ИССЛЕДОВАНИЕ СВЕРХПРОВОДИМОСТИ МАССИВНОГО MgB₂ И ex situ-ПРОВОДОВ Fe(СТАЛЬ)/MgB₂

И.Ф. Кисляк¹, М.А. Тихоновский¹, Д.Г. Малыхин¹, Т.Ю. Рудычева¹, В.Г. Яровой¹, А.А. Блинкин¹, В.В. Деревянко¹, С.Ю. Саенко¹, Г.А. Холомеев¹, А.Г. Сиваков², А.С. Похила², О.Г. Турутанов²

¹Национальный научный центр "Харьковский физико-технический институт", Харьков, Украина; E-mail: tikhonovsky@kipt.kharkov.ua;

²Физико-технический институт низких температур им. Б.И. Веркина НАНУ, Харьков, Украина

Образцы диборида магния разных составов были получены путем твердофазного синтеза с применением как обычного, так и горячего газостатического прессований. Часть образцов была использована для изготовления методом *ex situ* «порошок в трубе» проводов с сердцевиной из MgB_2 и оболочкой из чистого железа и нержавеющей стали. Изучены структура и сверхпроводящие характеристики образцов диборида магния и влияние отжига на сверхпроводящие характеристики проводов.

введение

Стремительное развитие исследований проводников на основе сверхпроводящего соединения MgB_2 делает весьма реальной перспективу их технического применения при температурах ниже 30 К. Сообщения о достижениях все более высоких значений плотностей критических токов в проводах и лентах при умеренных магнитных полях [1,2] вселяют прочную надежду на то, что вскоре эти проводники могут стать экономически более выгодными при гелиевых температурах, чем промышленные провода и кабели на основе NbTi и Nb₃Sn. В области прикладной сверхпроводимости при температурах 20...30 К проводники на основе MgB₂ вскоре могут серьезно потеснить промышленные ленты на основе BTСП-материалов.

Основным способом получения диборида магния является твердофазный синтез в той или иной модификации. В частности, одним из довольно плодотворных выглядит синтез в условиях высокого давления [3]. Как и ВТСП-керамики, соединение MgB₂ хрупко и потому не может быть непосредственно изготовлено в виде провода или ленты. Наиболее широко используемым сейчас методом изготовления проводников на основе MgB2 (как и для ВТСПкерамики) является метод "порошок в трубе" (ПвТметод). Он, преимущественно, применяется в двух вариантах: in situ и ex situ. В in situ ПвТ-методе тщательно перемешанные стехиометрические смеси порошков магния и бора запрессовываются в металлической трубке, после чего она тянется в провод. Сверхпроводящая сердцевина провода из MgB2 образуется в результате окончательного отжига провода в области температур, обычно, 600...950 °C. В ex situ ПвТ-методе, напротив, металлическая трубка заполняется порошком предварительно уже синтезированного соединения MgB₂, затем тянется в провод, который может и не подвергаться окончательной термообработке. Оба варианта имеют свои достоинства и недостатки; в частности, существенным преимуществом метода in situ является возможность введения наноразмерных примесей для создания искусственных центров пиннинга в MgB₂-матрице, что существенно повышает плотность критического тока провода во внешнем поле. С другой стороны, метод *ex situ* позволяет избежать (зачастую нежелательного) взаимодействия MgB₂ с металлической оболочкой.

В настоящей работе представлены результаты исследований ряда массивных образцов диборида магния, отличающихся атомными соотношениями магния и бора и технологиями получения, а также проводов и лент на основе MgB₂, изготовленных по *ex situ* ПвТ-методу.

1. МАТЕРИАЛЫ И МЕТОДИКА ИССЛЕДОВАНИЙ 1.1. Синтез MgB₂

Массивные образцы MgB2 изготавливались методом твердофазного синтеза. Сырьем служили порошок аморфного бора марки 99Б и две партии порошков магния. Смеси порошка бора с порошком магния чистотой 98% был присвоен номер 1, а смеси с чешуйками магния чистотой 99,96% - номер 2. В каждой из смесей 1 и 2 атомные отношения Мg:В имели три значения: 1:2 (стехиометрическая смесь, обозначаемая в дальнейшем как смесь А); 1,5:2 (смесь Б); 2:2 (смесь В). Избыточные по магнию в сравнении со стехиометрической смеси Б и В готовились с целью восполнения возможных потерь магния при синтезе вследствие его высокой летучести. Из полученных таким образом шести видов смесей порошков при давлении Р≈700 МПа прессовались «таблетки» диаметром 10 мм и высотой 1...3 мм. Были использованы две схемы твердофазного синтеза, называемые в дальнейшем стандартным синтезом (сокращенно СС) и горячим газостатическим прессованием (сокращенно ГГП). По ССсхеме таблетки заворачивались в циркониевую или танталовую фольгу и помещались в железную ампулу, где проводилось их вакуумное обезгаживание при температуре порядка 300 °С. Затем ампула герметично закрывалась и помещалась в вакуумную отжиговую печь, в которой и проводился твердофазный синтез соединения MgB₂ при температуре 800...850 °С в течение 2 ч. Отметим, что получаемые в результате материалы существенно различались по качеству: из смеси 1 получались достаточно плотные, преимущественно не искаженной формы таблетки, пригодные для дальнейшей механической обработки, в то время как смесь 2 давала, главным образом, разбухшие рыхлые тела, которые крошились и рассыпались при попытках их обработки. В связи с этим все исследования массивного соединения MgB₂ выполнялись на таблетках из смеси 1, а синтезированный из смеси 2 диборид магния после размола использовался при изготовлении ex situпроводов. По ГГП-схеме таблетки плотно вставлялись в тонкостенную трубку из нержавеющей стали, имеющую вакуумно-плотную заглушку на одном конце. Из таблеток таким образом набирался столбик высотой около 40 мм, который затем дополнительно подпрессовывался, после чего второй конец трубки закрывался заглушкой с капиллярным отверстием. Такая сборка помещалась в вакуумную печь, подвергалась вакуумному обезгаживанию при температуре порядка 300 °C, затем капиллярное отверстие заваривалось лазерным лучом. После этого проводился твердофазный синтез в среде аргона при давлении Р≥100 МПа и температуре 820...850 °C также в течение 2 ч. По ГГП-схеме были изготовлены образцы двух составов: 1А и Mg:B=0,9:2. Последний состав было решено испытать в связи с имеющимися сообщениями (см., например, [4]), что такой достехиометрический состав обладает рядом интересных свойств.

1.2. Рентгеноструктурный анализ

Рентгеноструктурный анализ синтезированного диборида магния либо в виде таблеток, либо в виде порошка проводился на дифрактометре ДРОН-4-07 в Си K_{α} -излучении. Полученные на самописце интегральные дифрактограммы обсчитывались, и полученные результаты обрабатывались с помощью компьютерной программы [5].

1.3. Изготовление проводов и лент

Порошки синтезированных, а затем размолотых образцов составов 2А, 2Б и 2В были использованы для изготовления проводов по *ex situ* ПвТ-методу. В качестве материалов трубок (оболочек) были выбраны чистое железо и нержавеющая сталь. Волочение сборок трубка-порошок велось без промежуточных отжигов от диаметра 5 или 10 мм до диаметра 1 мм, после чего диаметр порошковой сердцевины составлял около 0,5 мм. От проводов диаметром 1 мм отрезались образцы для приготовления продольных и поперечных шлифов. Затем провода обрабатывались по ряду «маршрутов», состоявших из тех или иных сочетаний процессов волочения и термообработки. Режимы термообработки были таковы: температуры от 600 до 850 °С, времена отжигов 1...2 ч. Некоторые «маршруты» включали в себя также прокатку проволок, в результате чего получались ленточные проводники.

1.4. Исследование микротвердости

Измерения микротвердости H_{μ} выполнялись на шлифах массивных образцов или проводов с помощью микротвердомера ПМТ-3 при нагрузке до 200 г. Микротвердость определялась как среднее значение по результатам измерений не менее 5 отпечатков.

1.5. Исследование сверхпроводящих характеристик

Сверхпроводящие характеристики исследуемых образцов определялись как из четырехточечных резистивных измерений, так и из магнитных измерений, а также из серий вольт-амперных характеристик V(I), измеренных в интервале температур 4,2...300 К. Массивные образцы представляли собой бруски с характерными размерами $10\times3\times1,5$ мм, образцы проводов - длиной 50 мм. Сверхпроводящая сердцевина проводов имела диаметр 0,2...0,5 мм, а в лентах – сечение 50×400 или 50×800 мкм.

2. РЕЗУЛЬТАТЫ

Рентгеноструктурный анализ синтезированных таблеток MgB₂ показал (рис.1), что основной примесной фазой является оксид MgO, обнаруживаемый практически во всех образцах. Кроме того, иногда наблюдаются следы В и Mg, причем для магния не обнаружена зависимость количества и интенсивности дифракционных линий от соотношения Mg:В в исходных смесях порошков. Значения параметров элементарной ячейки соединения MgB₂, рассчитанные по экспериментальным дифрактограммам, таковы: *a*=3,087...3,092 A, *c*=3,526...3,534 A, а их отношение *c*/*a*=1,141...1,143.

Изучение поперечных и продольных шлифов проводов, выполненное с помощью оптического микроскопа, показало, что порошки размолотых таблеток MgB₂ в незначительном количестве могут содержать зерна с максимальным размером до 30 мкм. Изучение массивных образцов MgB₂ показало, что СС-метод приготовления дает таблетки с довольно низкой плотностью $d \sim 1, 1 \, \text{г/см}^3$, в то время как ГГП-образцы обладают высокой плотностью d=2,43...2,45 г/см³, близкой к теоретической, а их микротвердость H_{μ} =760...930 кГ/мм². Обнаруженные значения H_{μ} , с одной стороны, заметно превышают те, что были найдены авторами работы [6], с другой стороны, они все же меньше характерных величин микротвердости известных боридов металлов (например, у самых «мягких» боридов кобальта никеля микротвердость составляет около И 1150 кГ/мм² [7]).

Резистивные измерения показали, что все массивные образцы имеют малую ширину сверхпроводщего перехода $\Delta T_c < 0,5$ К, определенную по критерию $(0,1...0,9)R_n$, и критические температуры $T_c=37,4...40,9$ К, соответствующие середине перехода R(T), т.е. R=0,5 R_n . Наиболее высокой T_c обладают образцы состава Mg:B=1:2. На рис. 2,а приведены нормированные кривые переходов для образцов 1А, 1Б и 1В.

При последовательном уменьшении поперечного сечения образцов наблюдается снижение T_c и уширение кривой перехода R(T) (см. рис. 2,6), что свидетельствует о структурной неоднородности материала по объему образцов и о перколяционном характере сверхпроводимости в них.

Рис. 1. Рентгеновская дифрактограмма образца MgB₂ состава 2A, изготовленного по схеме стандартного синтеза

Рис. 2. Нормированные кривые сверхпроводящих переходов массивных образцов диборида магния различных составов (a) и образца состава 1В по мере его утончения (б)

Результаты изучения магнитной восприимчивости ГГП-образцов показаны на рис. 3. Видно, что образцы обладают высокой температурой начала сверхпроводящего перехода $T_{co} \approx 39...40$ К и резким переходом без «хвоста». Это свидетельствует о высокой однородности образцов.

Сверхпроводящие переходы неотожженных образцов *ex situ*-проводов представлены на рис. 4,а. Ширина переходов составляет 2...4 К при температуре начала перехода T_{co} =36...37,5 К и температуре середины перехода T_c =33,9...34,9 К. Самые узкие переходы при высоких значениях T_c наблюдаются в

проводах с составом Mg:B=1:2. Критическая плотность тока j_c неотожженных проводов при T=4,2 К превышает 6,5·10⁴A/см² в нулевом внешнем магнитном поле.

Рис. 3. Температурная зависимость магнитной восприимчивости ГГП-образцов двух составов

Рис. 4. Кривые сверхпроводящих переходов неотожженных (а) и отожженных (б) ех situ-проводов

Отжиг проводов привел к заметному повышению температуры начала перехода (*T_{co}*=38...39 К) (см. рис. 4,б). Вместе с тем, сверхпроводящие переходы сильно уширились (примерно до 10 К) и стали ступенчатыми. На них наблюдается узкая (1...1,5 К) часть резкого падения сопротивления в начале перехода, а затем следует выраженный «хвост». Для большей наглядности на рис. 5 показаны наложенные друг на друга кривые переходов проводов до и после отжига для составов 2А (см рис. 5,а) и 2Б (см. рис. 5,б). Это может свидетельствовать о том, что в сверхпроводящей сердцевине проводов, с одной стороны, возникли области (зеренные кластеры) высокого качества с достаточно совершенной структурой и высокими сверхпроводящими параметрами (Т_с и јс), разделенные, с другой стороны, несовершенными областями с ухудшенными характеристиками,

что стало причиной и очень затянутого сверхпроводящего перехода, и снижения критического тока отожженных образцов провода при T=4,2 К до $I_c=35...45$ А ($j_c=(5...6,5)\cdot10^4$ А/см²).

Рис.5. Наложение кривых сверхпроводящих переходов неотожженных и отожженных ex situ-проводов двух составов: 2A (a) и 2Б (б)

выводы

1. Методами твердофазного синтеза («стандартного» и с применением горячего газостатического прессования) получены образцы диборида магния с шириной перехода в сверхпроводящее состояние (по резистивным измерениям) в несколько десятых градуса Кельвина и серединой перехода при $T_c=37...41$ К. Образцы, изготовленные ГГП- методом, имеют высокую плотность, близкую к теоретической, и высокую микротвердость.

2. Методом *ex situ* «порошок в трубе» изготовлены сверхпроводящие провода с сердцевиной из MgB₂ и оболочкой из чистого железа и нержавеющей стали.

3. Плотность критического тока в неотожженных проводах превышает 6,5·10⁴ А/см² в собственном магнитном поле. Отжиг проводов приводит к повышению температуры начала сверхпроводящего перехода, но сам переход становится ступенчатым, что, по-видимому, свидетельствует о структурной неоднородности MgB₂-сердцевины. С этой же неоднородностью может быть связано и понижение токонесущей способности отожженных проводов.

Авторы благодарят В.П. Серых за помощь в обработке рентгеновских дифрактограмм и А.Н. Великодного за помощь в изготовлении ряда образцов.

ЛИТЕРАТУРА

1. C.H. Jiang, T. Nakane, H. Hatakeyama, and H. Kumakura // *Physica C*. 2005, v. 422, p. 127.

2. M.J.Holcomb *Physica C.* 2005, v.423, p.103.

3. Я.М. Савчук, Т.А. Прихна, Н.В Сергиенко, В.Б. Свердун и др. Сборник докладов Международной научной конференции «Актуальные проблемы физики твердого тела» ФТТ-2005. Белорусь, Минск, 2005, с.3 2-35.

4. G.J. Xu, R. Pinholt, J. Bilde-Sørensen, J.C. Grivel, et al. // *Physica C*. 2006, v.434, p.67.

5. В.П. Серых, Л.М. Серых. Компьютерные методы в рентгеновской дифрактометрии поликристаллов. Харьков: ННЦ ХФТИ, 2004, 118с.

6. I. Hušek, P. Kováč, C.R.M. Grovenor, and L. Goodsir // Supercond.Sci. Technol. 2004, v.17, p.971.

7. А.А. Иванько. *Твердость*: Справочник / Под ред. Г.В. Самсонова. Киев: «Наукова думка», 1968, 127 с.

Статья поступила в редакцию 09.10.2009 г.

ДОСЛІДЖЕННЯ НАДПРОВІДНОСТІ МАСИВНОГО MgB₂ ТА *ex situ*-ДРОТІВ Fe(СТАЛЬ)/MgB₂

І.П. Кісляк, М.А. Тихоновський, Д.Г. Малихін, Т.Ю. Рудичева, В.Г. Яровий, А.А. Блінкін, В.В. Дерев'янко, С.Ю. Саєнко, Г.О. Холомєєв, О.Г. Сиваков, А.С. Похила, О.Г. Турутанов

Зразки диборида магнія різних складів були одержані шляхом твердофазного синтезу із застосуванням як звичайного, так і гарячого газостатичного пресувань. Частина зразків була використана для виготовлення методом *ex situ* «порошок у трубці» дротів з серцевиною з MgB₂ та оболонкою з чистого заліза або нержавіючої сталі. Вивчені структура та надпровідні характеристики зразків диборида магнія, а також вплив відпалів на надпровідні характеристики дротів.

INVESTIGATIONS OF SUPERCONDUCTIVITY IN MgB₂ BULK AND Fe(STEEL)/MgB₂ WIRES

I.F. Kislyak, M.A. Tikhonovsky, D.G. Malykhin, T.Yu. Rudycheva, V.G. Yarovoy, A.A. Blinkin, V.V. Derevyanko, S.Yu. Sayenko, G.A. Kholomeyev, A.G. Sivakov, A.S. Pokhila, O.G. Turutanov

Magnesium diboride samples of various compositions have been prepared through the solid state synthesis route using both conventional and gasostatic pressing. A portion of samples has been used to produce *ex situ* powder-in-tube wires with MgB₂ core and pure iron or stainless steel sheathe. Structure and superconducting characteristics of bulk magnesium diboride as well as heat treatment effects on superconducting properties of wires have been investigated.