
LOW TEMPERATURE PHYSICS VOLUME 36, NUMBER 7 JULY 2010

Down
SUPERCONDUCTIVITY, INCLUDING HIGH-TEMPERATURE SUPERCONDUCTIVITY

Freezing and quantization of current passing through a doubly connected
superconductor with a point contact

V. P. Koverya, S. I. Bondarenko,a� A. V. Krevsun, N. M. Levchenko, and I. S. Bondarenko

B. I. Verkin Institute for Low-Temperature Physics and Engineering of the National Academy of
Sciences of Ukraine, pr. Lenina 47, Kharkov 61103, Ukraine
�Submitted January 14, 2010�
Fiz. Nizk. Temp. 36, 759–766 �July 2010�

The particulars of dc current passage through a structure consisting of a doubly connected super-
conductor �DCS� with branches that are asymmetric with respect to length and critical current
have been investigated experimentally. The short branch, which has the lowest critical current,
was a clamping niobium-niobium point contact with length comparable to the coherence length
of the superconductor. In contrast to a previously studied DCS with a short branch much longer
than the coherence length, it was found that when the short-branch current reaches the critical
value the currents in the branches of the DCS do not undergo self-excited oscillations; a current
exceeding the critical value enters the long branch when this current is increased in portions �is
quantized�, and when it is subsequently decreased it freezes partially or completely in the DCS
circuit. © 2010 American Institute of Physics. �doi:10.1063/1.3480999�
I. INTRODUCTION

The physics of doubly connected superconducting struc-
tures is an important branch of fundamental and applied su-
perconductivity. It is sufficient to mention the processes oc-
curring in superconducting rings in a magnetic field1 and in
superconducting quantum interferometers.2 Recently, we dis-
covered that in a doubly connected superconductor �DCS�,
through which a constant transport current I is passed, self-
excited oscillations of the current arise when the critical cur-
rent in one branch reaches a critical value. The DCS con-
sisted of two branches with different critical currents and
inductances �with inductance ratio 1:500�. The length of the
short branch, which had the lower critical current, was about
1 mm, and the inductance as 19−8 H.

It is of interest to investigate how a decrease of the
length of the short branch to a value comparable to the co-
herence length of superconductors used can affect the distri-
bution of the current I in the DCS when the critical current of
this branch is reached.

The required branch can be made in the form of wither a
cross-shaped film Josephson tunnel contact or a clamping
superconducting point contact �SPC�.6 Because the fabrica-
tion technology is simpler we used SPC in our experiments.

The objective of the present work is to determine the
distribution of the current I in the branches of a DCS, when
the current is introduced into it through a SPC, reaches and
then exceeds its critical current.

II. EXPERIMENTAL ARRANGEMENT

The electric circuit of the experimental DCS and the
current-voltage characteristic �IVC� of the SPC used are dis-
played in Fig. 1.

The circuit of the doubly connected superconductor is
made of 70 �m in diameter niobium microwire, whose ends
were place on one another in a cross-shaped manner and
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clamped together mechanically by a metal clamp. An SPC
arose at the point of intersection. The dc transport current 1
was fed from the free end of the niobium wire, as shown in
Fig. 1a. The branch with the higher inductance L1

=5 ·10−6 H was made in the form of coil with diameter
8 mm and W=5 loops. A detector of the magnetic field of the
current flowing along the coil is placed inside the coil. The
detector was a ferroprobe �FP� with sensitivity 10−5 Oe. The
current of the coil was determined from the field, measured
by the detector, using a pre-determined relation between the
current in the coil and the indications of the FP. The induc-
tance L2 of the part of the DCS circuit with the SPC was
assumed to be equal to the inductance of the contact. It was
evaluated from the relation for the inductance of a Josephson
contact L2=�0 /�Ic2 �Ref. 7� and was found to be 10−14 H
for the contact studied in the present work. Thus the ratio of
the inductances of the DCS branches was about 1 :109. The
current I could be set by a current source from 10−5 to 1 A.
The main information on the current distribution in the
branches of the DCS was obtained by detecting the magnetic
field generated by the current flowing through the above-
mentioned coil as the current I increased and decreased. The
DCS was immersed in liquid helium at T=4.2 K. The critical
current, determined by the critical current of the SPC, of the
branch with the lowest inductance in different samples of the
circuit ranged from 20 to 120 mA, which was determined by
the purity of the surface of the microwires at their clamping
location and by the clamping force. The critical current and
the current-voltage characteristics of the SPC, connected into
the DCS circuit, were determined in the following sequence.
First, the stability of the IVC of similar Nb-Nb clamping
contacts with respect to the temperature cycling
300 K–4.2 K–300 K without including the contact in the
DCS circuit was determined. It was found that for contacts
with the initial critical current in the range 20–120 mA it
© 2010 American Institute of Physics
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changes after the cycles by no more than 5%, while the IVC
shows no hysteresis to currents 150–180 mA. The contact
described in this article was connected into the circuit,
cooled together with it to T=4.2 K; its critical current Ic2

�found to be 80 mA� was measured according to the depen-
dence in Fig. 2 �see below�, after which the circuit was
heated to T=300 K, cut, and re-cooled to T=4.2 K in order
to measure the IVC of the contact, shown in Fig. 1b. It was
found that the critical current was conserved and the IVC, to
within the limits of its measurement accuracy, showed no
hysteresis in measurements of the current through the contact
from zero to 160 mA and from 160 mA to 0. The critical
current of the niobium microprobe Ic1 and correspondingly
of the branch with high inductance L1 was about 4 A. The
cryostat with the experimental DCS was screened from the
Earth’s magnetic field and its fluctuations by means of a
magnetic screen. The amplitude of the residual low-
frequency fluctuations of the surrounding magnetic field did
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FIG. 1. a—Diagram of doubly connected superconductor �DCS� with a
I2—currents in the branches of the superconducting circuit of DCS with in
measuring the magnetic field of the current of the branch with conductance
voltage characteristic of a point contact with an open DCS ring.
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not exceed 10−4 Oe, which corresponded to a change of the
current in the coil with the ferroprobe by 10 �A. The IVC of
the SPC which was not connected into the circuit and the
dependences of the current in the coil with the FP on the
current I were recorded using an N-309 electromechanical
automatic plotter.

III. EXPERIMENTAL RESULTS AND DISCUSSION

After the contact is connected into the circuit �Fig. 1a�
and for transport current I�80 mA the currents I1 and I2 in
the branches of the DCS are distributed in accordance with
the relation6

I2/I1 = L1/L2, �1�

which for L1 /L2�109 signifies that the transport current
flows almost entirely through the SPC �I2� I�. Starting at I
� Ic2 a current I1, growing in steps as I increases from the
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point 1 to the point 7, appears in the branch 1, as shown in
Fig. 2.

In contrast to the DCS studied in Ref. 3 and 4, no self-
excited oscillations of the current I1 are observed when the
critical current of the short branch of the DCS is reached
�I	 Ic2�. The period �
I� is several percent of Ic2, and 
J
�
J1 �see inset in Fig. 2�. The main part of the current I1

increases �as compared with the size of the current steps� in
the first quadrant of the coordinate system formed by the
intersection of the axes I and I1 in proportion to the growth
of the current I. As the current I, whose value is in the range
I= Ic2−2Ic2, decreases to zero the current If = I1 freezes in the
DCS circuit in the range I1=0− Ic2. We shall call this range
of values of I the first region. In the second region, for Ic1

+ Ic2� I�2Ic2 �specifically, for I=2Ic2+�, where � is an in-
crement to the current I in Fig. 2�, decreasing I to zero like-
wise results in freezing of the current I1, equal to Ic2. A
feature of this region is the presence of a transitional section
8-3 with I1 decreasing from the “plateau” with extent 2Ic2 to
current I1= Ic2 for I=0. A change of the polarity and magni-
tude of the current I, starting at the frozen value of the cur-
rent If = Ic2 at the point 3, as is evident in Fig. 2, makes it
possible to obtain the symmetric part of the function I1�I�
passing through the points 4-5-9-10 in the third quadrant.

Let us first consider the processes associated with the
change in the current of main, largest part of the current I1 as
a function of I, assuming that the stepped modulation of the
current is substantially less than the critical current of the
contact �as in the experiment�. In this case sections with
steps in the modulating process of change in I1 can be re-
placed by lines �Fig. 3�. Moreover, as will be shown below,
for certain properties of the point contact the modulation
I1�I� may absent completely. First, we shall consider the
change of I1 only as I increases from I= Ic2. This section of
the function I1�I� is a consequence of switching in the branch
with inductance L1 of the part of the current I that exceeds
I . For this reason the angle between the axes of the function
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FIG. 3. Model dependences of the reduced �with respect to Ic2� values of the
currents: total current in the branch No. 1 with the FB �i1= I1 / Ic2�, parts of
the current in the same branch in the form of a frozen current in the DCS
circuit �if = If / Ic2� and part of the transport current of this branch �i11

= I11 / Ic2�, decreasing in connection with a decrease of I, versus the magni-
tude of the reduced transport current i= I / Ic2. The figures in parentheses
indicate the initial and final values of the decreasing transport current i. The
arrows indicate the directions of change of the currents i and i1 with increas-
ing current i from zero to four and with it decreasing from i=2,3 ,4, to zero.
c2
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I1�I� equals 45°. The linear growth of I1 as I increases is
limited only by the critical current Ic1 of the branch with
inductance L1.

In the first quadrant of the function I1�I�, i.e. for positive
values of the currents I and I1, the behavior of the I1 with
decreasing I, starting with the appearance of I1 and then from
all of its large values, is of greatest interest.

The freezing of the current in the circuit with I decreas-
ing to zero in the first region of its values can be explained
by the appearance and conservation, after the current I is
switched off, of the undamped superconducting current If in
the DCS circuit �Fig. 1a�, equal in magnitude to the transport
current I1 existing in the branch with FB before being
switched off. The current If is induced in the superconduct-
ing circuit closed through the SPC by virtue of the law of
conservation of the magnetic flux created by the current I1.
In this circuit this arises by virtue of the fact that the indi-
cated flux practically completely penetrates the area of the
circuit, since the length of the circuit with the current I1 is
different from the length of the completely closed circuit
only by the length of the SPC, comparable to the coherence
length of the superconductor used. A similar freezing of the
current in the circuit of the DCS, which has a short branch
with size much greater than the large coherence length, did
not occur3–5 since before being switched off or decreasing
the current passed only along the part of the DCS circuit and
its magnetic flux would have appeared when the current
flowed along the entire circuit.

As shown in Fig. 3, in the first region of values of I the
process indicated above explains the presence of a “plateau”
in the function I1�I�. For example, a decrease of the transport
current from i=2 to i=1 and correspondingly the current in
the branch No. 1 from i11=1 to i11=0.5 gives rise to the
appearance of an equal induced undamped current if =0.5,
compensating the decrease of the current i11, in the circuit.
As a result the sum of the increments of these currents,
which is recorded by the FP and equal to i1=1 remains con-
stant right up to i=0. As one can see in Fig. 3, which shows
that decrease of i11 �2-0� and increase of the induced current
if �2-0� with i varying from 2 to 0, the result of the indicated
process is that the length of the “plateau” along the i axis is
2, as is observed experimentally �Fig. 2�. It is clear from the
same considerations that when i decreases from values less
than 2 to 0 the magnitude of the plateau will between i=2
and i=1 and the current if between 1 and 0. It should be
noted that in this process the induced current If flows in the
SPC in a direction opposite to I2, which does not branch in
the circuit with the FB. Their algebraic sum is maintained at
the level of the critical current Ic2. The current through the
contact varies from I2= Ic2 at the start process resulting in the
decrease of I to If =−Ic2 at the end when I=0.

The dependence I1�I� in the second region of the values
of I as it decreases is determined by a similar process, the
only difference being that the maximum possible induced
current, equal to the critical current of the contact, can no
longer compensate the higher value of the current I in the
entire range where it decreases to zero. Thus, as when I
decreases, a “plateau” of the same length 2Ic2 arises in the
dependence I1�I�, and its remaining section �8-3 in Fig. 2�
represents the decrease of the current I through the branch
1
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with the FB, equal to the decrease of the current I to zero. In
the dependence i1�i�, shown in Fig. 3, this corresponds to a
decrease of the current from i1=3 to i1=1 with i decreasing
from 2 to zero and i1=2 to i1=1 with I decreasing from 1 to
0. The result is that for I=0 the current If = Ic2 obtains once
again, which likewise corresponds to experiment.

The region of the “plateau” with a strictly stabilized
value of the current I1 in the branch No. 1 with the FB can be
called the region of quasifrozen current, since the current I1

in this branch is a sum of currents: undamped induced cur-
rent If and the transport current I= I11. This sum is automati-
cally maintained constant for any fluctuations of the current I
within the “plateau.”

The function I1�I� in the region of the second, third, and
fourth quadrants of Fig. 2 with a change of the direction of
the current I can be explained talking account of the conser-
vation of the critical state of the SPC, appearance of induced
current with different direction in the DCS circuit, freezing
and quasifreezing of the current I1 as considered for this
dependence in the first quadrant. On this basis the reason for
the absence of self-excited oscillations of the current in this
type of DCS is understandable. It is explained by the fact
that any decrease of the current I1, which has entered the
high inductance branch, as is typical for the process of self-
excited oscillations in an different type of DCS,3–5 is impos-
sible here because of the quasifreezing of the current I1 in the
DCS circuit.

We shall now discuss the mechanism by which current
steps appear in the dependence I1�I�. The indicated modula-
tion of this dependence can be explained using the micro-
structural features of the clamped SPC. As a rule, a real
clamped superconducting contact between wires with natural
surface nonuniformities is obtained at several points, as a
result which the SPC is a superconducting quantum interfer-
ometer �SQI� with two or more point microcontacts of the
Josephson type, connected in parallel, with different critical
currents and separated by micron or submicron distances
from one another.

The process occurring in a DCS with a short branch in
the form of SQI can be explained on the basis of a simplified
scheme of the DCS, shown in Fig. 4a. According to this
scheme, it is supposed that the SQI has two identical point
microcontacts 1, 2 along which a transport current I= I0 in
the range I0=0− Ic2 can flow. When I0� Ic2 a transport cur-
rent greater than Ic2 can flow into the branch with the FB.
The critical currents of each microcontact equal Ic0. The
critical current Ic2 of a clamping contact in the form of SQI
equals the sum of the critical currents of the microcontacts.
The current I, which passes along the sections of the niobium
wire, a part of the microcircuit of the SQI formed, creates a
magnetic field H which acts on the SQI. A change in I results
in a change of H and the magnetic quantum modulation of
the critical current SQI Ic2�I� �Ref. 8� by the amount 
J.
Thus in the present case a modulated part due to the depen-
dence Ic2�I� is superposed on the linear dependence I1�I� ex-
isting for I� Ic2 and typical for DCS without a SQI at the
entrance. If I� Ic2, then the period �
H� of the quantum
oscillations of I as a function of the field H is
c2

loaded 20 May 2011 to 152.3.102.242. Redistribution subject to AIP lic

H = �0/�0S0, �1��

where �0=4� ·10−7 H, S0 is the area of the circuit of quan-
tization of SQI, and � is the quantum of magnetic flux. On
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the other hand the field produced by a transport current flow-
ing along a conductor with the diameter d on its surface can
be estimated by means of a well-known relation describing
the field of a long conductor with the current:


H � 
I/�d , �2�

where 
I is the period of current oscillations. Since the cur-
rent flows in the opposite a direction along two sections of
the wire in the SQI circuit, the field increases by a factor of
2 as compared with the relation �2�. As one can see in fig. 4a,
the current generating the field in the SQI is only half of the
transport current I and for this reason the field must be de-
creased by a factor of 2. As a result the relation �2� correctly
describes the field in the case I� Ic2. From the relations �1�
and �2� we obtain


I � ��0/�0�d/S0� . �3�

The modulation depth 
Ic2 can be estimated from the
relation2,8


Ic2 = �0/2L0, �4�

where L0 is the inductance of the SQI circuit. The form of
the periodic function Ic2�I� depends on different parameters
of the SQI �specifically, on the current–phase characteristics
of each contact and the critical currents of the contacts�,
which cannot be determined on the basis of the present work.
For a qualitative explanation of the current steps arising in
I1�I� �Fig. 4e� we shall confine ourselves to one possible
form of Ic2�I�,2,8 shown in Fig. 4b in the form of a rectified,
for simplicity, construction of a sinusoid �shown by the
dashed line�, where several quanta of the change in Ic2 in the
interval of quantum periods I /
I from n1 to n1+3, where n1

is an integer. We shall examine the case of an increase of the
current I starting at the point A1 in Fig. 4b, where I is some-
what less than Ic2, i.e. I= Ic2−�I, where �I� Ic2. If the pa-
rameters of the SQI are such that tan 
=
Ic2 /
I	1, then as
I /
I increases from n1 to n1+1 /2 the current will not flow
into the branch with the FB, since it does not reach the criti-
cal magnitude and the SQI is in the superconducting state. In
the dependence I1 /
I �I /
I� a “plateau” will correspond to
this increase of the current I �Fig. 4e�. When the current
reaches the value I /
I=n1+1 /2 the critical current of the
SQI starts to decrease, the current I through the SQI starts to
exceed Ic2 �I� Ic2� and flows into the branch with the FB �we
denote this current as I1�. In the process, the relation between
the current flowing along both conductors and entering the
SQI circuit, and field generated by it changes. Indeed, as one
can see in Fig. 4a, the field H is not produced by the total
current I and not by half the current, as was the case for I
� Ic2. The field in the circuit can now be described by, in-
stead of the relation �2�, the relation


H � 2
I/�d , �5�

and the period with respect to the current can be described
by, instead the relation �3�, the relation


I � ��0/2�0�d/S0� . �6�

Thus the dependence of the critical current of the SQI on the
transport current passing through the branch with the FB has
period which is half than that from the current passing only
loaded 20 May 2011 to 152.3.102.242. Redistribution subject to AIP lic
along the branch with the SQC. This is shown in Fig. 4c. As
a result the quantum oscillations of the critical current of the
SQI with a single period of the variation of Ic2 acquire an
asymmetric form with a sharper �as compared with the os-
cillations in Fig. 4b� decrease of the critical current for
I /
I�n1+1 /2. In turn, this results in a sharp increase, in the
form of a step, in the current I1 in the dependence I1�I� �Fig.
4e�. As the current increases further from the value I /
I
=n2+1 /2, because of the more rapid increase of the critical
current of the SQI as compared with the increase of I the
interferometer once again becomes superconducting, and the
current I1 which previously arose in the DCS circuit, as fol-
lows from the explanation presented above for the form of
the function I1�I�, quasi-freezes, forming a “plateau” up to
the next decrease of the critical current of the SQI. The os-
cillations of Ic2 being modeled are shown in a combined
form in Fig. 4d. Evidently, Fig. 4e is similar to the experi-
mentally observed stepped function I1�I� �Fig. 2�. The
smaller slope of the steps as compared with experiment
could be due to the fact that the real point contacts in SQI
have a current–phase characteristic that differs from a sinu-
soidal function, which we adopted in our model description
of the processes in a DCS. Nonetheless, the experimentally
measured values of the “plateau” and the height of the steps
�see inset in Fig. 2� turned out to be close in magnitude,
which corresponds to the condition for their appearance
when 
Ic2 /
I	1 and the model dependence I1�I� in Fig. 4e.

Using the experimental values of 
I and 
Ic2, the rela-
tions �3� and �4� can be used to estimate S0 and L0 of the
interferometer, arising at the location of the SQI. They turned
out to be equal to 10−13 m2 and 2·10−13 H, which confirms
the supposition that the SQI is a submicron structure. It is
also understandable on this basis that in the case when a
single point of contact of microprobes in a clamping SQI an
interferometer is not formed and steps with the indicated
origin in If�I� cannot arise, while the dependence itself will
acquire a linear form which is identical to its model shown in
Fig. 3.

IV. CONCLUSION

The present investigations of the distribution of the
transport current I through an asymmetric doubly connected
superconductor with a point contact in the role of a weak link
of the DCS make it possible to determine the limit on the
applicability of the principle of minimum magnetic energy
for determining the current state of the DCS, demonstrate
new methods of freezing current in superconducting closed
circuits, and describe the physical processes occurring in a
quantum structure in the form of a dc SQUID shunted by a
superconducting inductance. We shall examine the main re-
sults indicated in greater detail.

As shown previously,5 the time dependent distribution of
the transport current in the branches of DCS when the critical
current is reached in one of the macroscopic-size branches
�i.e. with the size of a weak link, correspondingly exceeding
the coherence length of the superconductors being used�,
having the form of self-excited oscillations �SEO� of the cur-
rent is caused by the system in the form of the DCS striving
to lower its magnetic energy to zero. However, if the trans-
port current starts to enter the DCS through a branch in the
ense or copyright; see http://ltp.aip.org/about/rights_and_permissions
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form of a point contact �branch No. 2 in the present work�,
whose length is comparable to the coherence length ��Nb

�40 nm �Ref. 9��, then when the critical current Ic2 is
reached the system responds to this completely differently.
After part of the transport current flows into the branch No. 1
with a high critical current Ic1 its subsequent decrease in this
branch and correspondingly a decrease of the magnetic en-
ergy of the system do not happen and SEO do not arise.
Instead, the initial current system decomposes into two sys-
tems: the initial system in the form of a DCS with branching
of the transport current along two branches and a second
system without current branching, in the form of a closed
circuit capable of carrying a frozen superconducting current,
induced by any decreases of the current in the branch No. 1.
A similar self-organizing current system is a quantum mac-
roscopic system which possesses a set of allowed quantum
current levels which correspond to the quantum of magnetic
flux which is the only form that the flux created by the cur-
rent can take in a superconducting closed circuit. Thus if the
nonstationary distribution of the current in a DCS in which
one of the macroscopic branches periodically passes into the
critical state is a consequence of the classical striving of the
system to reach the minimum magnetic energy, then in the
case of a DCS in which there is one microscopic branch in
the critical state, the current distribution in the branches is
stationary and is determined by the allowed current quantum
energy levels of a closed superconducting circuit formed by
both branches of the DCS. As the transport current increases,
the system passes into levels with increasingly higher mag-
netic energy. In the experimental DCS with macroscopic di-
mensions of the closed circuit these levels are split by very
small energy gaps ���=�0

2 /2L1�10−6 eV� and current gaps
��I=�0 /L1�10−10 A� and for this reason current-step levels
corresponding to them are not observed on the experimental
curve I1�I�.

As regards current freezing in DCS it is known that it
possesses two advantages: current maintenance does not re-
quire energy input and it possesses record stability in time.
Until now the following methods were known for freezing
current in single—or multiloop superconducting rings and, in
part, in multiply connected superconductors consisting of a
HTSC ceramic:10,11

1� applying a magnetic field to a ring at temperature above
the critical value, cooling the ring to a temperature below
the critical value and switching the field off �FC—field
cooling—method�;

2� cooling a ring without an external field to a temperature
below the critical value, applying to the ring a magnetic
field above the critical value and switching the field off
�ZFC—zero field cooling—method�;

3� feeding the required transport current into an unclosed
superconducting ring followed by closing the ring using a
thermal superconducting switch and switching off the
transport current.
The last method is most widely used in practice.
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The present investigations of DCS with a point contact
have made it possible to find another method of freezing a
current in the range 0– Ic2 after a transport current, exceeding
the critical current of the contact Ic2, is switched off as well
as quasi-freezing a current in a superconducting circuit with-
out switching off the transport current, realized in the range
0– Ic1, with stabilization of the quasi-frozen current within
the range of variation of the transport current� Ic2. Neither
of these methods of obtaining a stabilized current in a super-
conducting circuit requires the use of a special thermal
switch; these methods permit continuous and even regulation
of this current without feeding energy to the cryogenic agent.

Finally, the realization of a microscopic in length �com-
parable to the coherence length� branch of the DCS in the
form of a superconducting interferometer has made it pos-
sible to determine that SQI, shunted by a superconducting
inductance �inductance L1 in the present experiment�, plays
the role of a quantum electronic valve which passes a trans-
port current I1, exceeding the critical current of the SQI, into
the branch with inductance L1 in portions �quanta�. The pa-
rameters of the SQI determine the magnitude of the portions.
Specifically, the height of the current steps in the function
I1�I� is equal to the depth of magnetic modulation of the
critical current of the SQI. It can be assumed that their slope
is related with the form of the current–phase characteristic of
the interferometer. To determine this, additional studies of
DCS with an interferometer whose characteristics are known
beforehand are required.
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