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Abstract. Rabi oscillations are coherent transitions in a quantum two-level
system under the influence of a resonant drive, with a much lower frequency
dependent on the perturbation amplitude. These serve as one of the signatures
of quantum coherent evolution in mesoscopic systems. It was shown recently
(Grønbech-Jensen N and Cirillo M 2005 Phys. Rev. Lett. 95 067001) that in
phase qubits (current-biased Josephson junctions) this effect can be mimicked
by classical oscillations arising due to the anharmonicity of the effective
potential. Nevertheless, we find qualitative differences between the classical
and quantum effects. Firstly, while the quantum Rabi oscillations can be
produced by the subharmonics of the resonant frequency ω10 (multiphoton
processes), the classical effect also exists when the system is excited at the
overtones, nω10. Secondly, the shape of the resonance is, in the classical case,
characteristically asymmetric, whereas quantum resonances are described by
symmetric Lorentzians. Thirdly, the anharmonicity of the potential results in the
negative shift of the resonant frequency in the classical case, in contrast to the
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positive Bloch–Siegert shift in the quantum case. We show that in the relevant
range of parameters these features allow us to distinguish confidently the bona
fide Rabi oscillations from their classical Doppelgänger.
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1. Introduction

Superconducting phase qubits [1, 2] provide a clear demonstration of quantum coherent
behaviour in macroscopic systems. They also have a very simple design: a phase qubit is
a current-biased Josephson junction (see figure 1(a)), and its working states |0〉, |1〉 are the
two lowest metastable energy levels E0,1 in a local minimum of the washboard potential. The
transitions between these levels are produced by applying an RF signal at a resonant frequency
ω10 = (E1 − E0)/h̄ ≡1E/h̄. The readout utilizes the fact that the decay of a metastable state of
the system produces an observable reaction: a voltage spike in the junction or a flux change in
a coupled dc SQUID. In the three-level readout scheme (figure 1(b)), both |0〉 and |1〉 have
negligible decay rates. A pulse at a frequency ω21 = (E2 − E1)/h̄ transfers the probability
amplitude from the state |1〉 to the fast-decaying state |2〉. Its decay corresponds to a single-
shot measurement of the qubit in state |1〉. Alternatively, instead of an RF readout pulse one can
apply a dc pulse, which increases the decay rate of |1〉.

One of the effects observed in driven phase qubits is Rabi oscillations [2, 3]: coherent
transitions in a quantum two-level system under the influence of a resonant perturbation, with a
much lower frequency dependence on the perturbation amplitude A via �R =

√
A2 + δ2, where

δ = ω−ω10 is the detuning of the driving frequency ω from the resonance frequency ω10.
In resonance, �R = A. Multiphoton Rabi oscillations, at ω10 = nω (n stands for an integer),
observed in such qubits [4, 5], were also interpreted as a signature of coherence.

The quantum coherent dynamics in phase qubits was tested by several complementary
methods (see, e.g., [3], [5]–[7]). In particular, in [6], Rabi oscillations between the ground and
excited states of the phase qubit were measured by applying a 25 ns pulse at ω10 followed by
a measurement pulse at ω21. The probability of finding the system in the upper state oscillated
with the amplitude of the resonant signal, as it should in the case of Rabi oscillations. In [7],
Rabi oscillations were seen instead as the resonant pulse duration varied; a dc readout was used.

However, it is known that the quantum mechanical behaviour of a quantum two-
level system can still be similar to the dynamical behaviour of the classical nonlinear
oscillator [8]–[13]. In particular, it was recently pointed out [14, 15] that due to the nonlinear
behaviour of current-biased Josephson junctions, a similar effect can arise in a purely classical
way. Though direct tests—à la Bell—to determine whether a given system is quantum or not
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Figure 1. Phase qubit (a) and its Josephson energy (b). The metastable states |0〉

and |1〉 can be used as qubit states.

are possible, even their simplified versions (e.g. [13]) are demanding. This motivated us to
further investigate the classical behaviour of a phase qubit and find that there is a possibility
to distinguish the quantum Rabi oscillations from their classical double, by the shape of the
resonance, by the fact that the classical effect can also be produced by the overtones, nω10, of
the resonance frequency, and by the sign of the resonant frequency shift. (An observation that a
non-Lorentzian shape of the resonance should exclude a classical explanation has already
been made in [16], where the spectroscopy of two coupled qubits was performed. Also, a
symmetric versus asymmetric Stark shift in a qubit playing the role of a detector was proposed to
distinguish the classical and quantum behaviours of a nanomechanical oscillator [11].) Classical
and quantum resonances, as a function of applied drives, are also studied in [17].

2. Model

The phase qubit [1, 2] is a current-biased Josephson junction. The Josephson potential, as a
function of the phase difference φ,

UJ(φ)= −
h̄ Ic

2e
(cosφ +φ Idc/Ic), (1)

forms local minima, in which the quantized metastable levels serve as the working states of
the qubit. Here, Ic is the critical current of the junction, and Idc is the static bias current.
A perturbation can be produced by applying a time-dependent bias current, Iac sinωt . In the
quantum case, the system can be reduced to a two-level model, described by the Hamiltonian [6]

Ĥ =
1E

2
σz +

h̄ Iac sinωt
√

21EC
(σx +χσz), (2)

where σz,x are Pauli matrices, C is the capacitance of the junction, and χ ≈ 1/4 in the relevant
range of parameters. One can obtain from here the Rabi oscillations (coherent oscillations of the
probability of finding the system in the upper/lower state with the frequency �R) when excited
near the resonance or at its subharmonics; the shape of the resonance is a symmetric Lorentzian,
as determined by, e.g., the average energy of the system versus the driving frequency ω.

Unlike the flux qubit [18, 19], where the interlevel distance 1E is determined by the
tunnelling, here 1E is close to the ‘plasma’ frequency ωp = [2eIc/h̄C]1/2 of small oscillations
near the local minima of the potential, equation (1): characteristically 1E/h̄ ≈ 0.95ωp [2]. The
same frequency determines the resonance in the system in the classical regime. This means
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that, in principle, the same ac signal could cause either the Rabi oscillations or their classical
double [14].

3. Classical regime

In the classical regime, the phase qubit can be described by the RSJJ (resistively shunted
Josephson junction) model [20, 21], in which the equation of motion for the superconducting
phase difference across the junction, characterized by the normal (quasiparticle) resistance R,
reads

h̄C

2e

d2φ

dt2
+

h̄

2eR

dφ

dt
+ Ic sinφ = Idc + Iac sinωt. (3)

Introducing the dimensionless variables,

τ = ωpt, γ = ω/ωp, (4)

we obtain

φ̈ +αφ̇ + sinφ = η + ε sin γ τ, (5)

where

α =
h̄ωp

2eRIc
, η =

Idc

Ic
, ε =

Iac

Ic
, (6)

and the dot stands for the derivative with respect to τ . The solution is sought in the phase-locked
ansatz,

φ(τ)= φ0 +ψ(τ), ψ � 1. (7)

We substitute equation (7) into (5) and expand sinφ to third order, which yields

ψ̈ +αψ̇ +ψ cosφ0 = η− sinφ0 +
sinφ0

2
ψ2 +

cosφ0

6
ψ3 + ε sin γ τ. (8)

Therefore, sinφ0 = η, and by introducing

γ0 = [1 − η2]1/4, (9)

we obtain

ψ̈ +αψ̇ + γ 2
0ψ = ε sin γ τ +

η

2
ψ2 +

γ 2
0

6
ψ3, (10)

which describes the anharmonic driven oscillator [22].
Here, we briefly point out several features of the solution of equation (10) (for more details

see chapter 5 in [22]).

(i) The anharmonic driven oscillator, described by equation (10), is resonantly excited at
any frequency γ ≈

p
q γ0, where p and q are integers. This however happens in higher

approximation in the driven amplitude ε. At a small amplitude ε, the most pronounced
resonances appear at γ ≈ γ0 (main resonance), γ ≈ γ0/2 (anharmonic-type resonance) and
γ ≈ 2γ0 (parametric-type resonance).
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(ii) The amplitude b of the small driven oscillations at the main resonance is bmax = ε/(γ0α).
When this amplitude is not small, the phase-locked ansatz becomes invalid. Then the
solution of equation (5) describes the escape from the phase-locked state, which means
the appearance of a nonzero average voltage on the contact. This voltage is proportional to
the average derivative of the phase, ¯̇φ.

(iii) The position of the resonances for small oscillations is shifted due to the anharmonicity of
the potential. This, for the main resonance γres, is given by:

γres − γ0 = ~b2, (11)

~ = −
3 + 2η2

48γ 3
0

. (12)

Note that the resonance shift is negative (e.g. as in [11]).
(iv) The shape of the resonances, as a function of the driven frequency γ , is essentially

non-symmetrical. The asymmetry of the main resonance becomes pronounced at

ε &
γ0α

3/2

|~|
1/2 , (13)

at small enough damping.
(v) The parametric-type resonance at γ ≈ 2γ0 appears when the damping is sufficiently

low, i.e. at

α <
ηε

6γ 3
0

. (14)

At the relevant parameters, η ' 0.9, γ0 ' 0.6, this means the following:

ε

γ0α
>

6γ 2
0

η
' 2, (15)

which is fulfilled (see (ii)) when the solution close to the main resonance corresponds to the
escape from the phase-locked state.

We note that for the anharmonic driven oscillator, described by equation (10), both the
resonances at γ0/2 and 2γ0 appear due to the anharmonicity of the potential energy and are of
the same order. For the driven flux qubit in the classical regime [19], the equation for the phase
variable θ(t)= θ0 +ψ(t) can also be expanded for small oscillations ψ(t) about the value θ0;
restricting ourselves here to the linear in ψ terms, the equation can be rewritten in the form:

ψ̈ +αψ̇ + γ 2
0 [1 − h sin γ τ ]ψ = ε sin γ τ. (16)

In this case, the genuine parametric resonance at γ ≈ 2γ0 appears due to the term containing
sin γ τ ·ψ [22]. This explains the prevailing of this resonance over the resonance at γ ≈ γ0/2,
due to the small anharmonicity of the potential in [19].

Now we proceed to numerically solve the equation of motion (5) for the relevant set of
parameters close to the experimental case. We also investigate the behaviour of the energy of
the system [20, 21]

H =
1
2 φ̇

2 + 1 − cosφ− (η + ε sin γ τ)φ, (17)

which determines the thermally activated escape probability from the local minimum of the
potential [23] in equation (1). The classical Rabi-like oscillations are displayed in figure 2.
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Figure 2. Rabi-type oscillations in current-biased Josephson junctions: (a) and
(b) show the time dependence of the phase difference φ and of the energy H ,
respectively; (c) presents the time dependence of the energy, averaged over the
fast oscillations with period 2π/ω. All energies are shifted by their stationary
value: H0 = 1 −

√
1 − η2 − η arcsin η. The parameters for the blue, red and green

curves are η = 0.95, α = 10−3, ε = 10−3 and γ = γ0; for the other curves in
(c) and (d), only one parameter was different from the above, for comparison,
namely: (c) dashed black line, α = 10−4; (d) solid violet line, ε = 2 × 10−3;
dashed–dotted black line, η = 0.9.

In figure 2(a), the modulated transient oscillations of the phase difference φ are plotted.
These oscillations result in the oscillating behaviour of the energy of the system as shown in
figure 2(b). Averaging over fast oscillations, we plot in figure 2(c) with a green solid curve
the damped oscillations of the energy, analogous to the quantum Rabi oscillations [14]. These
curves are plotted for the following set of the parameters: η = 0.95, α = 10−3, ε = 10−3 and
γ = γ0. For comparison we also plotted the energy averaged over the fast oscillations for
different parameters, changing one of these parameters and leaving the others the same. The
dashed black curve in figure 2(c) is for the smaller damping, α = 10−4; the solid (violet) line
and the dashed–dotted (black) line in figure 2(d) demonstrate the change in the frequency and
the amplitude of the oscillations, respectively, for ε = 2 × 10−3 and η = 0.9. We notice that the
effect analogous to the classical Rabi oscillations exists in a wide range of parameters.

In figure 3, the effect of the driving current on the time-averaged energy of the system is
shown for different driving amplitudes: figure 3(a) for weaker amplitudes, close to the main
resonance, to show the asymmetry and negative shift of the resonance; and figure 3(b) for
stronger amplitudes, to show the resonances at γ0/2 and 2γ0 (which are also shown enlarged
in the insets). We note that the parametric-type resonance at 2γ0 originates from the third-order
terms when the solution of the equation for ψ is sought by iterations [22]; when there are two
or more terms responsible for this resonance, the respective resonance may become split, which
is visible in figure 3(b) for the lowest curve. An analogous tiny splitting of the resonance was
obtained for the driven flux qubit in figure 4 of [19].
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Figure 3. The time-averaged energy H̄ − H0 versus reduced frequency for
relatively weak (a) and strong (b) driving. Different values of the driving
amplitude ε (multiplied by 103) are shown by the numbers next to the curves. The
parameters are: η = 0.95 and α = 10−4. In (b), the region between the vertical
black lines corresponds to the escape from the phase-locked state.

Figure 4. The time-averaged probability P̄ of the upper level to be occupied
versus the driving frequency. The parameters used here are: η = 0.95, EJ/h̄ωp =

300, 0relax/h̄ωp = 0φ/h̄ωp = 3 × 10−4. Numbers next to the curves stand for ε
multiplied by 103. Upper inset: the time dependence of the probability P(τ ).
Right inset: the shift of the principal resonance (at h̄ω ≈1E), where 1ω =

ω−1E/h̄.

4. Quantum regime

In the quantum regime, the phase qubit can be described by the Bloch equations for the density
matrix components. In order to take into account the relaxation and dephasing processes, the
corresponding rates 0relax ≡ h̄ωp · λrelax and 0φ ≡ h̄ωp · λφ are included in the Liouville equation
phenomenologically [24]. Then the evolution of the reduced density matrix ρ̂, taken in the form

ρ̂ =
1

2

[
1 + Z X − iY
X + iY 1 − Z

]
, (18)
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is described by the Bloch equations [24, 25]:

Ẋ = −CY − λφX, (19)

Ẏ = −AZ + C X − λφY, (20)

Ż = AY − λrelax(Z − Z0), (21)

where A and C stand for the off-diagonal and diagonal parts of the dimensionless Hamiltonian:

Ĥ

h̄ωp
=
1E

2h̄ωp
σz +

h̄ Iac sinωt

h̄ωp

√
21EC

(σx +χσz)≡
A

2
σx +

C

2
σz. (22)

From these equations we obtain Z(τ ), which defines the occupation probability of the upper
level,

P(τ )= ρ22(τ )=
1
2(1 − Z(τ )). (23)

We choose the initial condition to be X (0)= Y (0)= 0, Z(0)= 1, which corresponds to the
system being in the ground state; we also consider the zero-temperature limit in which the
equilibrium value of Z is Z0 = 1.

When the system is driven close to resonance, ω ≈1E , the upper level occupation
probability P(τ ) exhibits Rabi oscillations. The damped Rabi oscillations are demonstrated in
the upper inset in figure 4, which is analogous to the classical oscillations presented in figure 2.
After averaging the time-dependent probability, we plot it versus frequency in figure 4 for
two values of the amplitude, demonstrating the multiphoton resonances. Figure 4 demonstrates
the following features of the multiphoton resonances in the quantum case: (a) in contrast to
the classical case, the resonances appear only at the subharmonics, at h̄ω ≈1E/n; (b) the
resonances have Lorentzian shapes (as opposed to the classical asymmetric resonances); (c)
with increasing the driving amplitude, the resonances shift to the higher frequencies—the
Bloch–Siegert shift, which has the opposite sign to that of its classical counterpart. The
Bloch–Siegert shift (the shift of the principal resonance at h̄ω ≈1E) is plotted numerically
in the right inset in figure 4. Analogous shifts of the positions of the resonances were recently
observed experimentally [5].

5. Conclusions

In conclusion, the following criteria can be proposed to distinguish classical Rabi-type
oscillations in current-biased Josephson junctions: (i) the appearance of resonances both at
the overtones of the main resonant frequency (e.g. 2γ0) and its subharmonic (γ0/2); (ii) the
asymmetric shape of the resonances; and (iii) a negative shift of the resonant frequency when
increasing the driving amplitude. In recent publications, these features were not reported:
multiphoton resonances were observed [4, 5]; the resonances observed have a Lorentzian
shape [3, 16]7 and have a positive frequency shift [5], which means that the observed resonant
excitations in the system were in the quantum regime.

7 We note in passing that in other types of qubits the Lorentzian-shaped multiphoton resonances were also
observed [26]–[30].
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