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Abstract. The impedance measurement technique consists in that the phase-dependent (parametric)
inductance of the system is probed by the classical tank circuit via measuring the voltage. The notion
of the parametric inductance for the impedance measurement technique is revisited for the case when a
quantum system is probed. Measurement of the quantum state of the system of superconducting circuits
(qubits) is studied theoretically. It is shown that the result of the measurement is defined by the partial
energy levels population in the qubits and by its derivative.

PACS. 85.25.Am Superconducting device characterization, design, and modeling – 85.25.Cp Josephson
devices

1 Introduction

The supercurrent I, flowing through a weak link between
two bulk superconductors with the phase difference φ, has
the properties as a nonlinear inductor. This can be de-
scribed by introducing the phase-dependent (parametric)
inductance L = (Φ0/2π) (∂I/∂φ)−1. If the weak link is in-
cluded in the ring, then the phase φ is related to the mag-
netic flux Φ, piercing the ring, φ = 2πΦ/Φ0. The paramet-
ric inductance can be measured [1] and being inductively
coupled to the resonant LC tank circuit provides the tool
to measure the flux Φ [2,3]. The effective inductance of the
tank circuit depends on the parametric inductance L(φ)
and current I(φ) and thus the measurement in the tank
circuit can be used for finding the inductance L [4], which
is the so-called impedance measurement technique.

The impedance measurement technique was recently
applied for the measurement of the small currents in meso-
scopic samples [5] and was proposed for the description
of the currents in superconducting qubits [6–9]; the se-
ries of the experimental results were obtained [10]. How-
ever the theoretical works in this field consider mostly the
ground state. If the superconducting qubit is excited to
the upper state, then the current in it has the probabilis-
tic character, and in this way the parametric inductance
depends not only on the clockwise (counter-clockwise) cur-
rent value but also on the probabilities of the respective
states. This consideration was used for the description of
the phase-biased charge qubit [11]. And in this paper we
study in detail the specifics of the impedance measure-
ment technique when the quantum system is probed. The
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detailed presentation is aimed to show how the tank cir-
cuit is influenced by the parametric inductance, and how
this inductance have to be treated for the system of cou-
pled superconducting circuits (qubits). For concreteness
we consider the superconducting circuits to be either flux
or phase-biased charge qubits. The flux qubit [12] consists
of a loop with three Josephson junctions. The phase-biased
charge qubit [6,7] consists of a loop with two closely sit-
uated Josephson junctions and with the gate, which con-
trols the charge on the island between the junctions.

2 Tank circuit coupled to quantum object

2.1 Equations for tank circuit

The quantum system (coupled superconducting qubits) is
considered to be weakly coupled via a mutual inductance
M to the classical tank circuit. The circuit consists of the
inductor LT , capacitor CT , and the resistor RT connected
in parallel. The tank circuit is biased by the current Ibias,
and the voltage on it VT can be measured. To obtain the
equation for the voltage, we write down the system of
equations, for the current in the three branches, namely,
through the inductor (IL), the capacitor (IC), and the
resistor (IR) (see e.g. in the Chapter 14 of Ref. [2]):

Ibias = IL + IC + IR, (1)
IC = ė, e = CT VT , (2)
IR = VT /RT , (3)

VT = LT İL − Φ̇e, (4)

where e is the charge at the capacitor plate, the dot stands
for the time derivative, Φe is the flux through the tank

http://dx.doi.org/10.1140/epjb/e2008-00061-9
http://www.epj.org


188 The European Physical Journal B

circuit. This flux is the response of the quantum system
to the flux, induced in it by the current IL, and its time
derivative equals (see below for details):

Φ̇e = L̃İL, (5)

and thus equation (4) can be rewritten by introducing the
effective inductance of the tank circuit Leff:

VT = LeffİL, (6)

Leff = LT − L̃. (7)

Then from the system of equations (1)–(4) we derive the
equation for the voltage in the tank circuit:

CT

��
V T + R−1

T V̇T + L−1
eff VT = İbias. (8)

2.2 Effective inductance of qubits

Now we derive the relation (5); consider the flux Φe =∑
i Φ

(i)
e , where Φ

(i)
e is the flux induced by ith qubit in

the tank circuit: Φ
(i)
e = MiT I

(i)
qb . Here MiT is the mutual

inductance of the qubit and the circuit, I
(i)
qb is the current

in the ith qubit which equals to the expectation value of
the current operator: I

(i)
qb =

〈
Îi

〉
= Sp

(
ρ̂Îi

)
, where ρ̂ is

the reduced density matrix of the system of qubits. (Note
that for one qubit, substituting Φe = MIqb, equation (8)
coincides with Eq. (15) in Ref. [8].)

The total flux that threads the loop of the ith qubit
Φ(i) consists of the external magnetic flux Φ

(i)
x and the self-

induced flux −LiI
(i)
qb (Li is the geometrical inductance of

the loop):
Φ(i) = Φ(i)

x − LiI
(i)
qb . (9)

This equation can be rewritten by introducing the para-
metric inductance,

L−1
i =

∂I
(i)
qb

∂Φ(i)
, (10)

to relate the variations of the external flux through the
qubit δΦ

(i)
x and of the current in it δI

(i)
qb , as following:

δΦ(i)
x = δΦ(i) + LiδI

(i)
qb = (Li + Li) δI

(i)
qb . (11)

Thus, we obtain the variation of the flux induced by the
qubit in the tank circuit:

δΦ(i)
e = MiT δI

(i)
qb =

MiT

Li + Li
δΦ(i)

x . (12)

The flux Φ
(i)
x in the ith qubit is considered to consist of

the fluxes induced by the tank circuit, MiT IL, by the mi-
crowave source, Φ

(i)
ac sin ωt, and by additional lines and by

other qubits, Φ
(i)
shift [13]:

Φ(i)
x (t) = MiT IL(t) + Φ

(i)
shift + Φ(i)

ac sin ωt. (13)

Now let us recall that we consider the variation of the
flux in order to calculate the derivative in time Φ̇e which
have to be substituted in equation (4), which describe the
tank circuit. We note that usually the dynamics of the
tank circuit (with the frequency ωrf close to the resonant
frequency ωT = (LT CT )−1/2) is significantly slower than
the dynamics of a qubit driven by the microwave source
at frequency ω � ωT . Hence, being interested in the re-
sponse of the measurement system (that is of the tank
circuit), we average equations over the period 2π/ω. Af-
ter this averaging the component Φ

(i)
ac sin ωt tends to zero

and we have: δΦ
(i)
x ≈ MiT δIL. Here and below the time-

averaging is assumed. (Note that here it is assumed that
the expectation value for the current I

(i)
qb in equation (12)

weakly depend on time during the time interval of the
order of 2π/ω and its time dependence is defined by the
tank circuit dynamics only.) Then it follows

Φ̇e =
∑

i

δΦ
(i)
e

δt
=
∑

i

M2
iT

Li + Li
İL (14)

and equation (5) is obtained with the inductance L̃, which
describes the response of the quantum system to the tank
circuit signal, given by:

L̃ =
∑

i

M2
iT

Li + Li
. (15)

Thus, we have obtained the system of equations (7), (8),
(10), and (15), which describe the interaction of the clas-
sical tank circuit and the quantum circuits (qubits). More
accurate (quantum-mechanical) analysis would start the
description from the Hamiltonian of the whole system in
terms of the operators for both the tank circuit and the
qubits with averaging the equations afterwards, as in ref-
erence [14] (see also the discussion about similar systems
in [15] and [16]). Since this analysis would yield the same
equations for the observable values (VT =

〈
V̂T

〉
, etc.), we

do not consider this procedure here in detail.

3 Analysis of the response of the tank circuit

The measurement consists in biasing the tank circuit with
the current Ibias = IA cosωrf t and measuring both the
phase shift α and amplitude VA of the voltage VT =
VA cos(ωrf t+α). (The oscillations can be considered close
to the harmonic form due to the small losses in the high-
quality tank circuit which is weakly coupled to the nonlin-
ear qubits’ inductances, see (19) and (20) below.) Substi-
tuting these expressions for Ibias and VT in equation (8)
and equating coefficients before sin ωrf t and cosωrf t, we
obtain:

tan α =
RT

ωrf

(
L−1

eff − ω2
rf

ω2
T

L−1
T

)
, (16)

VA = RT IA cosα. (17)
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Expression for the phase shift is simplified for the tank
circuit driven at resonance, ωrf = ωT = (LT CT )−1/2:

tanα = Q
L̃

LT − L̃
≈ Q

L̃

LT
= Q

∑
i
k2

i

LiL−1
i

1 + LiL−1
i

≈ Q
∑

i
k2

i LiL−1
i . (18)

Here it was assumed that L̃ � LT and Li � Li; the latter
inequality assumes that qubits’ loops have small induc-
tances, the former inequality is justified for large quality
factor and small tank circuit-qubit coupling constants:

Q = ωT RT CT � 1, (19)

k2
i =

M2
iT

LiLT
� 1, (20)

and also k2
i Q � 1 is assumed.

Alternatively to measuring the phase shift α, equa-
tion (18), the qubits’ parametric inductances can be
probed by measuring the amplitude VA of the voltage,
which is optimal at the frequency ω̃ defined by the relation
(ωT − ω̃) /ωT = (2Q)−1, that is at ω̃ = ωT

(
1 − (2Q)−1

)
,

then from equations (16)–(19) it follows:

VA|ωrf=ω̃ ≈ RT IA

⎡⎣1 +

(
1 + Q

L̃

LT

)2
⎤⎦−1/2

. (21)

This relation can be rewritten, taking into account equa-
tion (18) and assuming tanα � 1 (which is usually the
case in experiment [10]) in the form:

VA|ωrf =ω̃ ≈ 1√
2
RT IA

(
1 +

1
2

tan α|ωrf =ωT

)
, (22)

which shows the equivalence of the measurements via the
amplitude and the phase shift of the tank circuit voltage.
Since in practice it is more convenient to probe flux qubits
via the phase shift [10,17], we will consider in what follows
the phase shift only.

For the case of small geometrical inductances Li, we
can neglect the shielding current, then Φ(i) ≈ Φ

(i)
x ; we

assume the weak coupling of the qubits to the tank circuit
(Eq. (20)) and neglect the first term in equation (13); we
also define Φ

(i)
dc as the constant part of the flux through

ith qubit (in practice it changes adiabatically slow); hence
δΦ(i) ≈ δΦ

(i)
x ≈ δΦ

(i)
dc and for calculations equation (18) is

supplemented by the relation:

L−1
i ≈ ∂I

(i)
qb

∂Φ
(i)
dc

. (23)

Note that this value (namely, the r.h.s. of Eq. (23)) can
also be interpreted as the magnetic susceptibility [9,15].

4 Inductance of superconducting qubits

Consider the case of a single superconducting qubit in
more detail. The phase shift α probes the current in
the qubit as following (we rewrite the equations derived
above):

tanα ≈ k2QLL−1, (24)

L−1 ≈ ∂Iqb

∂Φdc
, (25)

Iqb =
〈
Î
〉

= Sp
(
ρ̂Î
)

. (26)

The latter equation can be rewritten for both phase-biased
charge qubit [6,7] and flux qubit [12], taking into account
that Î = Icircσ̂z , as following: Iqb = Icirc 〈σ̂z〉 (here σ̂z

is the Pauli matrix). For a phase-biased charge qubit [11]
the circulating current Icirc = I0 is phase dependent and
equations (24)–(26) show that there are two terms con-
tributing in the tank circuit’s phase shift:

tan α ≈ k2QL

(
∂I0

∂Φdc
Z + I0

∂Z

∂Φdc

)
, (27)

where Z = 〈σ̂z〉 is the difference between the ground and
excited state populations. In a classical system or in the
ground state the difference between the energy level’s pop-
ulations is constant, Z = const., and the second term in
equation (27) is zero. In contrast, for the quantum sys-
tem the interplay of the two terms is essential, which was
studied in reference [11]. At this point it is worthwhile
to notice that the second term can dominate at resonant
excitation, as it was the case in the work [11] (cf. Figs. 3
and 5 in [11]). Hence in some cases this may be the advan-
tage of the impedance measurement technique. Another
advantage of the technique may be the possibility of the
non-destructive measurement (see in Refs. [9,14,18]).

Consider now the case of a flux qubit in detail. The
current operator is defined in the flux basis [12], Î = IP σ̂z ,
where IP stands for the amplitude value of the persistent
current, and hence the value 〈σ̂z〉 defines the difference
between the probabilities of the clockwise and counter-
clockwise current directions in the loop: 〈σ̂z〉 = P↓−P↑ =
2P↓ − 1. Then with equations (24)–(26) we obtain

tan α ≈ k2Q
LIP

Φ0
2

∂P↓
∂fdc

, (28)

where fdc = Φdc/Φ0 − 1/2.
For calculation of the density matrix ρ̂ the Bloch equa-

tion is conveniently used (see e.g. Ref. [19]). This equation
includes the relaxation and correspondingly is written in
the energy basis. Thus, we rewrite equation (28) after in-
troducing the density matrix in the energy representation
in terms of the unity matrix 1̂ and the Pauli matrices τ̂i:
ρ̂ = (1/2)

(
1̂ + Xτ̂x + Y τ̂y + Zτ̂z

)
(i.e. Z is again the dif-

ference between the ground and excited state populations)
and obtain:

tan α ≈ k2Q
LIP

Φ0

∂

∂fdc

(
2∆

∆E
X − 2IP Φ0fdc

∆E
Z

)
. (29)
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Here ∆E = 2
√

∆2 + (IP Φ0fdc)2 is the distance between
the stationary energy levels and ∆ is the tunneling ampli-
tude; about the details of this transition from current rep-
resentation to energy representation see in reference [20].

For one flux qubit in the ground state (X = 0, Z = 1)
it results in the following:

tanα ≈ −k2QL
∆2I2

P

(∆E/2)3
. (30)

It is important to notice that we obtained the result for
the ground state, equation (30), which coincides with the
earlier obtained results (see Eqs. (3)–(4) in [10]), but
in different way – by differentiating the probability P↓,
equations (28)–(29). For the description of the flux qubit
in the thermal equilibrium one has to put X = 0 and
Z = tanh (∆E/2T ) in equation (29); then by plotting the
phase shift versus the magnetic flux, fdc, for different tem-
peratures, one can obtain the suppression and widening of
the zero-bias dip (that is in the vicinity of fdc = 0) as it
was observed in the experiment presented in reference [21]
in Figure 3a, which is one more confirmation of our con-
sideration. For example, the zero-bias dip (that is tanα at
fdc = 0) is described by the r.h.s. of equation (30) multi-
plied by the factor tanh (∆/T ).

If the first term in the bracket in equation (29) can be
neglected (which in concrete case should be checked, but
this is usually valid for small driving amplitude Φac, see
e.g. in [22]), then the expression is simplified:

tan α ≈ −k2Q
LIP

Φ0

[
∂

∂fdc

(
2IP Φ0fdc

∆E

)
Z

+
2IP Φ0fdc

∆E

∂Z

∂fdc

]
. (31)

Note that at fdc = 0: α ∼ Z, which means that α probes
the changes of the upper level population.

If a qubit is resonantly excited with the driving fre-
quency ω, then the partial energy levels occupation prob-
ability Z has the Lorentzian-shape dependence on fdc. It
follows that the derivative ∂Z/∂fdc takes the shape of a
hyperbolic-like structure, i.e. it changes from a peak to a
dip in the point of the resonance at ∆E(fdc) = �ω.

5 Conclusion

The impedance measurement technique for the tank cir-
cuit being coupled to the system of qubits was studied.
The tank circuit was considered to be driven by the rf
current and the voltage VT to be measured. The main
results of the work concern the phase shift α and the am-
plitude VA of the voltage VT . It was obtained how the
phase shift α is related to the parametric inductances of
the qubits Li, equation (18). It was shown that the dy-
namics of the qubits can be studied via the amplitude
as well as via the phase shift, equation (22). The deriva-
tions of these equations were presented in detail in order,

first, to make all the assumptions clear (small loops’ in-
ductances Li, weak driving of the tank circuit Ibias, high
quality factor Q and small couplings ki, slow dynamics of
the tank circuit in comparison with qubits, ωT � ω, ∆E),
and, second, to show how the parametric inductances of
the qubits should be defined, by introducing the differ-
ence between the energy levels occupation probabilities,
Z. We obtained that the expression for the phase shift
α in general contains both terms proportional to Z and
proportional to ∂Z/∂fdc, equations (27) and (31). If the
latter term dominates, the resonant excitations are visu-
alized as hyperbolic-like structures on the dependence of
the phase shift α on the dc flux fdc.
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Oukhanski, U. Hübner, T. May, I. Zhilyaev, H.E. Hoenig,
Ya.S. Greenberg, V.I. Shnyrkov, D. Born, W. Krech, H.-G.
Meyer, A. Maassen van den Brink, M.H.S. Amin, Phys.
Rev. B 69, 060501 (2004)

22. C. Cohen-Tannoudji, B. Diu, F. Laloë, Quantum
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