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The quantum coherent phenomena in mesoscopic cylindrical metallic conductors have been considered. Pure 
double-and single-connected normal samples were placed in a longitudinal magnetic field, which generated in-
terference phenomena depending on the magnetic flux through the cross-section of the conductor. The period of 
the induced oscillations is equal to the flux quantum hc/e of the normal metal. The quantum states are formed in 
the structures by collisions of the electrons with the dielectric boundary of the sample. The magnetic flux is in-
cluded in the expression for the spectrum of quasiparticles. The proximity effect and its influence on the modifi-
cation of the spectrum of quantum coherent phenomena have been investigated. The behavior of cylindrical 
samples consisting of a superconducting (S) metal with a deposited thin pure normal (N) metal layer has been 
analyzed. In this structure the electrons are localized in a well bounded by a dielectric on one side and by a su-
perconductor on the other. The specific feature of the generated quantized Andreev levels is that in the varying 
field H (or temperature T) each of the levels in the well can coincide periodically with the chemical potential of 
the metal. As a result, the state of the system experiences strong degeneracy and the density of states exhibits re-
sonance spikes of the energy of the NS sample. This makes a significant contribution to the magnetic moment. A 
theory of the reentrant effect for NS structures has been developed, which interprets the anomalous behavior of 
the magnetic susceptibility of such structures as a function of the magnetic field and temperatures. 

PACS: 74.45+c Proximity effects; Andreev reflection; SN and SNS junctions; 
74.50.+r Tunneling phenomena; Josephson effects. 

Keywords: superconductor–normal metal (proximity) sandwiches, mesoscopic systems, Aharonov–Bohm effect, 
Andreev levels, reentrant effect. 

Contents 

1. Introduction. Flux quantization in normal metals ............................................................................... 1085 
2. Proximity effect and its influence on modifications of quantum coherent phenomena ...................... 1087 
3. Reentrant effect theory ....................................................................................................................... 1089 

3.1. Quasiparticle spectrum of a NS structure ................................................................................... 1089 
3.2. Self-consistent equation ............................................................................................................. 1091 
3.3. Analytical estimation of the magnetic moment of the NS structure ........................................... 1092 
3.4. Numerical results ....................................................................................................................... 1093 

4. Conclusions ........................................................................................................................................ 1095 
References .............................................................................................................................................. 1096 

 
 
Introduction. Flux quantization in normal metals 

Quantum interference phenomena in condensed matter 
were first detected in superconductors. Deaver and Fair-
bank [1], Doll and Nabauer [2] observed the flux quantiza-
tion effect in superconducting rings experimentally. Theo-
retically, it was predicted by F. London [3]. Who showed 

that a double-connected superconductor was characterized 
by a certain quantity (fluxoid) which could take only dis-
crete (quantized) values: 
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where dΦ= ∫ A s  is the trapped magnetic flux through 
the cross-section of a cylinder, Lλ  is the London penetra-
tion depth, j  is the superfluid current, 0 /2hc eΦ =  is the 
superconducting flux quantum. In a bulk superconductor 
flux quantization manifests itself in its direct sense. The 
integration contour £ can be chosen deep in the metal 
where superfluid current is zero. In a thin-wall cylinder the 
flux Φ  can be take any value and quantization proceeds as 
oscillations of the current circulating over the cylinder sur-
face, the period in flux being equal to a flux quantum 

/2hc e . 
According to current concepts, fluxoid quantization is 

related to the macroscopic quantum coherence present in 
the superconducting state. A superconductor is characte-
rized by a single «wave function» ( )rψ , which describes 
the condensate of pairs and has the meaning of a complex 
order parameter of a superconductor. Coherence means 
that the phase difference of the «wave function» is constant 
between any (including far distant) points in space. This 
approach to description of the quantum properties of a su-
perconductor was a formulated in the Ginzburg–Landau 
phenomelogical theory of superconductivity [4]. 

Flux quantization is also possible in a simply-connected 
superconductor. It was shown theoretically by Saint-James 
[5] and confirmed experimentally by Dmitrenko and Shab-
lo [6,7] that the currents of surface superconductivity ef-
fectively separate the double-connected region. 

It was commonly accepted for a long time that flux 
quantization is observable only in superconductors. It was 
attributed, firstly, to the Aharonov–Bohm effect [8] (sensi-
tivity of quantum states of electrons to the vector potential 
field) and, secondly, to the off-diagonal long-range order 
(ODLRO) existing in superconductors [9]. It was believed 
that the absence of one of these factors (e.g., in normal 
metals) prohibited flux quantization effect. In 1970 Kulik 
[10] investigated theoretically the behavior of a thin-walled 
normal cylindrical conductor in the field of a vector poten-
tial generated with a solenoid placed inside the cylinder. It 
has been shown for the first time that normal (nonsuper-
conducting) systems of relatively small though «macro-
scopic» (on the atomic scale) size can exhibit coherent 
quantum properties at low temperatures. It appears that the 
magnetic moment of such a system is an oscillating func-
tion of the magnetic flux threading the cylinder hollow and 
its oscillation period is equal to a flux quantum /hc e  of the 
normal metal. The quantization effect is unrelated to elec-
tron pairing and occurs in the absence of the ODLRO. The 
oscillation period therefore contains a single electron 
charge e. It is assumed that the normal metal is pure and 
the electron reflection at the metal boundary is specular. 

Kulik’s study has made it cleare that the Aharonov–
Bohm effect is possible because the electron holds its 
«phase memory» at the finite length /N F Tξ = πhv , hav-
ing the sense of a coherence length in a system with a dis-
turbed long-range order. Since Nξ ~10 3− sm at T ′  ~ 1 K, 

it was necessary to insert a solenoid into a micron-size 
cylinder hollow to test experimentally the prediction of 
magnetic moment oscillations. It was also important to find 
out how the electron reflection from the cylinder boundary 
could influence the amplitude of the induced oscillations. 
For this purpose in 1972 the author together with Boga-
chek [11] investigated the properties of a simply connected 
normal cylinder in a longitudinal magnetic field. The field 
was weak to an extent that the cyclotron orbit radius could 
not fit into the cylinder cross-section. The picture of the 
oscillations of thermodynamic value as a function of the 
magnetic field appeared to be more complicated in a simp-
ly-connected cylinder. There are two oscillating compo-
nent in it. One of them displays an intricate dependence on 
the magnetic field and the harmonic number and is related 
to the electrons in the central cross-section of the Fermi 
surface. These are actually aperiodic oscillations having no 
universal period, their «period» being dependent on the on 
the law of quasiparticle dispersion [12]. The other compo-
nent has a universal flux period /hc e . These oscillations 
are induced by the skipping-orbit surface electrons loca-
lized in a narrow layer (about the de Broglie wavelength of 
an electron) near the cylinder boundary. The aperiodic 
(Dingle [13]) oscillations are related to the so-called 
«bulk» electrons whose trajectories mainly run near the 
cylinder center. A spectrum of magnetic surface levels 
(«whispering gallery» spectrum) leading to the oscillations 
with the period /hc e  was calculated as 
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where m  and n  are the magnetic and radial quantum 
numbers, respectively, q is the quasimomentum compo-
nent along the cylinder axis, 0/η = Φ Φ , 2R HΦ = π , 

0Φ = /hc e , R is a cylinder radius, nα  is nth zero of the 
Airy function. The asymptotics of zeros nα brings the 
spectrum in Eq. (2) to the quasiclassical form of magnetic 
surface levels. The /hc e -periodic oscillations of thermo-
dynamic values are contributed effectively by the states for 
which the caustic size is about the cylinder radius. The 
spectrum of magnetic surface levels in Eq. (2) is formed 
due to the specular reflection of quasiparticles from the 
dielectric boundary. These levels differ in origin from 
these of the Nee and Prange states [14]. The magnetic sur-
face levels at a flat boundary are by genesis dependent on 
the magnetic field and diappear when the field tends to 
zero. In a cylinder the magnetic surface levels are formed 
by the sample boundary, but the magnetic field enters di-
rectly into the expression for the electron level spectrum. 
The spectrum of Eq. (2) made it possible to predict a num-
ber of effects (period doubling of critical temperature os-
cillations for superconducting hollow cylinders taking into 
account single-particle excitations [15]). When for what-
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ever reason the spectrum is smeared, we come back to the 
Little–Parks effect with its period /2hc e  [16]. Giant oscil-
lations of sound absorption with the period /hc e  were pre-
dicted for cylindrical conductors [17], and the propagation 
of weakly-attenuating electromagnetic quantum waves in 
cylindrical semimetallic conductors was investigated [18]. 
Quantum waves can exist if their velocities are off the cen-
ter of spikes by a distance exceeding considerably the re-
gion of absorption peak smearing. Finally, the effect of 
magnetic moment oscillations was predicted for the elec-
trons localized at the surface of liquid helium coating the 
dielectric cylinder surface in the magnetic field along the 
cylinder axis [19]. In such a system the electrons obeying 
the Boltzmann statistics move along quasiclassical trajec-
tories and take identical phase increases. As a result, the 
system exhibits magnetic moment oscillations having a 
universal flux period /hc e . 

The flux quantization effect in normal simply-con-
nected cylindrical conductors was detected experimentally 
by Brandt, Gitsu, Nikolaeva, and Ponomarev [12,20,21] 
who investigated longitudinal magnetoresistance of pure 
Bi single crystals. That was the first observation of the in-
terference effect of flux quantization in nonsuperconduct-
ing condensed matter. 

An important feature of the flux quantization effects in 
normal metals is the factor cos (2   )Fk Rπ +α  ( Fkh is the 
Fermi momentum, α is a certain phase) in the oscillation 
amplitude. Its presence inducates that in normal metals an 
order-of magnitude change R (fluctuation) in the atomic 
spacing entails a 100% change in the value of the effect 
[22]. In this case the flux quantization effect turns to zero 
after averaging the oscillation amplitudes along the cylind-
er generatrix. For this reason the effect was observed expe-
rimentally on semimetallic samples in which the effective 
mass of carriers (and wave number kf) is small and hence 
the fluctuations of the atomic-scale radius are insignificant 
for the amplitude of the flux quantization effects. Accord-
ing to current terminology, this feature of the amplitude 
accounts for the mesoscopic character of the flux quantiza-
tion effects in normal metals [23]. 

A hollow thin-walled superconducting cylinder was in-
vestigated by Gunter and Imry [24] in terms of the pheno-
menological Ginzburg–Landau theory. The authors hold to 
the opinion that flux quantization is independent of the 
ODLRO when the Ginzburg–Landau theory is applicable 
to the system. It was shown [10,11] that flux quantization 
was observed in normal cylindrical conductors in which 
the ODLRO was absent. 

In 1981 Altshuler, Aronov, and Spivak [25] proposed a 
theory of interference phenomena in dirty condensed mat-
ter. Yu.V. Sharvin and D. Sharvin [26] detected the pheno-
menon experimentally. The oscillation period was /2hc e . 
Below we consider only pure systems. 

Quantum interference phenomena were discussed theo-
retically in a number of surveys [23,27–30]. 

2. Proximity effect and its influence on coherent 
quantum phenomena 

Recently, much progress has been made in the technol-
ogy of preparing pure samples, which in turn has stimu-
lated investigations in the presence of the proximity effect 
[31]. The samples were superconducting Nb wires with the 
radius R of tens of microns. The wires were coated with a 
thin layer d of pure normal metal (Cu, Ag, Au). The wire 
and the coating were in a good electric contact. The elec-
tron mean free path exceeded the typical scale Nξ . The 
magnetic susceptibility of Cu and Ag was measured. The 
estimated parameters were the breakdown field bH , the 
supercooling scH  and superheating shH  fields and their 
dependence on temperature and the normal metal thick-
ness. Mota and co-workers [32] investigating such samples 
revealed a surprising behavior of the magnetic susceptibili-
ty of the cylindric NS structure (N is normal metal, S is 
superconductor) at very low temperatures (T < 100 mK) in 
the external magnetic field parallel to the NS boundary. 

The most intriguing fact was that the reentrant effect 
appeared as the temperature decreased below rT  (in a fixed 
field): the increasing magnetic susceptibility of the system 
started to diminish unexpectedly. A similar behavior was 
observed for the isothermal reentrant effect in a decreasing 
magnetic field after reaching a certain value of rH . Below 
this value the susceptibility started to decrease sharply. The 
observed magnetic response of the NS structure resembles 
the behavior of the persistent current in a mesoscopic nor-
mal ring [33]. It was assumed [32–34], that the reentrant 
effect accounted for the behavior of the total susceptibility 
χ of the NS structure: the paramagnetic contribution ap-
pearing for some reason was added to the diamagnetic con-
tribution due to the Meissner effect and almost balanced it. 
Anomalous susceptibility was also observed in AgTa, 
CuNb and AuNb structures [34,36]. 

The analysis of experimental data [33–37] shows that 
(i) the reentrant effect occurs only in structures with a large 
mean free path of quasiparticles in the normal metal 

Nl ≥ ξ ; (ii) the reentrant effect disappears in NS structures 
when there is no perfect contact between the normal metal 
and the superconductor, (iii) a large paramagnetic contri-
bution to the susceptibility of a NS structure can appear 
only in the H–T corner of the phase diagram (low tempera-
tures and weak magnetic fields). The theory claiming the 
interpretation of the reentrant effect is expected to account 
for the above facts. 

The reentrant effect revealed by Mota et al. is of great 
interest in the physics of the quantum proximity effect in 
NS sandwiches of ring geometry. We believe that the ef-
fect is not restricted only to NS structures with the ordinary 
electron–phonon interaction in the superconductors. A mo-
dification of the reentrant effect can well be expected if in 
place of Nb and Ta high-Tc superconductors with another 
type pairing are used. 
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The possibility of the paramagnetic contribution to the 
susceptibility of the NS structure needs further clarifica-
tion. The NS structure in question is essentially a combina-
tion of two subsystems capable of electron exchange, 
which corresponds to the establishment of equilibrium in a 
grand canonical ensemble (with fixed chemical potential). 
How does the normal mesoscopic layer respond to the 
weak magnetic field? Kulik shows [10], that in a weak 
magnetic field the magnetic moment of a thin-wall normal 
cylinder oscillates with the flux. The magnetic moment 
oscillations are equivalent to the existence of persistent 
current. Since the energies of the individual state and 
hence the total energy are dependent on the flux, the aver-
age current is nonzero. The current state corresponds to the 
minimum free energy, therefore the influence of weak dis-
sipation would not lead to decay of the current state. When 
the N and S metals are isolated, the quantum states of the 
quasiparticles in the N metal are formed at the expence of 
specular reflection of the electrons from the dielectric 
boundaries. The amplitude of the magnetic moment oscil-
lations in the N layer is small, which is determined by the 
smallness of the parameter 1/ ( )Fk R  in the problem and by 
the paramagnetic character of the persistent current [10,11] 
(when the magnetic field tends to zero, the magnetic sus-
ceptibility is positive). Thus, in the absence of the proximi-
ty effect, the total susceptibility of the NS structure is only 
governed by the diamagnetic contribution of the S layer 
(the paramagnetic contribution is very small). 

When the proximity effect is present in the NS struc-
ture, we assume that the probability of the electron transit 
from the superconductor to the N metal is close to unity. 
This significantly affects the properties of the NS structure. 
The diamagnetic response of the superconductor persists 
but new properties appear, that are brought about by the 
proximity effect. Now two kinds of electron reflection are 
observed in the normal film — a specular reflection from 
one boundary and the Andreev reflection [37] from the 
other. Along with the trajectories closed around the cylind-
er circle, new trajectories appear in a weak field, which 
«screen» the normal metal. The new trajectories of «par-
ticle» and « holes» confine the quantization area triangle 
whose base is a part of the NS boundary between the 
points of at which the quasiparticle with this collides 
boundary. This area is maximum for the trajectories touch-
ing the superconductor. It has been shown [38,39] that the 
particle density of states experiences resonance spikes 
when fluxes of certain values pass through the area of such 
a triangle. Thus, in the presence of the proximity effect, the 
periodic flux induced oscillations of the thermodynamic 
values typical of the normal layer in the NS structure give 
way to periodic resonance spikes with a period equal to a 
superconducting flux quantum /2hc e . 

The origin of «paramagnetic» currents in NS structures 
has been discussed in several theoretical publications. 
Bruder and Imry [40] analyze the paramagnetic contribu-

tion to susceptibility made by quasiclassical («glancing») 
trajectories of quasiparticles that do not collide with the 
superconducting boundary. The authors [40] point to a 
large paramagnetic effect within their physical model. 
However, their ratio between the paramagnetic and di-
amagnetic contributions is rather low and cannot account 
for the experimental results [32–35]. 

Fauchere, Belzig, and Blatter [41] explain the large pa-
ramagnetic effect assuming a pure repulsive electron–
electron interaction in noble metals. The proximity effect 
in the N metal induces an order parameter whose phase is 
shifted by π  from the order parameterΔ of the supercon-
ductor. This generates paramagnetic instability of the An-
dreev states, and the density of states of the NS structure 
exhibits a single peak near zero energy. The theory in 
Ref. 41 essentially rests on the assumption of the repulsive 
electron interaction in the N metal. Is the reentrant effect a 
result of specific properties of noble metals, or does it dis-
play the behavior of any pure normal metal experiencing 
the proximity effect from the neighboring superconductor? 
Only experiment can provide answers to these questions. 
We just note that the theories [40,41] do not account for 
the temperature and field dependences of the paramagnetic 
susceptibility and the nonlinear behavior χ  of the NS 
structure. The current theories cannot explain the origin of 
the anomalously large paramagnetic reentrant susceptibili-
ty in the region of very low temperature and weak magnet-
ic fields. 

An overlap of diamagnetic and paramagnetic currents is 
assumed in [40]. The paramagnetic current is excited by 
the trajectories that collide only with the dielectric boun-
dary. However, its amplitude is small in the quasiclassical 
behavior parameter. 

It is worth mentioning the assumption made by Maki 
and Haas [42] that noble metals (Ag, Au, Cu) may become 
p-wave superconductors with a transition temperature 
about 10 mK. Below cT  p -wave triplet superconductivity 
emerges around the periphery of the cylinder. The diamag-
netic current flowing in the periphery compensated by a 
quantized paramagnetic current in the opposite direction 
thus providing a simple explanation for the reentrant effect. 
The authors of [42] assume, like in [40], that there is a pa-
ramagnetic current in the system whose direction is oppo-
site to that of the diamagnetic current. Although its ampli-
tude is sufficient to account for the reentrant effect, the 
theory does not consider the temperature and field depen-
dences of the magnetic susceptibility in the region of su-
perlow temperatures and weak magnetic fields. 

The problem of the reentrant effect was also investi-
gated by Galaktionov and Zaikin [43] who calculated the 
diamagnetic response of the NS structure to the applied 
magnetic field on the basis of the Gorkov equations of the 
microscopic theory of superconductivity. It was concluded 
[43] that the model of free electrons cannot develop the 
paramagnetic reentrant effect for NS proximity systems. 
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3. Reentrant effect theory 

A model has been proposed to explain the nature of the 
reentrant effect [38,39]. The theory is essentially based on 
the properties of the quantized levels of a NS system. The 
Meissner effect has specific features in a superconducting 
cylinder coated with a thin normal-metal layer. The applied 
magnetic field generates superconducting current in the 
surface layer of the structure, the layer thickness being 
equal to the field penetration depth δ in the superconduc-
tor. Simultaneously, the Aharonov–Bohm effect generates 
persistent current (due to the Andreev scattering of quasi-
particles) in the normal layer near the NS boundary. If the 
N and S metals are separated by a dielectric barrier de-
stroying the Andreev mechanism of scattering, the addi-
tional current vanished in the N layer and the Meissner 
effect assumes its ordinary form. Levels whose energies 
are no more than Δ  (2Δ is the gap of a superconductor) 
appear inside the normal metal having a dielectric (va-
cuum) on one side and a superconductor on the other. Ow-
ing to the Aharonov–Bohm effect, the quasiparticle spec-
trum of the NS structure in a weak magnetic field is a 
function of the magnetic flux. A specific feature of the 
quantized Andreev levels is that in a changing field H (or 
at changing temperature T) each of the levels in the well 
coincides with a chemical potential of the metal at regular 
intervals. As a result, the system state experiences a strong 
degeneracy and the energy density of states of the NS 
sample exhibits resonance spikes [39,44]. This makes a 
significant contribution to the magnetic moment and gene-
rates the reentrant effect. The computation in [39] was 
made for orbital susceptibility. The explanation in [40] 
includes the spin (Pauli) susceptibility of the system. 

The thermodynamic potential of a NS structure in a 
magnetic field and its magnetic moment (screening cur-
rent) were calculated in [45]. This section describes the 
theory of an isothermal reentrant effect. Analitical approx-
imate computation of these values was made along with a 
numerical calculation involving the exact Andreev level 
spectrum of the NS contact. It is shown that the interpreta-
tion of the reentrant effect as a result of a simple addition 
of diamagnetic and paramagnetic currents is hardly correct. 
The simultaneous presence of two counterflowong currents 
in the N layer would mean that the preassigned magnetic 
field contains different quasiparticle trajectories which 
generate these currents. Our approach is not based on the 
Eilenberger equations [46]. The magnetic moment is calcu-
lated in terms of the thermodynamic approach. 

According to the numerical analysis, the current in the 
N layer corresponds to the minimum free energy and is 
always diamagnetic. As the magnetic field grows, a jump 
of the magnetic moment (current) occurs at certain values 
of the trapped flux and the NS system changes into a state 
having a higher lying branch. The state corresponds to the 
smaller value of diamagnetic current. Experimentally, the 

jump is interpreted as a paramagnetic addition to the cur-
rent. The diamagnetic nature of the current may be con-
nected with the significant role of the superconductor at 
whose boundary the quasiparticles experience the Andreev 
reflection. At the same time the trajectories that do not 
collide with the superconductor generate paramagnetic 
current whose amplitude is very small. 

3.1. Quasiparticle spectrum of NS  structure 

Let us consider a superconducting cylinder of the radius 
R which is coated with a thin layer d of a pure normal me-
tal. The structure is placed in the magnetic field (0,0, )HH
oriented along the symmetry axis of the structure. It is as-
sumed that the field is small enough to neglect the curva-
ture of the quasiparticle trajectories. Its influence reduces 
to the Aharonov–Bohm effect, i.e., causes an increase in 
the wave function phase of a quasiparticle moving along its 
trajectory in the field of the vector potential. 

We are proceeding from a simple model of a NS 
structure in which the order parameter changes its value 
stepwise at the NS boundary. It is also assumed that the 
magnetic field does not penetrate deep inside the super-
conductor. The coherent properties observed in a pure nor-
mal metal can be attributed to the large coherence length 

/( )N F Bk Tξ = πhv  ( Fv is the Fermi velocity, Bk  is the 
Boltzmann constant) at very low temperatures. Besides, the 
quasiparticle spectrum is obtained assuming that the curva-
ture of the NS boundary is negligible. 

One can easily distinguish two classes of trajectories in-
side the normal metal. One of them includes the trajec-
tories which collide in succession with the dielectric and 
NS boundaries (Fig. 1). The quasiparticles moving along 
these trajectories have energies E < Δ and are localized 
inside the potential well bounded by a high-dielectric bar-
rier ( ≈ 1 eV) on one side and by the superconducting gap Δ  
on the other side ( 3.56 /2B ck TΔ = , (Nb) 1.42 meV).Δ ≈  
On its collisions, the quasiparticle is reflected specularly 
from the dielectric and experiences the Andreev scattering 
at the NS boundary. We introduce an angle α  at which the 
quasiparticle hits the dielectric boundary. The angle is 
measured in the positive direction from the normal to 
the boundary (Fig. 1). In this case, the first class contains 
the trajectories with α  varying within the range 

c c−α ≤ α ≤ α  ( cα  is the angle at which the trajectory 
touches the NS boundary, sin / ( )c R R dα = + ). Another 
class includes the trajectories whose spectra are formed by 
collisions with the dielectric only, i.e., the trajectories with 

cα > α . The two groups of trajectories produce signifi-
cantly different spectra of quasiparticles. The distinctions 
are particularly obvious in the presence of the magnetic 
field. The trajectories with cα ≤ α  form a spectrum of 
Andreev levels which contains an integral of the vector 
potential field. The spectrum characterizes the magnetic 
flux through the area of the triangle between the quasipar-
ticle trajectory and the part of the NS boundary. It also 
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determines the magnitude of the screening current pro-
duced by «particles» and «holes» in the N layer. These 
states are responsible for the reentrant effect. The trajecto-
ries with cα > α  do not collide with the NS boundary. The 
states induced by these trajectories are practically similar 
to the «whispering gallery» type of states appearing in the 
cross section of a solid normal cylinder in a weak magnetic 
field [11]. These states correspond to high magnetic quan-
tum number. The spectrum thus formed carries no unfor-
mation about the parameters of the superconductor, and it 
is impossible to meet the resonance condition in this case. 
These states make a paramagnetic contribution to the 
thermodynamic of the NS structure but their amplitude is 
small ( ~ 1/ ( )Fk R ). It is therefore discarded from further 
consideration. Our interest will be concentrated on the tra-
jectories with cα < α . 

The spectrum of quasiparticles of the NS structure can 
be obtained easily using the multidimensional quasiclas-
sical method generalized for the case of the Andreev scat-
tering in the system [47,49]. After collision with the NS 
boundary the «particle» transforms into a «hole». The hole 
travels practically along the path of the particle but in the 
reverse direction. 

The spectrum was derived by quantizing the adiabatic in-
variant (1/2 ) dπ ∫ P s , where ( / )e cP p A= + , (0, ( ),0),yA x=A  

0 0 (| |/ )e cP p A= −  for a particle, and 1 1 ( / )e cP p A= +  for 
a hole. Note that each collision with the NS boundary mul-
tiplies the wave function amplitude of the quasiparticle by 
a factor of exp [ arccos ( / )]i E− Δ . Let 0L  be the length of 
the quasiparticle trajectory between the collisions at the 
boundaries of the N layer. We thus arrive at the expression 
for the spectrum of the Andreev levels in the NS structure 
[46,47]: 
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Here, 2 2( ) /
FL q p q m∗= −v , 0L  is the length of the qua-

siparticle trajectory, Fp  is the Fermi momentum, q is the 
quasiparticle momentum component along the cylinder 
axis ( Fq p≤ ), m* is the effective mass of the quasipar-
ticle, and 0 /2hc eΦ =  is the superconducting flux quan-
tum. The factor Φ  appearing in the last term in Eq. (3) has 
the meaning of «phase» 
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which is dependent on the vector potential (0, ( ),0)yA x=A . 
The spectrum of Eq. (3) is similar to Kulik’s spectrum for 
the current state of the SNS contact [50]. However, Eq. (3) 
includes an angle-dependent magnetic flux instead of the 
phase difference of the contacting superconductors. 

The length of the quasiparticle trajectory (2AB) is readi-
ly found from Fig. 1 using the sine and cosine theorems: 

 
2 2cos sin sin

1 sin
c

c
AB d

⎛ ⎞α − α − α⎜ ⎟=
⎜ ⎟− α
⎝ ⎠

 (5) 

where sin cα  = / ( )R R d+ , c c−α ≤ α ≤ α . The spectrum 
in Eq. (3) was derived assuming that the mean free path of 
the quasiparticles was much longer than the cross-section 
perimeter of the cylinder and the requirement d << R was 
obeyed. In this limit 

0
/2

22 lim
cos cosc

d dAB AB
α →π

⎛ ⎞
= = =⎜ ⎟α α⎝ ⎠

L , 

i.e., the radius R drops out from the expression for the 
spectrum. Although the boundary curvature of the sample 
is disregarded, the information about its cylindrical geome-
try is retained through a correct choice of the limits of in-
tegration for the angleα : c c−α ≤ α ≤ α . Putting 0 =L

2 / cos d= α , we obtain the following expression for the 
spectrum (as in Ref. 39): 

H

��’ a

N

S

H

� b

N
S

Fig. 1. Two classes of trajectories in the normal metal of the NS
structure in a magnetic field: trajectories forming the Andreev
levels (a); trajectories colliding only with the dielectric boun-
dary (b). 
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 ( ) ( )( )cos
, ,

2
L

n
q

E q
d

π α
α Φ = ×

hv
  

 
( ) ( ), , tan1 arccos nE q

n
⎡ ⎤α Φ α⎛ ⎞

× + − Φ⎢ ⎥⎜ ⎟
π Δ π⎢ ⎥⎝ ⎠⎣ ⎦

. (6) 

The spectrum in Eq. (6) has an important feature. As 
the phase Φ  in Eq. (6) changes, the density of states exhi-
bits resonance spikes. Every time when the Andreev level 
coincides with the chemical potential of the metal, the state 
of the NS structure suffers strong degeneracy showing up 
spikes. The dependence of the density of states upon the 
magnetic flux calculated numerically for the NS system is 
illustraited in Fig. 2. 

Note that in Refs. 45 and 51 the diamagnetic current of 
NS structure was calculated using / 2cα = π  instead of the 
upper limit of integration for the angle ( / 2cα < π ) and 
assuming implicitly an infinitely large number of Andreev 
levels. When / 2cα = π  the jumps of the density of states 
were smoothed. This assumption led the authors [43,51] to 
conclude erroneously about the absence of a «paramagnet-
ic» addition to the current of the NS structure [43]. There-
fore, these results cannot be conformed with the experi-
mental findings. The reason is not only that the calculation 
was made for a flat geometry rather than for a curved NS 
boundary. Numerical analysis shows that an adequate in-
terpretation of the experimental magnetic moment-field 
dependence is possible only with a proper choice of the 
upper limit of integration with respect to α. If cα > α  or 

/ 2cα = π , the consideration includes effectively the states 
unrelated to the Andreev levels. 

3.2. Self-consistent equation 

To calculate the phase Φ (Τ,Η) from Eq. (4), we must 
know the distribution of the vector potential field inside the 

normal metal. Zaikin [51] has shown that the proximity 
effect caused by the Meissner effect leads to an inhomoge-
neous distribution of the vector potential field over the N 
layer of the structure: 

 0 0( )
2y
xA x Hx jx d⎛ ⎞= μ + μ −⎜ ⎟

⎝ ⎠
 (7) 

where 0μ  is the permeability of free space (the SI system 
of units is employed, the geometry of the proximity model 
system is the same as in [44]). 

This expression can be obtained from the Maxwell equ-
ation 0 0rotrot (0, ,0)j= μ = μA j  assuming that the current 
density is uniform over the cross section of the conductor 
and the boundary condition 0 0x= =A , rot x d= =A

0(0,0, )H= μB  is met. The fact that the current density is 
constant in the N layer follows from spatial homogeneity 
of the density of Andreev levels over the whole thickness 
of the N layer. In cylindrical geometry if the N layer thick-
ness is not thin compared to the radius (d≥R), the current 
density is not constant in space. 

The magnetic moment per unit length of the N layer 

0

1 ( , ( ))( ) d T HM H
dH

Ω Φ
= −

μ
 

(z-component) and the current density j  are related as 

 [ ]
0

1 1( , ) ( )
2

N
z

V

dM T H dV
dH
Ω

= × = −
μ∫ r j r  (8) 

where V N  is the volume of the N layer unity height, 
( , )TΩ Φ  is the free energy per unit length. According to 

Eq. (8), the current is a function of the magnetic flux Φ  
and temperature T: 

 2
0

1 dj
dHR d
Ω

= −
π μ

 . (9) 

We can write down the self-consistent equation for 
( , )T HΦ  using Eqs. (4), (7), and (9): 

 ( , )( , ) ( ) T hT h h M
h

∗ ∂Φ
Φ = + η Φ

∂
 (10) 

where 0/h H H= , 2
0 0 0/( )H d=Φ π μ , 2 2

0 0/(3 ),d R Hη= Φ  
( ) /M d d∗ Φ = − Ω Φ  [45]. To describe the field effect on 

the magnetic moment: 

 
0 0

( , ) ( , )( , ) M T T hM T H
H h

∗ Φ ∂Φ
=

μ ∂
  (11) 

of a NS structure, it is necessary to find the dependence 
( , )T hΦ  from Eq. (10). After calculating the free energy 
( , )TΩ Φ  from the spectrum of Eq. (6), we can estimate the 

magnetic moment of Eq. (11) using the solution of diffe-
rential Eq. (10): 0 0( , ) [ ( , ) ] / ( )M T H T H h H= Φ − ημ . We 
used the «thermodynamic» approach Eq. (9), which leads 
to the first order differential equation Eq. (10) for the func-

Fig. 2. The dependence of the density of states of the NS struc-
ture on the magnetic flux Ф ( E = FE  = 0). Normalization was
performed for the flux maxΦ  corresponding to the highest value
of ( )ν Φ ( maxΦ 2.175≈ ). 
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tion ( , )T HΦ . However, another approach based on of the 
Eilenberger and Gorkov’s formalism [51,52] yields an al-
gebraic self-consistent equation (Eq. 24 of Ref. 43) for the 
phase Φ (Τ,h): 

 ( , ) const ( )T h h jΦ = + Φ  (12) 

(in notation of Eq. (10)). In this equation the function j(Φ ) 
is described by the expression of Eq. (13) in Ref. 51. 
Clearly, both approaches in Eqs. (10) and (12) lead to quite 
different dependences of ( , )M T H  on the magnetic field 
and temperature. In our point of view, self-consistent 
Eq. (12) cannot be applied to cylindrical NS structures. 
While deriving the expression for current the author [51] 
assumed that / 2cα = π  (the case of a plane). This in-
cludes allowance for the contribution to the non-Andreev 
states ( cα > α ). To calculate the thermodynamic potential 
in Eq. (10) we can use the actual magnitude of the parame-
ter cα  ( sin / ( )c R R dα = + ). The approximation d R<<  
was used only to derive of the spectrum (6). To put it diffe-
rently the disregard of the curvature of cylindrical samples 
(i.e., the path length of quasiparticles was chosen as

/ cosd α ) does not entail the need of to account for the 
states with cα > α , for the cylindrical NS of structures 
(Fig. 1). 

3.3. Analytical estimation of the magnetic moment 
of the NS structure 

We proceed from the expression for the free energy of a 
NS contact: 

 [ ]
, , ,

ln 1 exp ( ( , ) / )B n B
n q s

k T E q k T
α

Ω = − + − α∑  (13) 

where the summation is over the spin variable 1s = ±  and 
all the states related to the quasiparticles trajectories with 

cα ≤ α  in Eq. (6). Then, we obtain the following expres-
sion for the free energy per unit length L 

2( ) BRk T
Ω Φ = − ×

πh
 

2 2( , , )
ln 1 exp cos

F

F

p
n

F
Bn p

E q
p q dqd

k T

+∞+∞

=−∞−∞−

⎧ ⎫⎡ ⎤α Φ⎪ ⎪× + − − α α⎨ ⎬⎢ ⎥
⎪ ⎪⎣ ⎦⎩ ⎭

∑ ∫ ∫
 

  

(14) 

where the energy E(q,α ,Φ ) is given by the exact expres-
sion for the spectrum in Eq. (6). For simplification, we intro-
duce the dimensionless quantities ( , , ) /n nE qε = α Φ Δ , 

/ 2Fp d mσ = Δh , –1≤ nε ≤  1, (Δ  is the superconducting 
gap) and perform the change of variables {q,α } → {u,v}; 

 
( )

( )

2

2

1 cos ,

1 sin .

F

F

qu
p

q
p

⎧ ⎛ ⎞⎪ = σ − α⎜ ⎟⎪ ⎝ ⎠⎪
⎨
⎪ ⎛ ⎞
⎪ = σ − α⎜ ⎟
⎪ ⎝ ⎠⎩
v

 (15) 

The spectrum and the free energy become 

 [ arccos ]n nn uε = π+ ε −Φv  , (16) 

 2
1 2 2 20

ln 2cosh
2

( )

n
n

n S

u dud
c T

с T
u

=∞

=

⎡ ⎤ε
⎢ ⎥
⎣ ⎦Ω Φ =
σ − −

∑ ∫∫
v

v
 (17) 

where c1 = 
2

22 FR c pΔ ⎛ ⎞− ⎜ ⎟π σ⎝ ⎠h
, 2

zk
c =

Δ
, 0 u≤ ≤ σ , 

sin sinc c−σ α < ≤ σ αv , ( , , )n n uε = ε Φv , an integration 

domain S is a sector of a circle of radius σ . In the expres-
sion of Eq. (17) we also took into account the symmetry of 
the spectrum in Eq. (16) 

 1( , , ) ( , , )n nu u− −ε Φ = −ε − Φv v  . (18) 

Using the relation 

 
2

2

1

1

nn

n

d
d u

− εε
= −

Φ + − ε

v
 (19) 

we can evaluate the derivative of the free energy with re-
spect to the flux ( ) /M d d∗ Φ = − Ω Φ : 

 

2

2
3 2 2 2 20

tanh 1
2

( )
( 1 )

n
nn

n S n

u dud
c T

M с
u u

= ∞
∗

=

⎛ ⎞ε
− ε⎜ ⎟

⎝ ⎠Φ =
+ − ε σ − −

∑ ∫∫
v v

v
 (20) 

where 
2

3
FpRc Δ ⎛ ⎞= ⎜ ⎟π σ⎝ ⎠h

. Equations (10), (11), and (20) 

fully determine the nonlinear magnetic response of a cy-
lindrical NS structure to the external magnetic field H. 

The integral expression of Eq. (20) suggest that ( )M∗ Φ  
is the odd function of the flux Φ: ( ) ( )M M∗ ∗Φ =− −Φ . A 
linear term of the function ( )M∗ Φ  has been determined 
from an approximate estimation of the integral in Eq. (20). 
This calculation is similar to that in the attachment of Ref. 
39. The final expression for the magnetic moment is [45] 

 
0

0 3/220 3

ln cosh
2( , )

( , )1

A
n

n

T n
TM T h M

T hn
n

=

⎛ ⎞
⎜ ⎟
⎝ ⎠=

⎧ ⎫Φ⎪ ⎪⎛ ⎞+⎨ ⎬⎜ ⎟π⎝ ⎠⎪ ⎪⎩ ⎭

∑  (21) 

where 1/ 2n n= + , / (2 )A F BT v dk= πh  is the Andreev 

temperature, ( )2
0 3 / ( , )[ ( , )/ ]AM c T T T h T h h= − σ Φ ∂Φ ∂

 
the 

phase ( , )T hΦ  is a solution of differential Eq. (10), n 0  is 
the number of Andreev levels in the potential well 

0
( , )( tan )c
T hn Φ

≈ α
π

. Equation (21) shows that the mag-

netic moment is diamagnetic in the range of small fields 
( ( )  consth hΦ = , const > 0) and allows for the contribu-
tions of particles and holes. 
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Compare the behavior of the magnetic moment ampli-
tude of the NS structure and the case of a normal solid cy-
linder. According to Eq. (21), at very low temperatures, 
T << TA, M(T,h) behaves as M(T,h) ~ TA/2T = ћvF/2πkBTd. 
In the model used, in which there is no explicit dependence 
of the spectrum upon the cylinder radius R, the amplitude 
of the effect decreases with the increasing thickness d of 
the normal layer as 1/d. The decrease accounts for the me-
soscopic character of the changes in the magnetic moment 
but it is weaker in comparison with the case of specular 
reflection of electrons from the cylinder walls. In the latter 
case the effect amplitude decreases exponentially with an 
increasing cylinder radius. 

3.4. Numerical results 

Let us compare two approaches described above for the 
calculation of the magnetic moment of the NS structure. 
Figure 3 shows the function ( )M∗ Φ  and the dependence of 
current on the magnetic flux obtained in the Green’s func-
tion approach. 

For comparison, we obtained the dependence M*(Φ) 
using the same value /2сα = π  as the used in the deriva-
tion of the formula j (Φ) in Ref. 43. In the initial part (li-

near in the Φ) both the curves coincide. In this approxima-
tion (Φ(h) = const h ) the self-consistent Eq. (10) turns 
into Eq. (12). Thus at small values of the magnetic field we 
can obtain identical field dependences of the magnetic 
moment M(T,h) for the NS structure in both approaches. 
However, in large field the behavior M(T,h) is quite differ-
ent. To calculate M(T,h) from Eq. (10), we have used the 
following physical values of the NS structure: R = 8.3 μm, 
d = 3.2 μm ( сα  = 36°), ( )AuFv  = 1.4 810⋅ cm/s, Δ(Nb) = 
= 1.12 meV (σ = 0,644, 3nη %  = 5.3 310⋅ ). The selected pa-
rameters are close to those used in the experiment 
[32,33,35]. 

The numerical renormalized density of states of the NS 
structure is shown in Fig. 4 as a flux at the energy equal to 
the Fermi energy. 

It is seen that the period of the density of states jumps 
decreases as the critical angle cα  increases. Finally, at 

/ 2cα = π  the jumps vanish and the density of states is 
describes by a smooth curve. The dependences of the den-
sity of states on energy at different fixed values of the flux 
Ф = 0.1 and 2 are illustrated in Figs. 5 and 6, respectively. 

Fig. 3. The magnitudes of ( ) / (0.1)M M∗ ∗Φ  and ( ) / (0.1)j jΦ
as a function of the flux Ф. 
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It is seen that all the features ( , )ν ε Φ  become smoothed at 
/ 2cα = π . 

The results of calculation by Eqs. (17) and (20) are il-
lustrated in Figs. 7, 8. While plotting Fig. 7, the non-
zero  quantity Ω(Φ = 0) was omitted. The dependence 

( ) /M d d∗ Φ = − Ω Φ  (Fig. 8) crosses the abscissa thereby 
determining singular points of differential Eq. (10). The 
dependence Φ(T,h) calculated through numerical solution 

of the self-consistency Eq. (10) exhibits jumps and is illu-
strated in Fig. 9,a. for the branches corresponding to the 
minimum of the Gibbs free energy [45]: 

 2
0
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1( , ) ( , ) ( )
2

NV
G T H T H dVB H= Ω + −μ

μ ∫  (22) 
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the flux Ф. 
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where rot=B A , (0,0, )H=H H . The magnetic moment 
M(h) and the free energy Ω(h) as function of the magnetic 
field are shown in Fig. 10, a and Fig. 9,b. Each jump ΔΩ  
of the free energy (see Fig. 10,b) is accompanied by jump 
of the magnetic moment MΔ  (see Fig. 10,a) in such a way 
that the Gibbs free energy (22) near the points where the 
magnetic moment has jumps because it is beyond the se-
miclassical approximation adopted in this article. 

The critical parameters h1, h2, 1MΔ , 2MΔ  as a func-
tion of the normal layer thickness d and the radius R of the 
superconducting cylinder (Figs. 11–14). 

4. Conclusions 

The goal of our study was to interpret the experiments 
performed by A.C. Mota et al., [32,33], who detected an 
anomalous behavior of the magnetic susceptibility of the 
NS structure in a weak magnetic field at millikelvin tem-
peratures. Previously [38,39], the anomalous behavior of 
the NS structure was attributed to the properties of the 
quantized Andreev levels depending on the magnetic flux 
that varies with the temperature and magnetic field. We 
used the thermodynamic approach to calculate the magnet-
ic moment of the normal region of the NS structure. Within 
the framework of self-consistent Eq. (10), we have ma-
naged to trace the role of the parameter сα  in thermody-
namics of NS structures (Figs. 3 and 7). The failure of the 
quasiclassical Green-function technique to explain the ex-
perimental data (Mota et al.) results from accounting for 
non-Andreev states ( сα > α ) while considering cylindrical 
NS structures. Geometrically, this can be seen in Fig. 1. 
The quasiparticle trajectories ( cα > α ) hitting the dielec-
tric boundary only are responsible for the paramagnetic 
current of small amplitude [~ 1/ ( )]Fk R  (we neglected this 
current). 

The proximity effect is crucial for the reentrant effect. 
The amplitude of the resonance spikes in the density of 
states strongly depends on the probability of the Andreev 
reflection at the NS boundary. It is therefore assumed that 
the normal metal and the superconductor are in a good 
electric contact. The spectrum in Eq. (6) was obtained us-
ing the multidimensional quasiclassical approach [47,49]. 
In doing so, we assumed (i) the condition of smallness of 
the N layer thickness in comparison with the radius of the 
cylindrical superconductor, (ii) the validity of the model of 
stepwise varying order parameter of the structure, (iii) the 
independence of Δ of the magnetic field. This permitted us 
to pass over from a curved NS boundary to a flat one. The 

Fig. 11. The dependence of the relative value of the magnetic
moment jump upon the normal layer thickness. 
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information about the cylindrical geometry of the sample 
was retained because the critical angle at which quasipar-
ticle hits the dielectric boundary α is smaller cα . The 
problem was further simplified by assuming that the re-
flected quasiparticle performed a reciprocating motion, i.e., 
a particle and a hole pass along the same trajectory but in 
opposite direction. Actually, here there exists a lot of qua-
sireciprocating trajectories with energies near Ε = 0. These 
trajectories lead to the spikes in the density of states and 
were taken into account for numerical computation. The 
numerical calculation shows that the nonlinearity of flux 
Φ(T,h)-field dependence (T = const) (Fig. 9,a) gives rise to 
quite interesting features of M(T,H). The magnetic moment 
in the N layer appears to be always diamagnetic. The pa-
ramagnetic contribution to current (the paramagnetic reen-
trant effect) was not detected. However, we have obtained 
a stepwise change in the magnitude of the magnetic mo-
ment with increasing magnetic field (Fig. 10,a). This beha-
vior can be interpreted as a manifestation of paramagnetic 
additives in the magnetic moment. The behavior of the NS 
structure changes from one stable state to another and the 
magnetic field penetrates further into the bulk of the N 
layer. The state has a smaller absolute value of the di-
amagnetic moment, which is interpreted experimentally as 
evidence of a paramagnetic addition in the system 
(Fig. 10,b). When the field grows further, ( )M H  incre-
ases again until its value makes the system jump to the 
next stable state with a smaller absolute value of the dia-
magnetic moment, and the magnetic field penetrates dee-
per inside the normal metal (Fig. 10,a). The number of the 
moment jumps depends on the number of the Andreev le-
vels in the NS structure. Under the isothermal condition, 
the magnetic field in which jumps occur, do not coincide 
when the magnetic field changes from small to larger va-
lues and in the opposite direction because of a special de-
pendence of the Gibbs free energy on the field. This sort of 
hysteresis was observed experimentally in Refs. 33 and 35. 

Numerical comparisons between data presented at 
Figs. 10, a,b show that M(T,H) (Fig. 10,a) gives the quali-
tative description of the experimental data which obey the 
scalling rule: exp exp calc calc

2 12 1/ / 5/2H H  H H  = . For the quan-
titative description of the temperature and magnetic field 
dependence of the magnetic moment NS structure, it will 
be important to take into account the exact spectrum of 
Andreev levels, the latter is supposedly possible within the 
framework of the Bogoliubov–de Gennes equations only. 

Note that our consideration was entirely based on the 
model of free electrons without account for of strong elec-
tron–electron repulsion. 
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