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In this paper we discuss solid-state nanoelectronic realizations of Josephson flux qubits with
large tunneling amplitude between the two macroscopic states. The latter can be controlled via
the height and form of the potential barrier, which is determined by quantum-state engineering of
the flux qubit circuit. The simplest circuit of the flux qubit is a superconducting loop interrupted
by a Josephson nanoscale tunnel junction. The tunneling amplitude between two macroscopically
different states can be increased substantially by engineering of the qubit circuit if the tunnel
junction is replaced by a ScS contact. However, only Josephson tunnel junctions are particularly
suitable for large-scale integration circuits and quantum detectors with present-day technology.
To overcome this difficulty we consider here a flux qubit with high energy-level separation be-
tween the “ground” and “excited” states, consisting of a superconducting loop with two low-
capacitance Josephson tunnel junctions in series. We demonstrate that for real parameters of
resonant superposition between the two macroscopic states the tunneling amplitude can reach
values greater than 1 K. Analytical results for the tunneling amplitude obtained within the semi-
classical approximation by the instanton technique show good correlation with a numerical
solution. © 2008 American Institute of Physics. �DOI: 10.1063/1.2967504�
I. INTRODUCTION

Since the successful demonstration of Rabi oscillations
and Landau–Zener coherence effects,1–5 the superconducting
qubits �quantum bits� based on mesoscopic Josephson junc-
tions have become the subject of consideration as possible
candidates to be the basic elements of quantum computer
hardware,6,7 including detectors for measuring the state of an
individual qubit.8–12 The Josephson junction �JJ� qubits have
two energy scales, which are the Josephson coupling energy
EJ and the charging energy EC of the JJ, and they are subdi-
vided into flux qubits, charge qubits, and charge-phase qu-
bits. In principle, all circuits of a quantum computer can be
fabricated by modern techniques using these superconduct-
ing qubits. However, it is but poor quality6,13 of the experi-
mentally tested elements that is the limiting factor on the
way of implementation of quantum registers. For example,
an important but still unsolved problem in the physics of a
qubit working in the charge regime with EC /EJ�1 is a sub-
stantial decrease of the high spectral density of the noise
associated with the motion of charge in traps.

In turn, the phase qubit �EJ /EC�1�, which utilizes the
phase of the superconducting order parameter as a dynamical
variable, is much less sensitive to the charge fluctuations but
is subject to the influence of noise in the critical current of
the JJ, spin fluctuations, and Nyquist noise currents gener-
ated by excess ambient temperature.
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The tunnel splitting of the energy levels arising from the
coherent superposition of the macroscopic states is usually
small, �E01�150–250 mK. Taking into account the effec-
tive noise temperature, which can reach Teff�50–100 mK in
experimental studies of the qubit dynamics, leads to a dra-
matic fall of the decoherence times �� and relaxation times
��.14–16 This means that, in order to enhance considerably the
qubit quality6 �the number of one-bit operations during the
coherence time�, a system with large ��E01�1 K� tunnel
splitting of the energy levels should be created.

Undoubtedly, the problem of creation of a quantum reg-
ister based on Josephson qubits brings up many issues, but
presently the invention of a high-quality qubit is the most
important one among them. It is easy to show that the rate of
energy exchange between two macroscopic states in a flux
qubit is bounded by the “cosine” shape of the potential bar-
rier and cannot be increased owing to decreasing the barrier
height, since the latter determines the characteristic rate of
thermal decay of the current-flow states. A similar limitation
associated with the lowering of the effective barrier height
can appear also when greatly increasing the pre-exponential
factor. It is absolutely obvious that the ideal case for a flux
qubit is when the tunnel barrier in the phase space looks like
�-shaped function having sufficiently large height and small
action. It was this issue that motivated the authors of Ref. 13
to analyze the phase-slip qubit, whose creation required de-
© 2008 American Institute of Physics
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veloping a new non-Josephson technology. In this paper we
search for an improved barrier design for the JJ flux qubit.

Recently in Ref. 11 it was demonstrated how the level
splitting can be increased at low temperatures �T→0� by an
order of magnitude with the potential barrier height kept un-
changed by modifying the qubit’s potential barrier shape
through the use of a clean-limit ScS junction in the super-
conducting ring. However, the fabrication difficulties of ob-
taining pure and reproducible ScS junctions are a serious
hindrance in the way of designing large-scale integrated qu-
bit circuits.

To solve this problem, in the present paper an analysis is
made of the two-Josephson-junction flux qubit �2JJ flux qu-
bit�, which can be considered as a superconducting ring of
inductance L interrupted by two almost equivalent tunnel SIS
junctions with Josephson energies EJ1 and EJ2, critical cur-
rents Ic1 and Ic2, and capacitances C1 and C2, respectively
�see Fig. 1a and 1b�. The difference between the two SIS
mesoscopic junctions will be characterized by the asymmetry
parameter �= Ic2 / Ic1=EJ2 /EJ1=C2 /C1	1, so that “junction
1” would have greater or equal values of the Josephson en-
ergy, critical current, and capacitance as compared to “junc-
tion 2.” The external magnetic flux 
e can be coupled to the
qubit by a separate coil located in close proximity to the
qubit’s loop. It is well known that in the classical limit the
circulating current Is as a function of external magnetic flux
for dc SQUIDs with Ic1= Ic2 has singularities at the points

e=
0�n+1 /2� �
0 is the flux quantum�, so that the two-
junction interferometer can be considered as a “single-
junction” one with a modified potential energy shape in
phase space. Below we indicate conditions for the proposed
2JJ flux qubit under which the classical Josephson relation-
ship between the phase differences on the JJ contacts is re-
tained in the quantum regime, phase �flux� is a good quantum
variable, and the charging effect on the island between JJ
contacts is negligible. The problem lies in determining and
analyzing the tunnel splitting �E01=E1−E0 of the degenerate
zero energy level in the double-well symmetric potential of a
2JJ flux qubit �at corresponding external conditions� result-
ing from the coherent quantum tunneling of the magnetic
flux between the wells. In the proposed mesoscopic system
in the quantum regime, the two lower energy levels E and

FIG. 1. Schematic picture of the proposed 2JJ flux qubit with a SQUID
configuration �a� and its circuit diagram �b�. The loop carrying supercurrent
Is is pierced by an externally applied magnetic flux 
e �towards the viewer�.
The individual SIS Josephson junctions are characterized by coupling ener-
gies EJ1, EJ2, critical currents Ic1, Ic2, and capacitances C1, C2 which do not
differ significantly. The loop inductance L is small enough that the 2JJ
SQUID has only two metastable flux states. The parameter g0

min

=EJ��� /EC�1 �see below�.
0

ownloaded 01 Aug 2013 to 132.174.255.3. This article is copyrighted as indicated in the abstract. R
E1 arising from coherent superposition of the macroscopi-
cally distinct flux or persistent-current states form a qubit. It
turns out that, because of the change in the form of the po-
tential energy of the 2JJ flux qubit as compared to the 1JJ
qubit, the tunnel splitting �E01 can rise manyfold, reaching
values �1 K �in temperature units� and substantially en-
hance the properties of the qubit as a basic element for quan-
tum computations. The sensitivity of the �E01 magnitude to
� as well as to the junction parameters can limit applications
based on the 2JJ flux qubit both for quantum computation
and quantum detectors.

II. THEORETICAL MODEL AND RESULTS

We will discuss the 2JJ flux qubit in the approximation
of the Hamiltonian of an isolated system in the zero tempera-
ture limit. All the dissipative processes associated with the
internal and the external �with respect to the system� degrees
of freedom—the quasiparticles, the magnetic flux fluctua-
tions in the qubit and in the outer measuring circuit, etc.—
are neglected in this approximation. In the framework of this
approximation, only the supercurrent component flows in the
qubit ring, and in the classical regime, according to the Jo-
sephson relation, it is equal to

Is = Ic1 sin �1 = Ic2 sin �2, �1�

where �1 and �2 are the order parameter phase differences at
the corresponding tunnel junctions. It is convenient to mea-
sure the values of the supercurrent Is and the phase differ-
ences at the junctions clockwise, the applied magnetic flux

e, the total magnetic flux in the ring 
, and the supercur-
rent Is being tied by the relation 
=
e−LIs�
�. The classi-
cal Hamiltonian of the 2JJ flux qubit in the approximation of
an isolated system contains the contributions of the electro-
static energy of the charges in the junction capacitances, the
junction Josephson energies, and the magnetic energy of the
supercurrent in the ring, and has the form:

H =
�2eN0�2

2
� 1

C1
+

1

C2
� − �EJ1 cos �1 + EJ2 cos �2�

+
�
 − 
e�2

2L
+ E0, �2�

where N0 is the number of the excess �deficient� Cooper pairs
in the banks of the SIS Josephson junctions, and E0 is a
constant fixing the reference level for the potential energy.
Using relation �1�, we will reduce the expression for the
Josephson energy in the classical Hamiltonian �2� to the form

UJ
0��� = − EJ��� = − �EJ1 cos �1 + EJ2 cos �2�

= − EJ1
��1 − ��2 + 4� cos2��/2� ,

where a new variable of the overall phase �=�1+�2 is in-
troduced.

The proposed 2JJ qubit system is topologically analo-
gous to the charge-phase qubit,8,17 representing a single-
Cooper-pair tunneling �SCPT� transistor �which consists of
two Josephson junction contacts with the voltage gate next to
the island between them� inserted in a superconducting ring.
Therefore the structure of the Josephson energy in the
Hamiltonian �2� of the 2JJ qubit is similar to that of the
euse of AIP content is subject to the terms at: http://ltp.aip.org/about/rights_and_permissions
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charge-phase qubit. The main difference, affecting the form
of the Josephson energy, lies in that: �i� in the 2JJ qubit there
is no charge gate, and no polarization charge Q0 is induced
through it on the island; �ii� the charge-phase qubit is de-
signed to work in the charge mode, whereas the 2JJ qubit is
designed to work in the flux mode, that is, in the extreme
opposite dynamic regime. In an earlier paper9 devoted to a
quantum detector based on the SCPT transistor, a study was
made of its working regimes that depend on the form of the
Josephson energy of the system �formulas �1� and �2� of Ref.
9�: UJ�� ,��=−�EJ1 cos �1+EJ2 cos �2�=−EJ���cos��
+����=−EJ���cos �, �= ��1−�2� /2, tan ���= ��−1� / ��
+1��tan�� /2��, and can be characterized by the parameter
g0=EJ��� /EC, where EC=e2 /2C is the characteristic charg-
ing energy of the island between JJ contacts, C=C1+C2

+Cg being the total capacitance of the island with respect to
the rest of the system �C=C1+C2 for the 2JJ qubit, as Cg

=0�. The parameter g0 crucially determines the mutually
conditioned quantum-averaged supercurrent �current-phase
relation� Is��� and effective Josephson energy UJ��� of the
SCPT transistor and of the charge-phase qubit based on it,
respectively.8 In solving the Schrödinger equation, the super-
current Is���= Is

0���	cos �
 is represented as an appropriate
supercurrent in the classical limit Is

0���, multiplied by the
function 	cos �
 that describes an effective influence of
charge fluctuations on the island between JJ contacts �formu-
las �4� and �5� and Fig. 2a, with a family of cos ��Q0� curves
for differnt values of the parameter g0 in Ref. 9�. This result
of Ref. 9 reflects a physically clear conclusion: �i� the effect
of fluctuations of Cooper-pair number �n̂=−id /d�� on the
island, which affects Is��� and UJ���, is well apparent in the
charge mode of system dynamics �g0�1�, the function
	cos �
�Q0� being strongly reduced and modulated; �ii� in the
opposite limit g0�1 the function 	cos �
 becomes a constant
close to unity, and because 	cos �
�1 at g0→�, in this limit
the current-phase relation Is���= Is

0��� and the effective Jo-
sephson energy UJ���=UJ

0���=−EJ��� are described by
classical expressions. It is interesting to note that an experi-
mental investigation of the charge-phase qubit with the pa-

FIG. 2. Potential U�
 /
0� /kB in temperature units for the 1JJ qubit with
�L=1.602 �1� and for the 2JJ qubit with the parameter pairs �� ,�L�
= �0.9,1.058� �2� and �0.8, 1.276� �3� at external magnetic flux 
e=
0 /2.
The geometric ring inductance is L=3.0�10−10 H for both qubits; the po-
tential barrier heights U0 in curves 1–3 are equal, U0 /kB=9.64 K.
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rameter g0�1 �EJ����EC, i.e., EJ��� is rather large for a
charge-phase qubit� at low temperatures �20 mK�
demonstrated18 that the influence of the gate quasicharge Q0

is of the order of noise, and the characteristic form of the
current-phase relation conforms qualitatively to the corre-
sponding classical relation �see Eq. �5� below�.

We consider the extreme case g0�1 to make the 2JJ
qubit work in the flux mode, where the effect of charge fluc-
tuations due to the variable � is negligible �so that � falls out
from the Hamiltonian�. In this extreme case the classical ex-
pressions for the Josephson energy of the two-junction inter-
ferometer and for the supercurrent through its loop apply to
the quantum regime of system dynamics, and relation �1�
between the variables �1 and �2 holds.

Note that for the 1JJ flux qubit the usual condition for
the phase to be a good quantum variable is that the parameter
g=EJ1 /EC1�1, where EC1=e2 /2C1 is the characteristic elec-
trostatic energy of the JJ contact. Then the minimum value of
the parameter g0 of the 2JJ flux qubit as a system and the
parameter g characterizing a single JJ contact of the qubit are
connected by the relation g0

min=EJ��� /EC=EJ1�1
−�� / �e2 /2C1�1+���= �1−�2�g. Thus the 2JJ flux qubit has
to satisfy the condition g0

min= �1−�2�g�1, and the parameter
� is bounded from above by this condition.

Due to the single-valuedness of the superconducting or-
der parameter the variable � satisfies the condition

� = �1 + �2 = 2�




0
+ 2�n, 
 = n
0 +

�

2�

0,


0 = ��/e , �3�

where n is the integer number of flux quanta 
0 in the total
magnetic flux 
 �below, we will consider the qubit to work
in the n=0 mode�. Owing to relations �1� and �3�, there is
only one independent phase variable from among �1 ,�2 ,�,
and in the quantum regime the physical fluctuating quantum
variable is the total phase difference � between the two junc-
tions, which, to within a factor of 2�, is equal to the total
magnetic flux in the ring in units of the flux quantum
�� /2�=
 /
0�.

The transition to the quantum description of the flux qu-
bit consists in associating the value N0 of the Cooper pairs

tunneling through the junctions with the operator N̂0

=−i� /��, which is conjugate to the phase operator �̂

��N̂0 , �̂�=−i�, and solving the Schrödinger equation with the
resulting Hamiltonian in the � representation.19 By applying
the quantization procedure to the Hamiltonian �2� and writ-
ing down the energy contributions via the variable �, we will
come to a canonical form of the Hamiltonian of the 2JJ flux
qubit in the quantum case:

Ĥ =
P̂2

2M
+ Û��� = −

�2

2M

�2

��2

+ EJ1��0 −��1 − ��2 + 4� cos2 �

2
+

�� − �e�2

2�L
 ,

�4�

which can be considered as the Hamiltonian of a quantum

particle of mass M moving in a potential U���. Here P̂
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=�N̂0=−i�� /�� ��P̂ , �̂�=−i�� corresponds to the particle
momentum operator,

M = �
0

2�
�2 �C1

�� + 1�

is its mass,

�L =
2�


0
LIc1 = �2�


0
�2

LEJ1

is the potential parameter, �e=2�
e /
0 is the external mag-
netic flux parameter �the constant �0 is chosen further from
the condition that the symmetric potential equals zero at the
minimum points�. The 2JJ flux qubit parameter

g0
min = �1 − ��2�L

L
�
0

2�
�22C1

e2 = �1 − �2��L
C1

L

�2

2e4 � 1.

The shape of the potential U��� depends on the param-
eters � ,�L ,�e. We are interested in the case of a symmetric
potential, which, according to �4�, is realized at �e=� �
e

=
0 /2�. It should be noticed that formally in the extreme
case of identical junctions, at �=1 �though really a value �
�1 must be used so as to satisfy the condition g0

min�1�, the
potential U��� coincides with the potential of the flux qubit
based on the clean ScS contact studied in Ref. 11 �Eq. �3��:

UScS��� = EJ�− 2�cos��/2�� +
�� − �e�2

2�L
 .

At the same time, owing to renormalization of the mass M
for the 2JJ flux qubit by the factor � / ��+1� with respect to
the corresponding mass for the ScS flux qubit �provided that
the capacitances of the SIS and ScS junctions are equal, C1

=C�, for ��1, the relation for the masses is M2JJ�MScS /2.
Hence, at ��1 the splitting �E01 in the 2JJ qubit is expected
to be more than in the ScS qubit. The parameter �L deter-
mines the height of the potential barrier of the double-well
potential, so that the barrier height goes down with decreas-
ing �L. Like in the case of ScS qubit, the 2JJ qubit potential
has two local minima even at ��1 �unlike the SIS qubit,
where the double-well potential exists at ��1 only�, which
gives the possibility of considerably scaling down the geo-
metric dimension �inductance� of the system with the meso-
scopic junctions.

Figure 2 shows the potential U�
 /
0� /kB of 2JJ flux
qubit for two parameters couples �� ,�L� and also, for com-
parison, the well-known potential USIS�
 /
0� /kB of 1JJ flux
qubit at external magnetic flux 
e=
0 /2. The inductances L
for both types of the qubits can be supposed equal �to specify
the magnetic flux fluctuation level� while the parameter �L

�i.e., the critical currents Ic1 , Ic of the corresponding SIS
junctions� in all the dependences is chosen such that the po-
tential barriers in all the potentials are of the same height U0.
The latter requirement implies roughly equal decay rates for
the metastable states due to thermal fluctuations; taking them
into account is beyond the scope of this paper. Apparently, to
realize the quantum regime in a physical experiment, the
value U0 /kB must greatly exceed the system temperature. As
seen from Fig. 2, the potentials U�
 /
0� /kB for a 2JJ qubit
have lesser width �between the potential minimum points� as
compared to the corresponding potentials for a 1JJ qubit,
ownloaded 01 Aug 2013 to 132.174.255.3. This article is copyrighted as indicated in the abstract. R
while the area under the potential curve between the points
of its minima for the 2JJ qubit shrinks greatly against the
corresponding area for the 1JJ qubit. Additionally, if the cor-
responding capacitances of the SIS junctions in both 2JJ and
1JJ qubits are equal �C1=C� then the ratio of the effective
masses for these qubits is � / ��+1�. As will be shown below,
it is the change in the potential shape and the decrease of the
effective mass in the 2JJ qubit that lead to the manyfold rise
in the amplitude of its tunnel splitting.

The current-phase relation for the 2JJ qubit, directly re-
lated to the Josephson potential energy UJ���, is derived
from Eqs. �1� and �3�:

Is���
Ic1

= sin �1 = � sin �2 =
� sin �

��1 − ��2 + 4� cos2��/2�
.

�5�

The extrema of the current-phase relation Is��� �which are
equal in absolute value� are located at the points �m

=arccos�−�� �maximum; � /2	�m	�� and �m1=2�
−arccos�−�� �minimum� symmetrically around the point �
=�, where the supercurrent vanishes to zero �Is=0� alternat-
ing its direction. Thus, at � near unity, in the interval
��m ,�m1� the supercurrent Is changes dramatically from its
maximum to minimum value when the current direction

FIG. 3. Integral phase-current relation Is�� /2�� / Ic1 for 2JJ qubit at various
�: 0.9 �1�, 0.8 �2�, 0.5 �3� �a�; the functions ��1 /2���� /2�� �1�, ��2 /2��
��� /2�� �2� for the 2JJ qubit at �=0.9. The straight line �1���+�2���
=� �3� corresponds to the definition of �. The values of �1 /2�
=arcsin��� /2��0.18 and �2 /2�=0.25 �the latter being �-independent� cor-
respond to �m /2�=arccos�−0.9� /2��0.43 �b�.
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changes at the point �=�. Figure 3a displays the integral
current-phase relation Is�� /2�� / Ic1 for the 2JJ qubit for sev-
eral parameters �. The interval ��m ,�m1� shrinks as the pa-
rameter � increases, and the maximum-to-minimum transi-
tion in current becomes sharper �the extreme case �=1,
which is valid in classical SQUID dynamics, corresponds to
�m=�m1=�, with an infinite derivative of the current-phase
relation at the point ��. Let us also consider the order-
parameter phase differences �1���, �2��� derived directly
from �5�. Analysis of formula �5� shows that the function
�1��� for a junction with high critical current has extrema at
the points �m ,�m1. The transition from the maximum posi-
tive value �1��m�=arcsin � �0	�1��m�	�� to the mini-
mum negative value �1��m�=−arcsin �, with the phase dif-
ference changing sign at the point � ��1���=0�, takes place
in the interval ��m ,�m1�, and �1�0�=�1�2��=0. The func-
tion �2��� for a junction with lower critical current is a
monotonically increasing one from �2�0�=0 to �2�2��=2�,
which is symmetrical with respect to the line y=�; �2���
=�, and �2��m��� /2, �2��m1�=3� /2. For the classical 2JJ
SQUID, in the extreme case of �=1 the functions �1���,
�2��� behave as follows: �1=�2=� /2 at 0	���; at the
point � a jump appears in the function �1��� between the
values � /2 and −� /2, with a further linear rise up to
�1�2��=0, while the function �2��� demonstrates a jump
between the values � /2 and 3� /2, with a further linear in-
crease up to �2�2��=2�. Figure 3b displays the depen-
dences ��1 /2���� /2�� and ��2 /2���� /2�� for a certain �,
with their distinctive appearance. The straight line �1���
+�2���=� corresponds to the definition of �, showing how
the total phase difference over the two junctions is decom-
posed into the component phase differences of the order pa-
rameter over each of them.

We will find the tunnel splitting �E01 of the degenerate
zero level in the symmetrical �at �e=�� double-well poten-
tial U��� in the 2JJ flux qubit by numerical solution of the
Schrödinger equation and analytically by using the instanton
technique in the semiclassical approximation. To find a nu-

merical solution of the stationary Schrödinger equation

ownloaded 01 Aug 2013 to 132.174.255.3. This article is copyrighted as indicated in the abstract. R
Ĥ���� = E���� �6�

with Hamiltonian �4�, a kind of finite-element method is
used, with the potential U��� approximated by a piecewise-
constant function. Zero boundary conditions are used for the
wave function ����, and the domain width and number of
elements are set so as to provide good accuracy of the cal-
culation.

In the semiclassical approximation the problem of a tun-
neling quantum particle can be solved using the instanton
technique.20,21 For a particle of mass M moving at zero tem-
perature in a symmetric double-well potential V�x�, refer-
enced from its minimum level �V��a�=0, where �a are the
minimum points�, the expressions for the energy levels E1,0

and the tunnel splitting �E01 read like

E1,0 = E0 �
�E01

2
=

��0

2
� �K exp�−

S0

�
� ,

S0 = �
−a

a

dx�2MV�x� ,

K = A�0�M�0a2

��
, �0

2 =
V���a�

M
,

�E01 = 2A��0�M�0a2

��
exp�−

S0

�
� . �7�

Here �0 is the frequency of the zero-point oscillations of the
particle in each of the wells, S0 is the particle action on the
instanton trajectory, and the dimensionless constant A is
found from the equation for the instanton’s function t�x� in
the asymptotic limit:

�t�x��x→a = �
0

x→a dx
�2V�x�/M

= −
1

�0
ln

a − x

Aa
,

A = lim
x→a

�a − x�
a

exp��
0

x

dx� M�0
2

2V�x�� . �8�

Starting from the Hamiltonian �4� and using formulas �7�
and �8�, we obtain the tunnel splitting �E01 for the 2JJ flux

qubit in the case of symmetric double-well potential:
�9a�

�9b�

�9c�

�9d�
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�9e�
A variable �= ��−�� /2 is introduced in formulas �9�
�due to the potential symmetry condition �e=��, the mini-
mum point �0�0 of the potential U��� satisfying equation
�9e�. The accuracy of the semiclassical approximation is high
provided that S0 /��1; the method accuracy degrades as the
dimensionless variable S0 /� diminishes, approaching unity.
The results of a numerical analysis are of great importance in
this region.

Figure 4a and 4b, presents the �L dependence of the
tunnel splitting �E01��L� /kB for 2JJ, ScS, and SIS flux qubits
at equal capacitances of the corresponding junctions C1=C
=2.7 fF and at the inductance L=0.3 nH of the qubit loop. In
both plots the curves calculated numerically are shown by
hollow circles, while the ones obtained analytically using the
instanton technique are plotted by solid lines. The formulas
�9� were used for the 2JJ qubit, while similar formulas were
taken for ScS and SIS qubits, based on the forms of their
potentials. A change of the parameter �L means a variation of
the critical currents Ic1 and Ic of the corresponding junctions
at a fixed inductance L. The double-well potential height
decreases with decreasing parameter �L, the energy level E1

being equalized to the potential barrier height U0 at a certain
�L0 �E1=U0� and exceeding it with further lowering of �L.
Then the wave function corresponding to the level E1 is no
longer a superposition of states localized in the left and right
wells. The boundary values �L0 for the curves in the figure
are indicated by dashed lines. In the vicinity of �L0, at �U0

−E1��kBT, the quantum coherence will be destroyed due to
thermal fluctuations causing over-barrier transitions. One can
see from Fig. 4 that the numerically and the analytically
obtained curves almost coincide at large �L and begin to
diverge at lower �L. This is because of the condition of semi-
classicity S0 /��1 starts to fail with diminishing �L. This, in
its turn, is caused by decreasing of the barrier height U0 and
therefore the action S0. Analysis of the S0��L� /� curves re-
veals that S0 /��1 at ���L0, and the relative divergence
between the numerical and analytical results for the ScS and
2JJ qubits is within 2 to 10 percent. For a SIS qubit a fit of
the numerical and analytical results requires more stringent
fulfillment of the semiclassicity condition. However, it fol-
lows even from this analysis that obtaining a tunnel splitting
�E01�1 K in the flux qubit based on a single SIS junction is
impossible under the condition of weak �U0−E1�kBT� in-
fluence of thermal fluctuations on the decay of the metastable
states. The S0��L0 /�� curves are close to linear for the 2JJ,
ScS, and SIS qubits, with a slope �the rate of increase of the
action S0 with �L� that increases in the order listed. The
value of the tunnel splitting in the region of its exponential
smallness S0��L� /��1 diminishes in the same sequence.

The points on the numerical curves corresponding to
equal heights of the potential barriers �U0=9.64 K� are indi-
cated by arrows in Fig. 4a. The corresponding values of the
parameter pairs ��L ,E01��L� /kB� for the 2JJ ��=0.9�, ScS,
and SIS flux qubits are: �1.06, 3.45 K�, �0.88, 1.79 K�, �1.60,
ownloaded 01 Aug 2013 to 132.174.255.3. This article is copyrighted as indicated in the abstract. R
0.16 K�. It is seen that, under this condition, the tunnel split-
ting in the 2JJ qubit is about twice the splitting in the ScS
qubit and more than 20 times higher than that of the SIS
qubit. The curve of the tunnel splitting for the 2JJ qubit lies
completely above the curves for the ScS and SIS qubits, and
the tunnel splitting for the 2JJ qubit reaches a value of
3.45 K at �L�1��L0. The advantages of a ScS qubit if
compared to a SIS qubit were thoroughly analyzed in Ref.
11. Note that the still greater increase of the tunnel splitting
in a 2JJ qubit in comparison with a ScS qubit with the
matched parameters mentioned above results from the fact
that their potentials �at ��1� practically coincide, while the

FIG. 4. The function �E01��L� /kB for the 2JJ qubit at �=0.9 �1�, ScS qubit
�2�, and 1JJ qubit �3�; the points on the numerical curves corresponding to
equal height �9.64 K� of the potential barrier for all the qubits are indicated
by arrows �a�; The function �E01��L� /kB for the 2JJ qubit and various �: 0.9
�1�, 0.85 �2�, 0.8 �3� and the “level line” of equal heights �9.64 K� of the
potential barriers at varying � �4� �b�. The numerically obtained results are
represented by hollow circles, and the analytical results are plotted by solid
lines in �a� and �b�. The dashed lines show the lowest boundary �L at which
the level height E1 becomes equal to the potential barrier height U0. For 1JJ
and ScS qubits, the capacitance of the corresponding �SIS and ScS� junc-
tions is C=2.7�10−15 F, while for the 2JJ qubit the capacitance of the
larger SIS junction is C1=2.7�10−15 F. The geometric inductance of the
ring is L=30�10−10 H, and the parameter g�76�L for all the qubits. For
the 2JJ flux qubit the parameter gmin�76� �1−�2��10 at ��0.93.
0 L
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effective mass M in the 2JJ qubit is less by a factor of about
two. Figure 4b shows the dependence �E01��L� /kB for the
2JJ qubit at several �, and also a “level line,” the line
�E01��L� /kB corresponding to equal height �9.64 K� of the
potential barriers in the 2JJ qubit with varying �. The curve
�E01��L� /kB shifts rightward with decreasing �, and the
smaller the value of �, the higher the tunnel splitting at a
fixed �L. This, however, is due to the lowering of the barrier
height U0 with decreasing �, which leads to an exponential
rise of the thermal decay rate. Note that when the junctions
are desymmetrized, the fit between the numerical and ana-
lytical curves gets worse because S0��L� /� decreases. As is
seen from the plot, the value of the tunnel splitting gradually
diminishes while moving along the level line with equal
height of the potential barriers towards lower values of the
junction symmetry parameter � �and higher �L�.

III. CONCLUSIONS

It should be emphasized that the principal requirements
on 2JJ flux qubits, namely: ��0.9; C�50 fF /�m2; jc

�103 A /cm2; Ic�1 �A at the JJ area SJ�0.1 �m2; L
�0.3 nH, �L�1 can be met with the present-day technology
based on the materials Nb, NbN, and MoRe with supercon-
ductivity gap ��0��10 K �see, e.g., Ref. 22�. We note in
conclusion that a 2JJ flux qubit with large amplitude of tun-
nel splitting potentially has some strong advantages: �i� weak
sensitivity to the motion of charge in traps; �ii� extremely fast
excitation �pumping frequency� in qubit-based readout as
well as in computer circuits due to considerable increase of
the quantum tunneling rate ���E01; �iii� macroscopically
large energy relaxation times �� �see, e.g., Ref. 10 and refer-
ences cited therein�; �iv� further improvement of qubit coher-
ence characteristics.16
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