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ABSTRACT

We have investigated the thermal transport of long, narrow beams of silicon nitride at

cryogenic temperatures. Simultaneously employing a superconducting Transition Edge

Sensor (TES) as both a heater and a sensor, we measured the thermal conductance of 1 µm

thick silicon nitride beams of different lateral dimensions. Based upon these measurements,

we calculate the thermal parameters of the beams. We utilize a boundary limited phonon

scattering model and assume the phonon mean free path to be temperature independent in the

calculation. In the temperature range from 300 mK to 530 mK, the following results are

obtained for 20 (30) µm beams: the volume heat capacity is 0.083T+0.509T
3
J/m

3
-K, the

width dependent phonon mean free path is 9.60 (11.05) µm, and the width dependent thermal

conductivity is 5.60�10
-3
T+3.41�10

-2
T
3
(6.50�10

-3
T+3.93�10

-2
T
3
) W/m-K.
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INTRODUCTION

Low stress silicon nitride (Si3N4) film has been widely used as mechanical supports

and weak thermal links in cryogenic detectors. Despite many years of investigation and

use, the thermal properties of Si3N4 film at low temperature are still not well understood,



particularly for long narrow Si3N4 beams. We investigate the thermal parameters of the

beams using the width dependence of the thermal conductance with thermal test structures.

At low temperature, heat transport in an insulator is a process of phonon propagation.

A consensus of Si3N4 heat transport is that there are a phonon radiative ballistic limit (also

called surface specular reflection limit) and a Casimir [1] limit (also called diffusive limit)

in a thin continuous Si3N4 film. Radiative ballistic phonon transport [2-4] appears at

extremely low temperature, for example, below100 mK. The diffusive limit appears at

much higher temperature [3]. Typically, the heat power flow as a function of bath

temperature for a defined thermal structure is fitted as a power law [5, 6] of

P = K Tn �Tb
n( ) , (1)

where T is the temperature at the hot end, Tb is the bath temperature, coefficient K and

index n characterize thermal properties and phonon transport mechanism. The thermal

conductance is the first derivative of the power over temperature,

G = nKTn�1. (2)

The index n approaches 4 both at the specular reflection limit and at the diffusive reflection

limit. For long Si3N4 beams, the index n in the power law fit is generally less than 4 at a

few hundred milli-Kelvin temperature, and the coefficient K could be significantly

different at various cross section over beam length ratios. In principle, both K and n can be

useful for extracting phonon mean free path. But due to the variation of index n for

different tested devices, there is no specific model for the mean free path calculation so far.

In the phonon gas kinetic theory, thermal conductivity is written as

� = 1 3( )ClS , (3)

where C is Si3N4 volume heat capacity, l is phonon mean free path, and S=6986 m/s is the

average Si3N4 sound speed calculated with its longitudinal and transverse sound speeds [7].

The phonon mean free path could be much less than the beam length for a long narrow

Si3N4 beam. Therefore, a phonon diffusive formulation can be used approximately for a

description of heat transport. The heat flux is defined by Fourier’s law,

q = ��dT dx , (4)

where dT/dx is the temperature gradient along the Si3N4 beam. q is constant at a steady

state. Therefore, the heat power from the hot end to the bath is

P = A L( ) qdx
0

L

� = � AS 3L( ) CldT
T

Tb
� , (5)

where L is the beam length, A is its cross section. For a defined thermal structure at a

steady state, its thermal conductance can be written in the form of

G = AClS 3L . (6)

For Si3N4, we may use amorphous material heat capacity [8, 9] in the form of

C = aT + bT 3 , (7)



where a and b are determined with experimental data. The departure from the Debye heat

capacity in equation (7) is characteristic of the glass state of amorphous materials, such as

Si3N4. Assuming a temperature independent phonon mean free path for simplicity, then the

heat power from the hot end to the bath is

P = B1 2( ) T 2 �Tb
2( ) + B2 4( ) T 4 �Tb

4( ) , (8)

where

B1 = AS 3L( )al , (9)

and

B2 = AS 3L( )bl . (10)

Therefore, the power flow along the defined beams depends on temperatures at the hot end

and of the bath, cross section over length ratio, phonon mean free path, volume heat

capacity, and sound speed. To investigate thermal conductance of Si3N4, we made thermal

test structures with TES. We use the TES as both a heater and a temperature sensor to

measure the TES Joule power and bath temperature relation. We fit the data in two ways.

One is a power law fit using equation (1). Another is a temperature independent mean free

path fit using equation (8). We calculate the temperature independent phonon mean free

path, volume heat capacity, and thermal conductivity of Si3N4 beams with the measured

thermal conductance data and a boundary limited phonon scattering model.

THERMAL TEST STRUCTURES AND EXPERIMENTAL DATA

The thermal test structure, which consists of an island in the middle and four

supporting Si3N4 beams, is shown in FIGURE 1. The device fabrication is performed at the

FIGURE 1. Thermal test structure. The middle island is 140 µm by 70 µm. The width of Si3N4 supporting

beams is 30 µm (device #1 and #2) or 20 µm (device #3 and #4), and the length is 1380 µm. On the right side

of the middle island is a Mo/Au bi-layer TES with two 10 µm wide and 120 nm thick Nb leads. On the left

side of the middle island is a space for a heater in later experiments.



Materials Science Division and at the Center for Nanoscale Materials, Argonne National

Laboratory. We purchased from Rogue Valley Microelectronics commercial 250 µm thick

silicon wafers with 1 µm thick LPCVD low stress silicon nitride film on the surface. First

we fabricate the Mo/Au bi-layer TES with DC magnetron sputtering and standard photon

lithography techniques. The Mo is 28 nm thick, and Au is 30 nm thick. The 10 µm wide

and 120 nm thick Nb leads are patterned with lift-off. The silicon behind the membrane in

a 3 mm � 3 mm area is removed by KOH etching. The long Si3N4 beams are patterned with

Reactive Ion Etch (RIE).

The TES, which has a normal resistance about 0.85 �, is used as both a heater and a

temperature sensor for the thermal conductance measurement of the Si3N4 beams. At

various bath temperatures, we measure TES I-V curves. The TES is operated with a shunt

resistor of 8.6 m�. The TES current is read out with a NIST SQUID array. The TES

resistance and Joule heating power as a function of its bias voltage are calculated with the

I-V curves. When the TES is biased in its transition from normal into superconducting, its

Joule heating power is nearly constant due to the strong negative electro-thermal feedback

effect. For our measurements, we chose a TES resistance at 60% of its normal resistance in

the transition range for computing Joule heating power. We call the fit temperature value at

this resistance as Tc in TABLE 1. During the course of the measurement, the TES bias

voltage changes slowly to keep the detector isothermal. Under this condition, the

thermalized Si3N4 middle island in FIGURE 1 has approximately the same temperature as

the TES. Therefore, at a thermal quasi-steady state, thermal power along the supporting

Si3N4 beams, which equals TES Joule heating power, is a function of bath temperature.

For the thermal conductance measurement data, we fit the TES Joule heating power

as a function of bath temperature both with a power law using equation (1) and with a

temperature independent mean free path formulation using equation (8). For device #3, the

mean free path fit is the solid line in FIGURE 2. The parameters Tc, B1 and B2 using

equation (8) are found using a least square fit to minimize the fit error. The power law fit is

the dashed line, which is shifted up by 10 pW for clarity. The parameters Tc, K and n using

equation (1) are found using a least square fit. There is no observed Tc difference in the

two methods. The width of the thermal test structures and the fit thermal parameters for

four measured devices are summarized in TABLE 1.

FIGURE 2. TES Joule heating power as a function of bath temperature. The dots are experimental data. The

lower curve is the temperature independent phonon mean free path fit, which has a standard deviation of

2.8�10
-2
pW. The upper curve is the power law fit, which has a standard deviation of 3.0�10

-2
pW. The data

and curve are shifted up by 10 pW for a clear visualization in the power law fit.



TABLE 1. Si3N4 thermal test structure beam width and the fit thermal parameters using equations (1) and (8).

Devices W (µm) Tc (K) n
K (10

-10

W/K
n
)

B1 (10
-10

W/K
2
)

B2 (10
-9

W/K
4
)

B2/B1
(K

-2
)

Dev#1 30 0.510 2.95 2.99 1.89 1.08 5.71

Dev#2 30 0.525 3.03 3.24 1.86 1.20 6.45

Dev#3 20 0.513 3.02 1.74 1.01 0.65 6.13

Dev#4 20 0.530 2.90 1.78 1.18 0.67 5.68

In TABLE 1, the ratio of B2 (or B1, or nK
n-1
at 0.4 K) for 30 µm beams and for 20

µm beams is 1.73 (or 1.71, or 1.74) instead of 1.5, which is the beams cross section ratio.

Our experimental data agree with the published JPL data [12]. For the same Si3N4 thickness

and length, JPL results show that the thermal conductance of 9 µm wide beams is slightly

larger than 3 times that of 3 µm wide beams at a temperature of 0.4 K, but the thermal

conductance of 135 µm wide beams is significantly larger than 15 times that of 9 µm wide

beams. In the following data interpretation, we use the ratio between the average values of

B2 for 30 µm beams and for 20 µm beams as a typical number to interpret our data for a

mean free path evaluation. Second, B2/B1, which is equivalent to b/a in equation (7), is

around 6 K
-2
for all the four devices. This value, which may correlate to the index n in the

power law fit, is typical for amorphous materials heat capacity at low temperatures [8].

We note that there are several error sources in the measurements. First, there are

uncertainties of thickness and width of the Si3N4 beams. The thickness uncertainty is less

than 3%, and the width uncertainty due to micro-fabrication is less than 0.5 µm. Second,

the uncertainty of the shunt resistor’s value is ±0.1 m�, which gives a TES Joule heating

power error less than 2%. Third, the TES resistance could depend on its current at various

bath temperatures. We found that the temperature shift could be up to 0.5 mK/µA at the

low resistance end of the TES, but could be less than 0.1 mK/µA at the high resistance end.

We chose a TES resistance at 60% of its normal value for Joule heating power calculation.

The estimated temperature error at the same TES resistance for a bath at temperature of

300 mK and of 500 mK is less than 2 mK. Furthermore, the Si3N4 island temperature

should be used for the beams thermal conductance calculation. The thermal power

exchange between TES and Si3N4 film depends on their temperatures [10, 11],

Pep = �� TTES
5
�TSiN

5( ), (11)

where � is TES film volume, and � is electron-phonon coupling strength, which has a

typical value of 1�10
9
W/m

3
-K

5
. To count the linear term only, the temperature difference

between the TES and the Si3N4 island is less than 1 mK for the low thermal conductance

devices. Lastly, the superconducting Nb leads contribute about 2~3% volume and are

treated as the same as the Si3N4, because we did not see any apparent thermal conductivity

difference in other tests by changing the width of the leads by a factor of 2. In summary,

the estimated overall error in the thermal conductance measurements is less than 10%.

BOUNDARY LIMITED PHONON SCATTERING

According to equations (3) and (8), a plausible solution for the thermal conductance

ratio of 1.73 is that the mean free path for 30 µm beams is 15% larger than that for 20 µm



beams. To estimate the phonon mean free path, we use the boundary limited phonon

scattering model [13, 14]. For a sample with large side ratio, the boundary diffusive

reflection limited phonon mean free path [13] is

lB = 3W 2n( ) n3I 1 n( ) + I n( )[ ], (12)

where the sample has sides of W and nW, and

I n( ) = n 2( )sinh�1 n( ) + 1 6( ) 1+ n2( )
0.5
n2 � 2( ) + 2 � n3( )[ ]. (13)

With a fraction of diffusive reflection ƒ, the phonon mean free path [13] is

l =
3W

2n
f 1� f( )

J
n3 J +1( )

3 1

n J +1( )

�

�
�

	



�� J 3I

1

nJ

�

�
�

	



�

�


�
�

�

�
�
�

+
1
2
2 ��J ,0( ) I n J +1( )( ) � 2I nJ( ) + I n J �1( )( )[ ]

�

�

�
�

�

�
�

�

�

�
�

�

�
�

0

�

� , (14)

where J is the number of times a particular phonon impinges on the surface before being

diffusely scattered. The Kronecker delta function ensures that a correct phonon counting

procedure is made. Eddison and Wybourne [14] describe in detail how the phonon mean

free path changes with the diffusive scattering probability at surface when the two narrow

sides of the samples are treated for a complete diffusive scattering due to the edge’s

roughness. We apply the model to our thermal test structure data because of the similarity

of the model and our devices. The diffusive reflection fraction dependent phonon mean free

paths for 30 µm beams and for 20 µm beams are shown in FIGURE 3. The phonon mean

free paths increase rapidly with a decrease of diffusive reflection fraction when a specular

phonon reflection limit is approached. The mean free path ratio of phonons between 30 µm

beams and 20 µm beams depends on the fraction of phonon diffusive reflection at the

surface, as is shown in the inset of FIGURE 3.

FIGURE 3. Phonon mean free path as a function of fraction of phonon diffusive reflection for 1 µm thick

Si3N4 beams of 30 µm wide (solid line) and of 20 µm wide (dashed line). At a 100% diffusive reflection, the

phonon mean free path is 3.45 (3.15) µm for 30 (20) µm beams. The inset shows phonon mean free path ratio

between 30 µm and 20 µm beams. Phonon boundary scattering model [13, 14] is used for the calculation.



Using FIGURE 3 as a lookup table, we find that the fraction of phonon diffusive

reflection is about 32% for a 15% phonon mean free path difference between 30 µm beams

and 20 µm beams. Therefore, the mean free path is 11.05 µm for 30 µm beams, and is 9.60

µm for 20 µm beams. Using these mean free paths and equation (9), the average value of a

is approximately 0.083 J/m
3
-K

2
both for 30 µm beams and for 20 µm beams. The average

value of b is approximately 0.509 J/m
3
-K

4
both for 30 µm beams and for 20 µm beams

using equation (10). As a comparison, the Debye volume heat capacity for a crystal solid at

a low temperature is a cubic function of temperature [15]. In SI units, it is

C � 16� 5 5( ) kB
4 h3S3( )T 3 � 0.359T 3, (15)

where kB is Boltzmann constant, and h is Plank constant. In our data, the Si3N4 volume heat

capacity is 0.083T+0.509T
3
J/m

3
-K, which is about 3 times the Debye heat capacity in the

interested temperature. This heat capacity is typical for amorphous materials [8, 9].

The Si3N4 beams thermal conductivity can be calculated with equation (3). The

thermal conductivity is 6.50�10
-3
T+3.93�10

-2
T
3
W/m-K for 1 µm thick and 30 µm wide

Si3N4 beams, and 5.60�10
-3
T+3.41�10

-2
T
3
W/m-K for 20 µm beams.

With the estimated phonon mean free paths, we can calculate the expected surface

roughness of the Si3N4. The surface diffusive scattering probability [16] is

f =1� exp(�16� 3�2 �D
2), (16)

where � is RMS value of surface roughness, and �D is the phonon domain wavelength [17],

which is inversely proportional to temperature,

�D = 0.235hS kBT . (17)

According to [16], the temperature dependent mean free path could be calculated for a

thermal structure with a length larger than its lateral dimension with a formula

l T( ) = lB 2 � f( ) f , (18)

where lB is defined in equation (12). The temperature averaged mean free path is

l = l T( )dT TC �Tb( )
Tb

TC
� , (19)

where TC is the TES temperature, which approximately equals to the temperature of the

Si3N4 middle island in FIGURE 1. We can plot the phonon mean free path l versus the

surface roughness � relation using equations (16), (17), (18), and (19). We find that the

Si3N4 beams surface RMS roughness in our thermal test structures is 7.2 nm for 30 µm

beams with l=11.05 µm, and is 7.4 nm for 20 µm beams with l=9.60 µm. The difference is

0.2 nm, which is certainly in the allowed error range of the experimental data.

CONCLUSION

The phonon mean free path in narrow Si3N4 beams, as well as the dependence of this

parameter upon beam dimension and surface roughness, is a key parameter enabling



successful thermal design of cryogenic bolometric detectors. To our knowledge, this paper

contains the first calculation of the phonon mean free path of Si3N4 beams extracted from

experimental results below 1 Kelvin. A boundary limited phonon scattering model was

utilized to calculate the volume heat capacity, phonon mean free path, thermal

conductivity, and surface roughness of our lithographically defined suspended Si3N4
structures. The calculated value of the volume heat capacity using our thermal conductance

data agrees with the volume heat capacity expected for amorphous materials.
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