

ferred from qubit into the resonator (or, out of the resonator,

for the opposite sign) during one period is

W ¼ �pxpv2R�1
q : (38)

We emphasize here that both the parametric inductance

and resistance in Eq. (36) are proportional to the qubit’s in-

ductance L. Then, one obtains equations for d and v, which

are simplified in the first approximation in k2Q0LL�1. In this

case for the probing frequency equal to the resonant one,

n0¼ 0, the resulting formulas are

tan d � Ck2Q0LL�1;
v

IAR0

� 1þ Sk2Q0LL�1: (39)

Note that both the phase shift and amplitude are related to

the qubit’s effective inductance L, which explains their simi-

lar behavior in experiment. These equations are useful for

the analysis of the experimental results, as it will be demon-

strated in Sec. IV.

C. Capacitive coupling with nanomechanical resonator.
Parametric capacitance

Consider now the charge qubit capacitively coupled to a

resonator. In this case, like in the one considered above, the

resonator can be the tank circuit. Alternatively, the resonator

can be a nanomechanical resonator (NR), as in Ref. 43. For

the illustrative purpose, we consider here this latter case.

The split-junction charge qubit (shown in red in Fig. 3)

consists of a small island between two Josephson junctions

(also called Cooper-pair box), whose state is controlled by the

magnetic flux U and the gate voltage VCPBþVMW. Here VCPB

is the dc voltage used to tune the energy levels of the qubit

and VMW¼Vl sin xt is the microwave signal used to change

the energy-level occupations. The driven Cooper-pair box is

FIG. 3. Charge qubit probed by a nanomechanical resonator. The charge

qubit is the Cooper-pair box, controlled by the magnetic flux U and the gate

voltage VCPBþVMW. The resonator probing the qubit’s state here is the NR,

which is characterized by the displacement at the midpoint x. The voltage-

biased NR is measured through its resonance frequency shift DxNR

(Ref. 88).
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described in the two-level approximation by the Hamiltonian

in the “charge” representation, Eqs. (13) and (14), where the

tunnel splitting D is equal to the Josephson energy controlled

by the magnetic flux U: D¼EJ0jcos(pU/U0)j. The charging

energy and the driving amplitude are the following

e0¼�8EC(ng� 1/2) and A¼�8ECnl, where the Coulomb

energy EC¼ e2/2CR is defined by the total capacitance

CR¼ 2CJþCCPBþCNR and the effective Josephson capaci-

tance is introduced 2CJ:CJ1þCJ2, the dimensionless driv-

ing amplitude nl¼CCPBVl/2e. The dimensionless

polarization charge ng¼ nNRþ nCPB is the fractional part of

the respective polarization charges in two capacitances:

nNR¼ {CNRVNR/2e} and nCPB¼ {CCPBVCPB/2e}.

The Cooper-pair box here is formed by four capacitors,

CJ1, CJ2, CCPB, and CNR. One of the plates of the latter ca-

pacitor is formed by the NR. The displacement of the NR x
is much smaller than the distance d between the plates. Then

the capacitance between the NR and the qubit reads

CNRðxÞ � CNR þ
@CNR

@x
x � CNR 1þ x

n

� �
: (40)

Here CNR stands for the capacitance value at the zero dis-

placement. The displacement of the NR influences the qubit

through the changes in the polarization charge; to make it

significant, a large dc voltage VNR is applied. On the other

side, the NR is biased by dc and rf voltages VGNR and VRF

through the capacitance CGNR.

One of the approaches to describe the system qubit–-

resonator is to introduce the parametric capacitance as follow-

ing (for more details see Ref. 88). Let us introduce the

effective capacitance, as it is demonstrated in Fig. 1(c), by dif-

ferentiating the charge QNR of the capacitor CNR:99–101

Ceff¼ @QNR/@VNR. Then, for the charge QNR¼ (VNR�VI)CNR

with the island’s voltage given by VI ¼ 2eðng � hniÞ=CR, we

obtain Ceff¼CgeomþCq, which consists of the parametric

capacitance

Cq ¼
C2

NR

CR

@hni
@ng

(41)

and the geometric capacitance Cgeom,

Cgeom ¼
CNRðCR � CNRÞ

CR
� 2CJCNR

2CJ þ CNR
� CNR; (42)

where the approximations are valid for CCPB�CJ, CNR and

CNR�CJ, respectively. Then one can consider the force

FNR, which acts on the NR from the left electrode, as the

electrostatic force from the effective capacitance (see Fig.

1(c)): FNR ¼ 1
2
@ðCeffV

2
NRÞ=@x. Then the term with the para-

metric capacitance, in which C2
NR � C2

NRð1þ x=nÞ2, results

in the following resonance frequency shift of the NR,

DxNR

xNR
¼ � bCR

C2
NR

Cq ¼ �b
@hni
@ng
¼ � b

2

@hrzi
@ng

;

b ¼ 1

mx2
NRCR

CNRVNR

n

� �2

:

(43)

We would like to note that the results obtained for the

system qubit–NR can be definitely extended to other sys-

tems. For example, the charge qubit can be coupled to a tank

circuit instead of a NR. In contrast to the inductive coupling,

considered in the Sec. II B, here we mean capacitive cou-

pling. Then it is straightforward to obtain the expression for

the measurable value, the tank circuit phase shift at reso-

nance frequency, n0¼ 0,88

tan d � Q0

Cq

C0

; (44)

cf. Eq. (31), where the phase shift probes the parametric in-

ductance. In Sec. IV it will be demonstrated how these

expressions can be used for the description of the realistic

system.

III. DYNAMICAL BEHAVIOR OF A TWO-LEVEL SYSTEM

Application of the semiclassical theory, presented in the

Sec. II B, to the description of the qubits–resonator system

makes possible to separate the slow dynamics of the resona-

tor from the fast dynamics of the qubits system. This allows

to consider first the dynamics of a qubit or a system of

qubits. Then, the resonator can monitor the state of the sys-

tem of qubits. In this section we will outline the description

of the multiphoton processes in a qubit, while the presenta-

tion of the specific results is the subject of the Secs. IV

and V. Initialization and manipulation of the qubit’s systems

require certain external signals. The principal features of the

driven system are captured for the harmonic driving,

Eq. (14), to which we limit our consideration. Different theo-

retical approaches can be used for a driven two-level system,

which is described in the books and reviews.102–107 The

choice of the formalism depends on the formulation of a

problem and on the parameters of the system, such as the

bias offset e0, driving amplitude A and frequency x. The

clear description can be given for the temporal dynamics in

the so-called adiabatic-impulse model, where the driven evo-

lution is considered adiabatic far from the avoided-level

crossings with the impulse-type Landau–Zener transitions,

when the energy distance is minimal.37,108,109 As the result

of this theory, the overall dynamics is described by the long-

time Rabi-type oscillations of the level occupation probabil-

ities with the step-like features due to the Landau–Zener

transitions.

Another technique, which can be more convenient for

the resonant driving, is the rotating wave approximation

(RWA).110–112 It consists in neglecting the rapidly oscillat-

ing (non-resonant) terms. The common approach for making

use of this approximation is taking small driving amplitudes,

A�DE. Then, the first-order consideration gives usual Rabi

oscillations of the level occupation probabilities close to the

position of the one-photon resonance, where x�DE/�h. In

the kth approximation, the resonant excitation appears close

to the parameters, where the energy of k photons matches

the qubit’s energy distance,1,2

k�hx ¼ DE: (45)

The time evolution is described by the multiphoton Rabi

oscillations,113 while the time-averaged upper-level occupa-

tion probability has the Lorentzian shape with the maximum

equal to 1/2 at the exact resonance defined by Eq. (45).
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With increasing the driving amplitude the resonances

shift114 from their positions given by the perturbation theory

and defined by the exact multiphoton relation (45). The first-

order correction to the position of the resonances is the so-

called Bloch–Siegert shift;1 it was demonstrated for the

superconducting qubits in Ref. 115. Thus, in general, the

position of the multiphoton resonances is amplitude-

dependent.

For the description of the strongly driven qubits, another

formulation of the RWA can be used. There, the minimal

energy level splitting D is the small parameter, namely, it is

assumed D�
ffiffiffiffiffiffiffi
Ax
p

.38,116,117 Then the k-photon excitation

appears close to the resonant parameters, given by the relation

e0¼ k�hx. There, the upper-level occupation probability Pup(t)
oscillates with the frequency XR ¼ ½ðe0 � k�hxÞ2 þ D2

k �
1=2

with the renormalized splitting Dk¼DJk(A/x); Jk is the Bessel

function. The time-averaged probability in the vicinity of the

kth resonance is given by

�Pup ¼
1

2

D2
k

ðe0 � k�hxÞ2 þ D2
k

: (46)

Being time averaged, the Rabi oscillations are described by

the Lorentzian dependence of the upper-level occupation on

the system’s parameters (the bias or the driving fre-

quency).118 Here arises an interesting and important problem

of distinction of the respective quantum oscillations from

their classical counterparts, which are the parametric

resonances. This was the subject of Refs. 119–121.

The most straightforward approach for the numerical

description of the dynamics of a two-level system is the solu-

tion of the Schrödinger equation.122 Then, the influence of

the dissipation can be taken into account phenomenologi-

cally by introducing energy and phase relaxation times, T1

and T2, and solving the respective Bloch equation.102

Instead, in the more general approach, the dissipative envi-

ronment can be described as an ensemble of oscillators,

which would result in the Bloch–Redfield equation for the

reduced density matrix.123,124 This latter formalism will be

demonstrated in Sec. V being applied to the specific case of

the two-qubit system.

Note that the multiphoton transitions can also be driven

by the bichromatic field, when the energy level distance DE
is matched by the energy of several photons of one (say,

microwave-) frequency plus several photons of another (say,

radio-) frequency. Such transitions were studied both in mi-

croscopic systems,2,125 and in the Josephson-junction

qubits.126–128 Also for the case of a flux qubit it was demon-

strated that the persistence of Rabi oscillations can be sup-

ported by either the low-frequency signal129 or induced by

noise.130

IV. EXCITATION OF A SUPERCONDUCTING QUBIT

Let us get back to the qubit–resonator systems. In Sec. III

we have discussed a modification of the qubit states (and

therefore its observables) under different types of excitations.

A natural next step is to analyze the corresponding (via

qubits) change of the resonator properties. In this section we

demonstrate this by presenting respective theoretical results

for different realizations of the qubit–resonator systems, mak-

ing use of the theory presented in the previous two sections.

The emphasis is made on demonstrating the consistency of

the theoretical results with the experimental ones.

A. Inductance of superconducting qubits

Consider a qubit biased with a dc flux Udc and driven

with an ac flux Uac sin xt, introducing fdc¼Udc/U0� 1/2 and

fac¼Uac/U0. In order to get the effective inductance L, as

defined by Eq. (30), we have to calculate the average current

in the qubit: Iqb ¼ hIi ¼ TrðqIÞ, where I¼ Iprz is the current

operator defined with the amplitude Ip and the Pauli matrix

rz. We calculate the reduced density matrix q with the Bloch

equations102,122 which include phenomenological relaxation

times, T1 and T2. It is convenient to express the density matrix

in the energy representation: q¼ (1/2)(s0þXsxþYsy

þZsz), where si are the Pauli matrices for this basis and s0

stands for the unity matrix. The value Z ¼ hŝzi is equal to the

difference between the populations of the ground and excited

states.

Let us find now the explicit expressions for the effective

qubit’s inductance for both the interferometer-type (split-

junction) charge qubit131,132 and flux qubit.94 For the

interferometer-type charge qubit, as considered in detail in

Ref. 30, the circulating current I0 is flux-dependent and Eqs.

(32) show that there are two terms contributing in the tank

circuit’s phase shift,

tan d � k2QL

U0

@I0

@fdc

Z þ I0

@Z

@fdc

� �
: (47)

In a classical system (where the current has a definite

direction) or in the ground state, the difference between the

energy level’s populations is constant, Z¼ const, and the

second term in Eq. (47) is zero. In contrast, for the quantum

system the interplay between these two terms is essential. At

this point it is worthwhile to notice that the second term can

dominate at resonant excitation, as it was the case in the

work30 (see also below). This means that the second

(“quantum”) term can significantly increase the sensitivity of

the impedance measurement technique, as compared to the

classical situation described by the first term in Eq. (47).

Consider now the case of a flux qubit. The current opera-

tor is defined in the flux basis,94 I¼ Iprz, where Ip stands for

the amplitude value of the persistent current, and hence the

value hrzi defines the difference between the probabilities of

the clockwise and counter-clockwise current directions in

the loop: hrzi ¼ P# � P" ¼ 2P# � 1. Then with Eqs. (32) we

obtain

tan d � k2Q
LIp

U0

2
@P#
@fdc

: (48)

In the energy representation we rewrite Eq. (48)

tan d � k2Q
LIp

U0

@

@fdc

D
DE

X � IpU0fdc

DE
Z

� �
: (49)

Here DE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 þ ðIpU0fdcÞ2

q
is the distance between the

stationary energy levels.

After the time-averaging over the driving period 2p/x,

this expression is written as following:
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tan d � �k2Q
LI2

p

D
D2

DE3
þ D

DE
fdc

@

@fdc

� �
Z: (50)

If a qubit is resonantly excited with the driving frequency x,

then the partial energy levels occupation probability Z has

the Lorentzian-shape dependence on fdc. It follows that the

derivative @Z/@fdc takes the shape of a hyperbolic-like struc-

ture, i.e., it changes from a peak to a dip in the point of the

resonance at DE(fdc)� k�hx.

B. Equilibrium-state measurement

For the description of the measurement of a flux qubit in
the thermal equilibrium one has to put X¼ 0 and

Z¼ tanh(DE/2kBT) in Eq. (49),

tan d � �k2Q
LI2

p

D
D3

DE3
þ D

DE
fdc

@

@fdc

� �
tanh

DE

2kBT

� �
: (51)

The ground-state measurement at kBT�DE is described with

X¼ 0 and Z¼ 1, which means replacing the hyperbolic tangent

in Eq. (51) with the unity. The formula (51) for the ground

state obtained by differentiating the probability P;, Eqs. (48)

and (49), coincides with the earlier obtained results (see Eqs.

(3) and (4) in Ref. 133). The resulting tank phase shift is

shown in Fig. 4 for the following parameters taken from Ref.

134: D/h¼ 1.3 GHz, IpU0/h¼ 930 GHz, x0/2p¼ 32.675 MHz,

LIp/U0¼ 0.0055, M/L¼ 0.725, Q0¼ 725, k¼ 0.02.

The accurate account of Z in Eq. (51) allows to describe

both the suppression and widening of the zero-bias dip (that is

at fdc¼ 0) as it was experimentally demonstrated in Ref. 134.

Indeed, the suppression of the zero-bias dip (at fdc¼ 0) is

described by the first term in Eq. (51). The widening is due to

the second term that comes from differentiating the hyperbolic

tangent; this term becomes relevant for temperatures larger

than D, and results in the exponential rise of the width for

T>T*¼D/kB, as demonstrated in the inset in Fig. 4.

C. Resonant transitions in the charge qubit

In Ref. 30 the resonant excitation of the interferometer-

type (split-junction) charge qubit was demonstrated experi-

mentally and described theoretically. In accordance with the

formula (47) one expects the resonances to appear differently

when either first or the second term is dominated. To demon-

strate this, in Fig. 5 we plot the dependence of the tank circuit

phase shift d both as the function of the dimensionless bias

voltage ng¼CgVg/2e and of the dimensionless magnetic flux

detuning fdc. For the former case the value fdc¼ 0 was taken,

where I0¼ 0. This results in disappearance of the second term

in Eq. (47), and the resonant excitation of the qubit is visual-

ized with the Lorentzian peaks in Figs. 5(a) and 5(b). When

the second term is dominant, the multiphoton transitions in

the qubit result in the peak-and-dip structures in the depend-

ence of the phase shift d on the flux, Figs. 5(c) and 5(d).

Theoretical fitting of the experimental graphs, as for

example shown in Fig. 5, allows for defining the qubit’s pa-

rameters, which is the multiphoton spectroscopy. The param-

eters found were the following: the Josephson energies for

the two junctions EJ1/h^40 GHz and EJ2/h^34.5 GHz, the

island’s Coulomb energy EC/h^5 GHz; the relaxation and

decoherence rates Crelax/(EC/h)¼ 0.03 and C//(EC/h)¼ 0.05,

which correspond to the following relaxation and decoher-

ence times: Trelax ¼ C�1
relax ’ 7 ns and T/ ¼ C�1

/ ’ 4 ns.

Figure 5 also demonstrates how the position of the

resonances depends on the driving frequency x and how the

multiphoton resonances appear with increasing the driving

power nac. Namely, first, in Figs. 5(a) and 5(b) the varied pa-

rameter is the frequency x/2p, which from the bottom to top

curves is 6.5, 7.1, 8.1, and 9.1 GHz; the driving power is the

same for all figures nac^0.3 and the flux was fixed at d¼p.

And, second, in Figs. 5(c) and 5(d) the curves correspond to

the varied parameter driving power: in experiment being

power of excitation (from bottom to top:�80, �60, �57 dB)

and in theory being amplitude nac (from bottom to top: 0.1,

0.2, 0.4); the frequency there was fixed, x/2p¼ 7 GHz.

D. One- and multiphoton transitions in the flux qubit

As we have seen in Sec. III, both the tank voltage phase

shift d and amplitude v can be used to monitor the resonant

excitation of a superconducting qubit. In Fig. 5 we demon-

strated this with the observation of the phase shift d of the

tank circuit coupled to the charge qubit. Now we consider

one- and multiphoton resonant excitations of a flux qubit,

FIG. 4. The equilibrium-state measurement. The dependence of the tank

phase shift on the flux detuning fdc¼Udc/U0� 1/2, when the qubit is ther-

mally excited. The curves are plotted for kBT/h¼ 0.2, 0.5, 0.7, 1, 2, 4, and

8 GHz. Left inset: corresponding experimental results (Ref. 134). Right

inset: temperature dependence of the width Dfdc of the dip at half-depth in

the phase shift, shown in the main panel (Ref. 87).

FIG. 5. Resonant excitation of the charge qubit probed by the tank circuit.

The phase shift d of the tank circuit coupled to the charge qubit, calculated

theoretically (left) and measured (right). Panels a and b show the dependence

on the gate voltage, while in c and d the dependence on the flux is demon-

strated. Black and gray arrows in c demonstrate the positions of 1 - and 2-

photon resonant transitions, and the arrows in d mark 1 -, 2 -, and 3-photon

excitations (Ref. 30).
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and the nonmonotonic dependence of the tank voltage ampli-

tude v will visualize the resonant transitions in the qubit.

Consider first the spectroscopic measurement, where the

flux qubit is driven with the low-amplitude ac flux. We

expect resonant excitation of the qubit when the driving fre-

quency matches the qubit’s energy difference, �hx¼DE(fdc).

In the experimental case the positions of these resonances at

a given driving frequency allow to determine the energy

structure of the measured qubit.41

In Figs. 6(b) and 6(c) we demonstrate the dependence of

the tank voltage amplitude v on the bias flux fdc at xp¼x0 for

different driving frequencies: x/2p¼ 3.5, 5, and 18 GHz,

which is explained by the energy diagram in Fig. 6(a). The

results of the related experiment, Ref. 41, are presented in Fig.

6(c). The parameters for calculations were taken as following:

the tunneling amplitude D/h¼ 3.5 GHz, the energy bias IpU0/

h¼ 700 GHz, the temperature kBT/h¼ 1.4 GHz, the relaxation

rate C1/h¼ 0.7 GHz, the dephasing rate C2/h¼ 0.7 GHz, and

the value which describes the coupling between the qubit and

the tank circuit k2Q0(LIp/U0)¼ 2.6 � 10�3. The curves were

plotted for the driving amplitudes fac � 103¼ 1, 1.5, and 3 from

bottom to top. The phenomenological lagging parameter was

taken S¼ 0.8. Figures 6 demonstrates the effect described in

Sec. III: for S= 0 both the phase shift d and the amplitude v
depend on the qubit’s inductance L�1, which results in the

alternation of peak and dip around the location of the

resonances.

In Figs. 7(a) and 7(b) we present the calculated phase shift

d and the amplitude v as functions of the probe current fre-

quency xp and the flux detuning fdc with the phenomenologi-

cal lagging parameter S for the strongly-driven flux qubit with

the parameters being the same as for Fig. 6 and with the values

for the driving amplitude and frequency: fac¼ 8�10�3 and x/

2p¼ 4.15 GHz. The top panel presents theoretical calculations,

which is in good agreement with the experimental observa-

tions, presented in the bottom panel, Figs. 7(c) and 7(d). The

dashed white line shows the tank resonance frequency xp/

2p¼x0/2p¼ 20.8 MHz. The positions of the multiphoton

resonances is explained by the arrows to the right in the energy

diagram, Fig. 6(a), at DE(fdc)¼ k�hx with k¼ 1, 2, 3, and 4.

Note that for the lagging parameter close to 1 (here

S¼ 0.8) the changes in the phase shift in Fig. 7(a) are small

at the resonance frequency (along the dotted line at xp¼x0)

while the voltage amplitude in Fig. 7(b) changes substan-

tially, see formulas (39). And this is actually demonstrated

in Figs. 6(b) and 6(c). Such changes of the tank effective re-

sistance or, equivalently, quality factor were studied in Ref.

90 for the fully quantum-mechanical model of the qubit–-

resonator system. We note that this can be alternatively

described with the semiclassical model, presented here. This

model gives results consistent with the experimental ones,

e.g., Figs. 6 and 7, which imply the energy transfer between

the qubit and resonator according to Eq. (38). More details

about this energy transfer, known as the Sisyphus damping
and amplification, can be found in Refs. 90 and 135.

Then, in Fig. 8 we present the dependence of the tank

voltage phase shift d on the microwave amplitude fac and the

dc flux bias fdc. This double quasi-periodical dependence (on

both the energy bias and the driving amplitude) is called the

FIG. 6. Low-amplitude one-photon resonant excitation of a flux qubit. (a)

Energy levels E6(fdc) matched by the driving at frequencies shown by the num-

bers and the arrows of the respective length. (b) and (c) Theoretically calculated

and experimentally measured amplitude of the tank voltage v versus flux detun-

ing fdc for different driving frequencies. (The upper curves are shifted verti-

cally.) The one-photon excitations at x/2p¼ 18, 5, and 3.5 GHz, demonstrated

in (b) and (c), are explained by the arrows to the left in the energy diagram (a),

while the arrows to the right of the length x/2p¼ 4.15 GHz explain the multi-

photon resonances in Fig. 7 (Refs. 41 and 87).

FIG. 7. Multiphoton excitations of a flux qubit. Theoretically calculated de-

pendence of the phase shift d (a) and the amplitude v (b) on the bias current

frequency xp and the flux detuning fdc. (c, d) Experimentally measured

phase shift d and the amplitude v (Ref. 87).
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Landau–Zener–Stückelberg (LZS) interferogram.37 The pa-

rameters were taken the same as for Fig. 6 and

x/2p¼ 4.15 GHz. The left panel in Fig. 8 presents the theo-

retical interferogram from Ref. 87 while the right panel is

the experimental one, Ref. 41. In Fig. 8 the multiphoton

resonances at discrete dc bias fdc (which controls the distance

between energy levels) are clearly visible. These resonances

appear when the energy of k photons matches the qubit’s

energy levels, k�hx�DE(fdc). The quasi-periodical character

of the dependence on the ac flux amplitude fac is known as

Stückelberg oscillations. The comparison of such graph to

the experimental analogue allows the relation of the micro-

wave power to the ac flux amplitude fac to be determined,

which is the calibration of the power. For this, either the esti-

mation of the period of Stückelberg oscillations, shown by

the black arrow, or adjusting the interference pattern slope,

shown by the white line, can be used.

E. Interferometry with nanoresonator

The formalism developed in Sec. III allows to describe

the system of the driven qubit coupled to the NR. As it was

demonstrated in Ref. 88, two different approaches, called

direct and inverse LZS interferometry, are of interest. In the

direct interferometry the qubit state is probed via the NR’s

frequency shift, as in Ref. 43, while in the inverse interfer-

ometry the impact of the NR’s state on the qubit’s Hamilto-

nian is studied.

The direct LZS interferometry was calculated in Ref. 88

as the resonator’s frequency shift DxNR versus the energy

bias ng and the driving amplitude nl. The agreement with the

experimental result of Ref. 43 demonstrated that the semi-

classical formalism is valid for a description of the measura-

ble quantities. In Ref. 88 it is also demonstrated how the

analogous interferogram can be calculated for the qubit-tank

circuit system in relation to the experiment of Ref. 39. Such

a description allows to correctly find the position of the reso-

nance peaks in the interferogram and to demonstrate the

sign-changing behavior of the parametric capacitance, which

relates to the measurable quantities.

For the formulation of the inverse problem, let us con-

sider the qubit’s bias e0 as a function of the NR’s dis-

placement x. For small x� n we have the expansion

(40), which results in the decomposition of the bias

e0ðxÞ � e�0ðngÞ þ de0ðxÞ, where e�0ðngÞ ¼ 8ECðng � 1=2Þ and

de0(x)¼ 8ECnNRx/n. The Hamiltonian of the qubit (13) with

the parameter-dependent bias e0(x) allows to consider the fol-

lowing problem. Let us assume that the qubit’s state (its wave

function, upper level occupation probability, Rabi frequency,

etc.) is known (i.e., this is measured by a device, which we do

not consider here for simplicity). Given the known qubit’s

state, the aim is to find the Hamiltonian’s parameters. Particu-

larly interesting is the parameter-dependent bias e0(x), which

can give the information about the position and amplitude of

the oscillations of the NR.

And now, in the general context, the “reverse engineer-

ing” problem in the spirit of Refs. 133 and 134 can be stud-

ied, where one is interested in finding the driving

Hamiltonian for a given (desired) final state. On the other

hand, in Ref. 88 the authors provide the basis for measuring

the NR’s position x by means of probing the qubit’s state,

while x¼ x(t) is considered a slow time-dependent function.

There, the emphasis was made on finding optimal driving

and controlled offset (e�0) parameters for the resolution of the

small bias component de0. It was assumed that the dynamics

of the parameter x is slow enough not to be considered dur-

ing either certain period of the qubit’s evolution or even dur-

ing the setting the stationary qubit’s state. The aim was to

find a sensitive probe for small de0. As the ultimate sensitiv-

ity, the essential changes of the qubit’s state for small

changes of de0 were required. The problem, formulated in

this way, was solved in Ref. 88 for different illustrative driv-

ing regimes: one-, double-, and multiple-passage regimes.

V. MULTI-QUBIT SYSTEMS

A. Equations for a system of coupled qubits

The effective Hamiltonian of the system of n coupled

flux qubits is

H ¼
X
i¼1

�Di

2
rðiÞx �

eiðtÞ
2

rðiÞz

� �
þ
X

i;j

Jij

2
rðiÞz rðjÞz ; (52)

where Jij is the coupling energy between qubits, and rðiÞx , rðiÞz

are the Pauli matrices in the basis fj#ij"ig of the current op-

erator in the ith qubit. The current operator is given by:

Ii ¼ �I
ðiÞ
p rðiÞz , with I

ðiÞ
p the absolute value of the persistent

current in the ith qubit; then the eigenstates of rz correspond

to the clockwise ðrzj#i ¼ �j#iÞ and counterclockwise ðrzj"i
¼ j"iÞ current in the ith qubit. The tunneling amplitudes Di

are assumed to be constants.

The biases ei ¼ 2I
ðiÞ
p U0f ðiÞðtÞ are controlled by the

dimensionless magnetic fluxes f(i)(t)¼Ui/U0� 1/2 through

ith qubit. These fluxes consist of three components,

FIG. 8. LZS interferometry for the flux qubit probed by the tank circuit. The calculated (a) and measured (b) dependence of the tank phase shift on the flux

detuning fdc and on the driving flux amplitude fac (Refs. 41 and 87).
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f ðiÞðtÞ ¼ fi þ
MiIL

U0

þ f acsin xt: (53)

Here fi is the adiabatically changing magnetic flux, experi-

mentally applied by the coil and additional dc lines. The sec-

ond term describes the flux induced by the current IL in the

tank coil, to which the ith qubit is coupled with the mutual in-

ductance Mi. And fac sin xt is the harmonic time-dependent

component driving the qubit, typically applied by an on-chip

microwave antenna. Equation (52) can be reduced to the two-

qubit system. This system is shown in Fig. 9. To describe the

two-qubit system, it is convenient to present the density ma-

trix in the following form:

q ¼ Rab

4
ra 	 ab ¼

R00

4
r0 	 r0 þ

Ra0

4
ra 	 r0

þ R0b

4
r0 	 rb þ

Rab

4
ra 	 rb; (54)

which was shown to be suitable for both the definition and

the calculation of the entanglement and other characteristics

in multi-qubit system, e.g., Refs. 138 and 139. Here a, b¼ 0,

x, y, z and a, b¼ x, y, z; the summation over twice repeating

indices is assumed. The two vectors Ra0 and R0b, so-called

coherence vectors or Bloch vectors, determine the properties

of the individual qubits, while the tensor Rab (the correlation

tensor) accounts for the correlations.

The important characteristic of the state of the coupled-

qubits system is its entanglement. There are different

approaches to the quantification of the entanglement.140 One

of the often used possibilities is the so-called concurrence.141

Another convenient for calculations approach is to introduce

the measure of entanglement as following:

E ¼ 1

3
TrðMTMÞ; Mab ¼ Rab � Ra0R0b: (55)

This entanglement measure fulfills certain requirements, in

particular, E ¼ 0 for any product state and E ¼ 1 for any

pure state with vanishing Bloch vectors Ra0 and R0b, corre-

sponding to maximum entangled states.

To describe dynamics of the density matrix we will first

disregard the relaxation processes. This can be described by

the Liouville equation, i�h _q ¼ ½H; q�, which is generally

speaking a complex equation. To deal with the Liouville

equation, it is convenient to use the parametrization of the

density matrix as described by Eq. (54). Due to the hermitic-

ity and normalization of the density matrix, Rab are real

numbers and R00¼ 1. Then the Liouville equation can be

written in the form of the system of 15 equations for Rab,54

_Ri0 ¼ �mniB
ð1Þ
m Rn0 þ �3niJRn3;

_R0j ¼ �mnjB
ð2Þ
m R0n þ �3njJR3n;

_Rij ¼ �mniB
ð1Þ
m Rnj þ �mnjB

ð2Þ
m Rin þ dj3�3niJRn0 þ di3�3njJR0n;

(56)

where B(i)¼ (�Di, 0, �ei) and �mni is the Levi–Civita

symbol.

Consider now the measurable value, which is the resona-

tor’s phase shift. As we discussed in Sec. II, it relates to the

effective inductance of qubits system. The formula obtained

for single qubits can be generalized for the two-qubit sys-

tem.97,142 Then for the case of low-quality qubits, when their

characteristic times are smaller than the tank’s period, at the

resonance frequency (n0¼ 0), expression for the phase shift

d in terms of the parametric inductances L
ðiÞ
q can be written

as following:

tan d � Q0

X
i¼1;2

L0

L
ðiÞ
q

;
L0

L
ðiÞ
q

¼ k2 Li

Li
;

L�1
i ¼

@

@Ua
þ @

@Ub

� �
I
ðiÞ
qb :

(57)

In what follows this expression will be used to calculate the

phase shift d, which maps the qubits’ state.

B. Weak-driving spectroscopy

In Sec. IV we have considered how the measurements of

the single qubits allow to determine their parameters: the

tunneling amplitudes D and the persistent currents Ip. It was

demonstrated41 that for defining the parameters of single and

multiple-qubits systems both the ground-state measurements

and excited-state spectroscopy can be used; the consistency

of the results of the two approaches was shown. Now we

will demonstrate this for the case of the system of two

coupled flux qubits described by the Hamiltonian (52). First,

the one-qubit parameters are defined. For this, suppose qubit

a is the one biased far from its degeneracy point in such a

way that ea is large in comparison with the other energy vari-

ables. Then, qubit a has a well defined ground state with

averaged spin variables hrðaÞz i ¼ 1 and hrðaÞx i ¼ 0 which can

be averaged out of the two-qubit Hamiltonian (52) reducing

it to: H2qbs;red ¼ �DbrðbÞx =2� ðeb � JÞrðbÞz =2: Apart from the

offset in the bias term due to the coupling, this is identical to

the single-qubit Hamiltonian. This offset can be easily com-

pensated and measured allowing the determination of the

coupling energy J.142 The qubit parameters, Db and I
ðbÞ
p , are

determined from either the ground-state measurement or the

excited-state spectroscopy, as it is described in Sec. IV.

Analogously, biasing qubit b far from the degeneracy point

the parameters for qubit a, Da and I
ðaÞ
p , can be determined.

Next, the coupling energy J was determined from the

offset of the qubit dips from the Ua/b¼ 0 lines, visible in the

pure ground-state measurements presented in Fig. 10(a).

FIG. 9. Scheme of two coupled qubits. The two flux qubits are coupled to

each other, to the dc and lw lines, as well as to an unavoidable dissipative

environment. The convenient model for description of the environment is

the bath of harmonic oscillators. The system of two coupled qubits is also

assumed to be coupled to the measuring resonant circuit (which is not shown

here), as in Fig. 2 (Ref. 54).
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Then the qubits were driven by magnetic fluxes Uac sin

xt with weak driving amplitudes and various driving frequen-

cies. There, we expect the position of the resonant transitions

from energy level Ej to an overlying level Ei determined by

the one-photon relation: DEij(Ua,Ub)� �hx, which appears

when the distance between the energy levels DEij¼Ei�Ej is

matched by the photon energy x. In Fig. 10(b) a frequency

in-between both qubit gaps (Db< �hx<Da) was used and

therefore only the transitions to the first excited state are visi-

ble. For higher frequencies, also the second and third excited

states become visible as can be seen in subfigures (c) and (d).

The theoretically calculated contour lines are superposed in

Figs. 10(b)–10(d) for three different frequencies for which the

condition, DEij(Ua,Ub)¼ �hx, is fulfilled; the energy levels

Ei¼Ei(Ua,Ub) were found by diagonalizing the Hamiltonian.

From the fitting procedure the following parameters were

found: the tunneling amplitudes Da(b)/h¼ 15.8(3.5) GHz, the

energy biases I
aðbÞ
p U0=h ¼ 375ð700Þ GHz [I

aðbÞ
p ¼ 120ð225Þ

nA], the inter-qubit coupling J/h¼ 3.8 GHz, and the value

which describes the coupling between the qubits and the tank

circuit Na(b)¼ 1.4(2.6)�10�3, where Ni ¼ k2
i Q0ðLiI

ðiÞ
p =U0Þ.

C. Direct and ladder-type multiphoton transitions

We now consider the multiphoton excitations of a sys-

tem of two strongly driven coupled flux qubits. We will

describe the effects of resonant excitation in the system in

terms of its energy structure, entanglement measure, and the

observable tank circuit phase shift. Then we will present

results for the multiphoton excitation of two types: direct

(when multiple-photon energy k�hx matches the energy level

difference DEij) and ladder-type (when the transition hap-

pens via an intermediate level). We will demonstrate how

this can be used for creating the inverse population in the

dissipative two-qubit system.

To describe the system of two qubits subjected to the

strong driving, the following values were calculated: the

energy levels (by diagonalizing the stationary Hamilto-

nian), the density matrix q (by solving the Liouville equa-

tion), the observable tank circuit phase shift d (which is

defined with the effective inductance of the qubits), and the

entanglement measure E by making use of Eqs. (55)–(57).

In this way graphs in Fig. 11 were calculated for the set of

parameters of the two-qubit system realized in Ref. 143:

Da/h¼ 1.2 GHz, Db/h¼ 0.9 GHz, I
ða;bÞ
p U0=h ¼ 990 GHz,

J/h¼ 0.84 GHz, Na,b¼ 1.8�10�3, and the driving frequency

was taken x/2p¼ 4 GHz; also the change of the dc flux

here was assumed symmetrical: fa¼ fb : fdc. For simplicity

here the relaxation processes were ignored (and we will pay

special attention to this below) and we consider the case

when the characteristic measurement time Tp¼ 2p/xp is

larger than the characteristic times of the dynamics of the

qubit. Then the tank circuit actually probes the incoherent

mixture of qubit’s states and the time-averaged values of

phase shift and entanglement should be considered.

When the energy of k photons (k�hx) matches the energy

difference between any two levels Ej and Ei, the resonant ex-

citation to the upper level is expected. Respectively, the

arrows of the length 4, 8, and 12 GHz show the places of

possible one-, two-, and three-photon excitations. The time-

averaged total probability of the currents in two qubits to

flow clockwise, Z¼R03þR30, is shown in Fig. 11(b) to ex-

perience resonant excitation. The resonances appear as peak-

and-dip structures in the phase shift dependence in Fig.

11(c). The time-averaged entanglement measure E in a reso-

nance increases due to the formation of the superposition of

states, Fig. 11(d); this provides a method to control and

probe the entanglement.

The experimental study of the strongly driven system of

two coupled flux qubits is presented in Fig. 12. The left panel

is the measured voltage amplitude of the tank as a function

of qubit biases fa and fb. The driving frequencies from top to

bottom were x/2p¼ 17.6, 7.0, and 4.1 GHz. The multipho-

ton resonances at DEij(fa, fb)� k�hx are visualized with the

ridge-trough lines. We note that the resonance ridge-trough

lines are disturbed with increasing or decreasing the signal;

some of these changes are shown with white circles. This

means changing the effective Josephson inductance in these

points. The experimental results can be clearly understood

by comparing them with the energy contour lines, calculated

by diagonalizing Hamiltonian (52) and presented in the right

panel of the figure. There, numbers k� j next to the lines

mean that the line relates to the energy difference Ej�Ek.

Consider now these multiphoton features in more details.

In Fig. 12(b) the black and red lines show the positions of the

expected resonant excitations from the ground state to the first

and to the second excited states, respectively; the blue and or-

ange lines are the contour lines for the possible excitations

FIG. 10. Spectroscopy of the two-qubit system. The measured dependence

of the phase shift d on the flux biases fa and fb: ground-state measurement

(without microwave excitation) (a); with weak microwave excitation at the

driving frequencies x/2p¼ 14.1 (b), 17.6 (c), and 20.7 (d) GHz (Ref. 41).

FIG. 11. Characterizing strongly-driven two-qubit system. Calculated and

plotted as functions of the bias fdc are four energy levels (a), total probability

of the currents in two qubits to flow clockwise Z (b), the tank circuit voltage

phase shift d (c), the entanglement measure e (d) (Ref. 87).
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from the first and from the second excited state to the third

excited state. In Fig. 13(a) the energy levels are plotted at the

fixed value of the bias flux through qubit a, fa, as a function of

the bias flux through qubit b, fb. The arrows are introduced to

match the energy levels with the driving frequencies x/

2p¼ 17.6 GHz and 7.0 GHz. The black and red arrows in

both Figs. 12(a) and 12(b) show the position of one-photon

transitions to the first and the second excited levels. The dou-

ble green and blue arrows in Fig. 12 show the position of the

two-photon processes, where the excitation by the first photon

creates the population of the first and the second levels and

the second photon excites the system to the upper level. These

two-photon excitations happen via intermediate levels; com-

pare the position of these expected resonances in Fig. 12(b)

shown with the blue circle and green square. The orange trian-

gle in Fig. 12(b) points the ladder-type three-photon excita-

tion, with one photon to the first excited level and then with

two photons to the upper level.

Analogous considerations allow to see in Figs. 12(c)

and 12(d) one- and two-photon resonant excitations to the

first excited level for the driving frequency x/2p¼ 7 GHz.

The two-photon resonant excitation is direct and happen

without any intermediate level. The higher level excitations

via the first excited state appear due to three- and four-

photon excitations, as shown with orange triangles and pink

asterisk. In Fig. 12(e) the response of the two-qubit system

at x/2p¼ 4.1 GHz exhibits 1- to 4-photon excitations to the

first excited state, which can be recognized by comparing

with the black lines in Fig. 12(f). Numerous upper level

excitations via the first excited level appear as the changes

of the signal along these lines.

The transition rates can be quantified by the absolute

value of the matrix element of the perturbation between the

states jEmi and jEni,

Tnm ¼ jhEnjv̂jEmij2; v̂ ¼ 1

I
ðbÞ
p

ðIðaÞp r̂ðaÞz þ IðbÞp r̂ðbÞz Þ; (58)

divided by the factor I
ðbÞ
p U0fac. The transition matrix ele-

ments in Fig. 13(b) explain the ladder-type excitations in

Fig. 12(b). Two points, marked by the vertical dashed green

and blue lines in Fig. 13 describe, respectively, two interest-

ing situations. To the right (see along the blue line) the tran-

sition element between the higher two levels (E2 and E3) is

smaller than between the lower two levels (E0 and E2),

T02
 T23
 T03. In contrast, to the left (see along the green

line) the transition element between the higher two levels

(E1 and E3) is larger than between the lower two levels (E0

and E1), T13
T01
 T03. In both cases the probability of

the direct excitation to the highest level is very small, which

means that the transitions are induced due to the ladder-type

mechanism.

The ladder-type transitions and the population inversion

can be also illustrated by calculating the energy level occu-

pation probabilities by solving the Bloch–Redfield equation

(see the Sec. V D for more details); Fig. 13(c) was calculated

with the driving frequency x/2p¼ 17.6 GHz and amplitude

fac¼ 4�10�3. First, the ladder-type resonant excitation takes

place to the left, where the upper level occupation probabil-

ity P3 is of the same order as the intermediate level occupa-

tion probability P1. Second, the inverse population appears

to the right, where the upper level occupation probability P1

is larger than the ground state probability P0, see also Refs.

20, 42, 144, and 145 for the study of the population inversion

FIG. 13. Ladder-type transitions in the two-qubit system. Calculated as

functions of the flux fb (at fa¼ 0.015): the energy levels (a), transition matrix

elements Tnm (b), the occupation probabilities Pi (c) (Ref. 53).

FIG. 12. Imaging the multiphoton transitions in the two-qubit system. The

resonant excitation of the qubits system is visualized by the tank voltage am-

plitude (a, c, e). The position of the resonant transitions can be understood

by comparing with the respective energy contour lines (b, d, f) (Ref. 53).
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in the systems with single Josephson-junction qubits. These

two phenomena are similar to those which exhibit atoms in

the laser field.146 Furthermore, the expectation value of the

current in ith qubit is calculated with the reduced density

matrix: I
ðiÞ
qb ¼ �I

ðiÞ
p SpðqrðiÞz Þ. The results of the calculations

are also presented as the color insets in Fig. 12(f) for the fol-

lowing parameters: the strength of dissipation a¼ 0.1 and

the driving amplitude fac¼ 8�10�3.

D. Lasing in the two-qubit system

Consider now the influence of the dissipation on the dy-

namics of a two-qubit system. For this the Bloch–Redfield

formalism will be used. The strong dependence of the inter-

level relaxation rates on the controlling magnetic fluxes will

be demonstrated for the realistic system. This allows to pro-

pose several mechanisms for lasing in this four-level

system.54

For identification of the level structure and understand-

ing different transition rates it is instructive to start from

considering the case of two noninteracting qubits, that is

J¼ 0. In this simplified situation, the energy levels of the

system of two qubits consist of the pair-wise summation of

single-qubit levels,

E6
i ¼ 6

DEi

2
¼ 6

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eð0Þ2i þ D2

i

q
: (59)

In Fig. 14(a) the energy levels are plotted as a function of

the partial bias in the second qubit fb, fixing the bias in the

first qubit fa. Then the single-qubit energy levels appear as

the horizontal lines for the qubit a and as the parabolas for

the qubit b. For the lasing the hierarchy of the relaxation

times is required. For this it is natural to assume that the

relaxation in the first qubit is much faster than in the second

qubit. This allows to consider three- and four-level lasing

schemes in Figs. 14(b) and 14(c).

As a next step, the interaction of the qubits, J= 0, should

be considered. To describe the relaxation in this system, the

operators are converted to the basis of eigenstates of the

unperturbed Hamiltonian. In this representation H00 ¼ S�1H0S
is the diagonal matrix; the unitary matrix S consists of eigen-

vectors of the unperturbed Hamiltonian; the excitation opera-

tor V(t) is converted as following:

V0ðtÞ ¼ S�1VðtÞS ¼
X
i¼1;2

� 1

2
~eiðtÞsðiÞz ; sðiÞz ¼ S�1rðiÞz S:

(60)

The dissipative environment can be described as the thermo-

stat, for which the convenient model is the bath of harmonic

oscillators, see Fig. 9. Within the Bloch–Redfield formalism,

the Liouville equation for the quantum system interacting

with the bath is transformed into the master equation for the

reduced system’s density matrix q(t). Then the master equa-

tion for the density matrix of our driven system can be writ-

ten in the energy representation as following:102,103

_qij ¼ �ixijqij �
i

�h
½V0; q�ij þ dij

X
n 6¼j

qmnWjn � cijqij; (61)

where xij¼ (Ei�Ej)/�h, and the relaxation rates

Wmn¼ 2 Re Cnmmn and

cmn ¼
X

r

ðCmrrm þ C�nrmÞ � Cnnmm � C�mmnn (62)

are defined by the relaxation tensor Clmnk, which is given by

the Fermi Golden rule. As it was shown in Refs. 147–149,

the noise from the electromagnetic circuitry can be

described in terms of the impedance Z(x) from a bath of

LC oscillators, described by the Hamiltonian of interaction

HI ¼ 1
2
ðrðaÞz þ rðbÞz ÞX in terms of the collective bath coordi-

nate X ¼
P

k ckUk. Here Uk stands for the magnetic flux in

the kth oscillator, which is coupled with the strength ck to

the qubits. It follows that the relaxation tensor Clmnk is

defined by the noise correlation function S(x),

Clmnk ¼
Klmnk

�h2
SðxnkÞ; SðxÞ ¼

ð1
0

dt e�ixthXðtÞXð0Þi;

Klmnkðsð1Þz þ sð2Þz Þlmðsð1Þz þ sð2Þz Þnk: (63)

The correlator S(x) was calculated in Refs. 147 and 148

within the spin-boson model and it was shown that the rele-

vant real part of the relaxation tensor,

ReClmnk ¼
1

8�h
KlmnkJðxnkÞ coth

�hxnk

2kBT
� 1

� �
(64)

is defined by the environmental Ohmic spectral density

J(x)¼ a�hx and is cut off at some large value xc, where a is

a parameter that describes the strength of the dissipative

effects.

From the above equations the expression for the relaxa-

tion rates from level jni to level jmi follows:

FIG. 14. Energy level structure with J¼ 0. (a) One-qubit and two-qubit

energy levels as functions of the magnetic flux fb at fixed flux fa. The arrows

show the fastest relaxation, which is assumed to relate to the qubit a. (b) and

(c) Schemes for three- and four-level lasing at fb¼ fbL and fb¼ fbR. The driv-

ing magnetic flux pumps (P) the upper level; fast relaxation (R) creates the

population inversion; the two operating levels can be used for lasing (L)

(Ref. 54).
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Wmn ¼
1

4�h
KnmmnJðxmnÞ coth

�hxmn

2T
� 1

� �
: (65)

In Ref. 54 these relaxation rates were calculated as functions

of the partial flux biases fa and fb. It was demonstrated that

the fastest transitions are those between the energy levels

corresponding to changing the state of the first qubit and

leaving the same state of the second qubit. Such a difference

in the relaxation rates creates a sort of artificial selection
rules for the transitions, similar to the selection rules studied,

e.g., in Refs. 150–152. To describe the hierarchy of the

relaxation rates, consider them in the simplified case, ignor-

ing the interaction between the qubits; then the single-qubit

relaxation rates follow from Eqs. (62) and (65),102,153

T�1
1 ¼ W01 þW10 ¼

aD2

2�hDE
coth

DE

2T
; (66)

T�1
2 ¼ Re c01 ¼

1

2
T�1

1 þ
aT

�h

eð0Þ2

DE2
: (67)

In particular, in the vicinity of the point fb ¼ f �b in Fig.

14(a), where DE(a)¼DE(b), we obtain T
ðaÞ
1 =T

ðbÞ
1 ’ ðDb=DaÞ2

is chosen, consequently the first qubit relaxes If D1
D2

much faster.

After the parametrization of the density matrix, qij ¼ xij

þ iyij, the system’s dynamics is described by the equations,54

_xii ¼ �
1

�h
½V0; y�ii þ

X
r 6¼i

Wirxrr �Wiixii; i ¼ 1; 2; 3;

_xij ¼ xijyij �
1

�h
½V0; y�ij � cijxij; i > j;

_yij ¼ �xijyij þ
1

�h
½V0; y�ij � cijxij; i > j;

yii ¼ 0; x00 ¼ 1� ðx11 þ x22 þ x33Þ;
xji ¼ xij; yji ¼ �yij:

(68)

When discussing Fig. 14 we pointed out that in the system of

two coupled qubits there are two ways to realize lasing, mak-

ing use of the three or four levels to create the population

inversion between the operating levels. In Ref. 54 the lasing

in the two-qubit system was demonstrated by solving

numerically the Bloch-type equations (68). Besides demon-

strating the population inversion between the operating lev-

els, an additional signal with the frequency matching the

distance between the operating levels was applied, to stimu-

late the transition from the upper operating level to the lower

one. So, the driving was considered to be, first, the mono-

chromatic signal f(t)¼ fac sin xt to pump the system to the

upper level and to demonstrate the population inversion.

Then another signal stimulating transitions between the

operating laser levels is applied f(t)¼ fac sin xtþ fL sin xLt
with �hxL¼E2�E1. Solving the system of equations (68),

one obtains the population of ith level of our two-qubit sys-

tem, Pi¼ xii. The results of the calculations are presented in

Fig. 15, where the temporal dynamics of the level popula-

tions is given for two situations.

As shown in the inset schemes in Fig. 15, the fastest (domi-

nating) relaxation transitions are j3i ! j2i and j1i ! j0i. The

system is excited by either one- or two-photon transitions, with

�hx¼E3�E0 in Fig. 15(a) or with 2�hx¼E3�E0 in Fig.

15(b). This creates the population inversion between the levels

j2i and j1i. Note that analogous competition of the driving and

relaxation can lead to the population inversion in other multile-

vel systems.124,154 Fast relaxation, j1i ! j0i, helps creating

the population inversion between the laser levels j2i and j1i,
which is the advantage of the four-level scheme.155 Then the

transition j2i ! j1i is stimulated by another signal with a fre-

quency matching the laser operating levels (�hxL¼E2�E1).

Figure 15 was calculated for the following realistic parame-

ters:53 Da/h¼ 15.8 GHz, Db/h¼ 3.5 GHz, I
ðaÞ
p U0=h ¼ 375

GHz, I
ðbÞ
p U0=h ¼ 700 GHz, J/h¼ 3.8 GHz, kBT/h¼ 1 GHz;

and also xL/2p¼ 9 GHz, fL¼ fac¼ 5�10�3 with the driving fre-

quency x/2p¼ 47.4 GHz for (a) and x/2p¼ 23.7 GHz for (b).

For the realization of such lasing schemes, the system of

two qubits should be put in a quantum resonator, e.g., by

coupling to a transmission line resonator, as in Ref. 141.

Then the stimulated transition between the operating states,

demonstrated in Fig. 15, will result in transmitting the

energy from the qubits to the resonator as photons.

VI. CONCLUSIONS

Here we presented the experimental and theoretical

results of the study of driven single and coupled supercon-

ducting qubits. The multiphoton transitions in both charge

and flux qubits were studied in details. Those processes are

important for both demonstrating the fundamental quantum

phenomena in mesoscopic systems and for developing con-

trolling mechanisms for perspective devices.

The system of qubits, coupled to the controlling elec-

tronics and measuring resonator, can be described within the

semiclassical approach. After presenting this formalism in

application to probing the qubit systems, we have shown

some specific experimental results, which were accompanied

by the calculated counterparts. The agreement between them

FIG. 15. Two-qubit lasing and stimulated transition. The time-dependent

occupation probabilities are plotted for one- (a) and two-photon (b) driving.

The driving and fast relaxation create the inverse population between the

levels j2i and j1i; then the stimulating signal fL cos xLt is turned on Ref. 54.

Low Temp. Phys. 38 (4), April 2012 Shevchenko, Omelyanchouk, and Il’ichev 297

 This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:  134.160.214.34

On: Fri, 22 Nov 2013 06:17:07



shows contemporary possibility to demonstrate and describe

quantum phenomena in mesoscopic systems.
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39M. Sillanpää, T. Lehtinen, A. Paila, Yu. Makhlin, and P. Hakonen, Phys.

Rev. Lett. 96, 187002 (2006).
40C. M. Wilson, T. Duty, F. Persson, M. Sandberg, G. Johansson, and P.

Delsing, Phys. Rev. Lett. 98, 257003 (2007).
41A. Izmalkov, S. H. W. van der Ploeg, S. N. Shevchenko, M. Grajcar, E.

Il’ichev, U. Hübner, A. N. Omelyanchouk, and H.-G. Meyer, Phys. Rev.

Lett. 101, 017003 (2008).
42G. Sun, X. Wen, Y. Wang, S. Cong, J. Chen, L. Kang, W. Xu, Y. Yu, S.

Han, and P. Wu, Appl. Phys. Lett. 94, 102502 (2009).
43M. D. LaHaye, J. Suh, P. M. Echternach, K. C. Schwab, and M. L.

Roukes, Nature (London) 459, 960 (2009).
44Yu. A. Pashkin, T. Yamamoto, O. Astafiev, Y. Nakamura, D. V. Averin,

and J. S. Tsai, Nature (London) 421, 823 (2003).
45A. J. Berkley, H. Xu, R. C. Ramos, M. A. Gubrud, F. W. Strauch, P. R.

Johnson, J. R. Anderson, A. J. Dragt, C. J. Lobb, and F. C. Wellstood, Sci-

ence 300, 1548 (2003).
46J. B. Majer, F. G. Paauw, A. C. J. ter Haar, C. J. P. M. Harmans, and J. E.

Mooij, Phys. Rev. Lett. 94, 090501 (2005).
47M. Steffen, M. Ansmann, R. C. Bialczak, N. Katz, E. Lucero, R. McDer-

mott, M. Neeley, E. M. Weig, A. N. Cleland, and J. M. Martinis, Science

313, 423 (2006).
48J. H. Plantenberg, P. C. de Groot, C. J. P. M. Harmans, and J. E. Mooij,

Nature (London) 447, 836 (2007).
49A. Fay, E. Hoskinson, F. Lecocq, L. P. Levy, F. W. J. Hekking, W. Gui-

chard, and O. Buisson, Phys. Rev. Lett. 100, 187003 (2008).
50L. DiCarlo, J. M. Chow, J. M. Gambetta, L. S. Bishop, B. R. Johnson, D.

I. Schuster, J. Majer, A. Blais, L. Frunzio, S. M. Girvin, and R. J. Schoel-

kopf, Nature (London) 460, 240 (2009).
51F. Altomare, J. I. Park, K. Cicak, M. A. Sillanpää, M. S. Allman, D. Li, A.
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