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DYNAMICS OF SUPERCONDUCTING QUBITS WITH EXACTLY 
SOLVABLE BIAS PULSES 

V. V. Shamshutdinova,1 A. S. Kiyko,2 S. N. Shevchenko,2 UDC 530.145, 538.945 
B. F. Samsonov,1 and A. N. Omelyanchouk2 

The dynamics of a quantum two-state system (qubit) with external control bias pulses of special shapes is 
considered. The bias pulses represent the potentials for which the Schrödinger equation can be solved exactly. 
The probability to register a definite direction of the current in a loop and its time-averaged values are 
calculated for the flux qubit; calculations are performed both analytically and numerically in the presence of 
relaxation and decoherence within the framework of the density matrix formalism. It is demonstrated that there 
exist external bias pulses for which the definite current direction probability is a monotonically increasing 
function of time that approaches a limiting value exceeding 1/2. The probability to find the system in the 
excited state is calculated, and the possibility of inverse population in a properly driven two-state system is 
demonstrated given that the relaxation and decoherence rates are small enough. 

INTRODUCTION 

In the last few years, superconducting Josephson-junction–based devices have been studied intensively as 
candidates for the implementation of a quantum computer (for example, see [1–9]). Indeed, under certain conditions 
(low temperatures and small dimensions) the Josephson-junction devices are macroscopic quantum two-state systems, 
that is, they can be used as a model for quantum bits (qubits). The quantum properties of the macroscopic Josephson-
junction devices make them more attractive in comparison with microscopic qubits (spins and ions [10, 11]) for the 
development of scalable quantum systems. Among them are high-sensitive superconducting quantum interference 
devices (SQUID) of magnetic fields and single-electron transistors (SET) for electric charges [12] that admit 
preparation in a preset initial state or a superposition of states.  

One common approach to control the qubit dynamics is to drive a two-state system, as well as a particle in 
a double-well potential, with a sinusoidal field. In some cases, an interesting physical phenomenon can be established. 
Instead of oscillating between the wells, the particle can be localized in one of them by a driving external field. This 
unusual behavior of the probability is referred to as coherent destruction of tunneling in double-well potential studies 
[13–18], dynamic localization in transport theory [19, 20], and population trapping in atomic physics [21]. It is 
important to note that up to the present time, most researches have considered systems in a periodic driving field with 
possible amplitude and frequency modulation. 

In the present work, we demonstrate that the oscillating character of the field is not obligatory for the 
appearance of this phenomenon. We present a class of non-periodic time-dependent bias pulses that lead to the similar 
behavior of the qubit. 

The quantum evolution of the qubit state in the two-state approximation is described by the Schrödinger 
equation (for example, see [12, 22]) 
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 i H
t

∂Ψ
= Ψ

∂
, 

where the Hamiltonian 

 ( )x zH t= Δσ + ε σ , 1= ,   (1)  

has been written in the basis of the eigenvectors (“physical” states) }{ 0 , 1  of the Pauli matrix ξ ( 0 0zσ =  and 

)1 1zσ = −  and ( )1 2, TΨ = ψ ψ . For the charge qubit [1], these states correspond to a definite number of the Cooper 
pairs on the superconducting island (the Cooper-pair box). For the flux qubit [23], the vectors 0  and 1  correspond to 
coherent superconducting currents circulating in the loop in opposite directions. We assume that the tunneling 
amplitude Δ  is constant and the bias ε  is a function of time ( )tε = ε . The bias ( )tε  is governed by the gate voltage 

( )gV t  for the charge qubit or depends on the magnetic flux ( )x tΦ  passing through the loop for the flux qubit. 

For definiteness, we further consider the flux qubit. The results obtained can be easily generalized to the charge 
qubit. Then the states }{ 0 , 1  of the flux qubit have the definite (clockwise or counterclockwise) direction of 

superconducting current circulating in the loop. The above-mentioned non-periodic time-dependent bias pulses are the 
potentials for which Schrödinger’s equation (1) can be solved exactly [24–27]. Thus, the probability calculated using 
these exact solutions is, for example, the probability P↑  of the clockwise current direction. We demonstrate that for 
some special non-periodic potentials, the probability of the clockwise current direction at time t under condition that at 
the initial moment of time 0t =  it was counterclockwise is a monotonically increasing function of time approaching 
3/4. This behavior of the probability is observed only at critical values of the system parameters. For small derivations 
of biases from their critical values, the probability oscillates; however, its minimal value still exceeds 1/2. It is 
demonstrated that such behavior of the probability remains unchanged even in the presence of dissipation. The 
evolution of the time-averaged probability values is also considered. An analysis of solutions of Eq. (1) with special 
non-periodic potentials in the energy representation indicates the possibility of inverse population in the two-state 
system even in the presence of dissipation. Our main result is that using a properly chosen non-periodic time-dependent 
potential, the qubit state can be “frozen” in one of the two possible qubit states for a long time. We note that the 
calculated occupation probability of the qubit states is directly related to the experimentally measurable quantities such 
as the phase shift of the resonant circuit weakly coupled with the qubit (for example, see [28]). We hope that our results 
offer new opportunities for controlling the qubit dynamics. Some other aspects of the qubit level population control can 
be found in [29–32]. 

EXACTLY SOLVABLE BIAS PULSES 

The intertwining operator technique provides a universal approach to the construction of new exactly solvable 
equations. The idea of this method goes back to Darboux [33] and finds wide application in soliton theory [34]. Its 
quantum mechanical application (see, for example, [35]) is closely related to the fact that the one-dimensional 
Schrödinger equation is an ordinary second-order differential equation defined by the potential energy operator. The 
method is based on the possibility of finding an operator (an intertwining operator) that relates solutions of the 
Schrödinger equation with different potentials. Thus, if solutions of the Schrödinger equation with a given potential 
have been known and the intertwining operator has been found, solutions of the same equations with another potential 
can be constructed by applying the intertwining operator to the solution of the initial equation. Matrix generalization of 
the given method [34] is widely used for solving quantum-mechanical problems [36]. 

In [24] it was demonstrated how to construct the differential-matrix intertwining operators for the system of 
two differential equations of type (1). To this end, nonstationary Schrödinger equation (1) was reduced to the one-
dimensional stationary Dirac equation with an effective non-Hermitian Hamiltonian, and the mathematical apparatus 
developed in [36] was used. Starting from the simplest case 0 constε = ε = , a family of new nontrivial potentials 
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(biases), for which Schrödinger’s equation (1) could be solved exactly, was found. In the present work, we take 
advantage of the results obtained in [24–27] to describe the time evolution of the flux qubit and the time dependence of 
the qubit localization probability and to calculate its time-averaged values. 

Let us consider first the behavior of the flux qubit with the bias  

 ( ) 0
1 0 2 2

0

4
1 4

t
t

ε
ε = ε −

+ ε
.   (2) 

Solutions of Eq. (1) with this potential were analyzed in detail in [24]. Imposing the initial conditions ( ) 2
1 0 1ψ =  and 

( ) 2
2 0 1ψ = , we obtain the probability ( ) ( ) 2

2P t t↑ = ψ  of the clockwise current direction at time t  under condition 

that it was counterclockwise at the initial moment of time 0t = . For tτ = Δ  and 0εξ =
Δ

, we obtain the following 

expression for the probability:  

 ( ) ( ) 16 2 2
1 1 4P

−↑ ⎡ ⎤τ = Θ + ξ τ⎣ ⎦  

 ( ) ( )24 2 2 2 2 2 2 4 2 2 216 cos 4 1 3 sin 2 4 1 3 sin⎡ ⎤⎛ ⎞× ξ Θ τ Θτ+ ξ Θτ − ξ Θτ+ ξ Θ τ + − ξ Θτ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
, 

 21Θ = + ξ . 

It can be seen that P↑  oscillates provided 2 1/ 3ξ ≠ . For 2 1/ 3ξ = , the probability is described by the function 

 ( )
2

1
241

3

P↑ τ
τ =

+ τ
, 

monotonically increasing from zero at the initial moment of time to 3 / 4  for 1τ >>  or 1t −>> Δ  (see the heavy curve in 

Fig. 1a). It is important to note that for 2ξ  close to 1/3, the minimal value of the probability 1P↑  exceeds 1/ 2  very 
quickly after the bias application (see the thin and dotted curves in Fig. 1a). 

The expression for the time-averaged probability has the form 

 
( )

2

1 22

1 5

2 1
P↑ + ξ

=
+ ξ

. 

For 2 3 / 5ξ = , the average probability behaves similar to the resonance one: at this point it reaches its maximal 

value 1 0.78P↑ ≈  (see the heavy curve in Fig. 2a), whereas ( )1P↑ τ  oscillates with frequency 4 2 / 5  (see Fig. 1). 
Using chains of the above simple transformations, new families of more exactly solvable potentials can be 

obtained. The properties of such chains were analyzed in detail in [26]. The results obtained in the present work allow 
a large family of new exactly solvable biases to be constructed for equation (1). For example, for a two-fold 
transformation leading to the bias of the shape 
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 ( )
( )2 2 4 4 6 6

0 0 0 0
2 2 2 4 4 6 6

0 0 0

45 180 144 64

9 108 48 64

t t t
t

t t t

ε − ε − ε + ε
ε =

+ ε + ε + ε
,   (3) 

the clockwise current direction probability assumes the form 

  ( ) ( ) 110 2 2 4 4 6 6
2 0 0 09 108 48 64P t t t

−↑ ⎡ ⎤τ = Θ + ε + ε + ε⎣ ⎦  

  ( ) ( )( 4 2 2 4 4 4 2 2 4 2 2 416 16 24 3 14 7 9 9 6⎡ ⎤× ξ Θ τ ξ Θ τ + ξ − ξ + ξ τ + − ξ + ξ⎣ ⎦  (4) 

 )2
1 2 3sin sin 2Q Q Q⎡ ⎤+ Θτ + Θτ⎣ ⎦ ,  

where 

 2 4
1 1 10 5Q = − ξ + ξ , 

 ( ) ( )6 4 6 4 2 4 4 2 2 4 2
2 164 48 1 18 19 36 3 2 11 9Q Q= ξ Θ τ + ξ − ξ − ξ τ + ξ − ξ + ξ τ + , 

 ( ) ( )( )( )2 2 4 4 2 2 2
3 12 16 7 2 4 1 1 5Q = ξ Θτ Θ ξ τ + + ξ τ + − ξ . 

The last term in Eq. (4) describes oscillations with frequency 2Θ , consequently, the probability oscillations 
vanish at 1 0Q = , and the probability acquires a monotonic character. Thus, with the bias ε  described by Eq. (3), in 
contrast with Eq. (2), two possibilities can be indicated with 1 0Q = . This means that the probability of the clockwise 

current direction ceases to oscillate and acquires a monotonic character at 1 2 / 5ξ = −  or 1 2 / 5ξ = + . This 
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Fig. 1. Time dependence of the clockwise current direction probability: a) probability 1P↑  for 

1/ 3ξ =  (the thin curve), 1  (the dashed curve), and 1/ 3  (the heavy curve) and b) probability 
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−  in the lower plot (the dashed, thin, and heavy curves, respectively). 
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situation is illustrated in Fig. 1 (the heavy curves), where the oscillating behavior of the probability for ε values close to 
the critical ones is also demonstrated (see the thin and dashed curves). 

For ( )tε  given by Eq. (3), time averaging yields the following expression for the probability: 

 
( )

2 4

2 32

1 2 13

2 1
P↑ − ξ + ξ

=
+ ξ

. 

The dependence of 2P↑ on the parameter ξ  is shown in Fig. 2 by the heavy curve. It has a maximum 2 0.91P↑ ≈  
at 1.46ξ ≈ .  

We now consider a more complicated case in which the bias is a function of three parameters [24, 27]: 

 ( )
( )

2

3 0
0

2
cos 2

t
b t

ω
ε = ε +

ω + ϕ − ε
, 2 2 2

0 0b = ε −ω > .   (5) 

Here ϕ  is arbitrary and 0ε  and ω  satisfy inequality (5). We note that in this case, ( )3 tε = ε  is a periodic function with 
amplitude related to the frequency. Expression (5) is a generalization of formula (2). Indeed, setting 

0

1arctan arctan
2 2 b
ω ω

ϕ = −
ε

 in Eq. (5), in the limit 0ω→ we obtain the ε  dependence on time considered above. 

The analytical expression for the probability ( )3P↑ τ  is cumbersome, and we restrict ourselves only to graphic 

illustrations of the clockwise current direction probability for ω
Θ ≈

Δ
 (see Fig. 3). The probability ( )3P↑ τ  was 

examined in more detail in [24]. 

INFLUENCE OF THE DISSIPATION ON THE PROBABILITY 

We have already considered the evolution of the system isolated from the environment and driven by the 
external field described by the function ( )tε . The system is described by the wave function which is a solution of the 
Schrödinger equation with Hamiltonian (1). However, in actual experiments the quantum system also interacts with the 
external reservoir, which leads to the irreversible processes of energy dissipation and destruction of the quantum 
coherence or to the so-called dephasing of the quantum states. In this case, the system states should be described within 
the density matrix formalism [37]. Since the main obstacle to the experimental implementation of quantum information 
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Fig. 2. Dependence of the time-averaged clockwise current direction probabilities on ξ. 
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processing is environment-induced decoherence (for example, see [38]), a study of the qubits as open systems seems 
more urgent.  

In this Section we study the behavior of the qubit with the bias ( )tε  given by Eqs. (2), (3), and (5) with 
allowance for the dephasing and relaxation processes. We analyze the possibility of population inversion in the two-
level system with dissipation. We note that unlike [29] where a three-level system was analyzed, we study the 
possibility of population inversion in the two-level system itself, thereby demonstrating the possibility of exciting laser 
generation in the system of two-level atoms at low temperature.  

The quantum dynamics of the qubit is described by the Liouville equation for the density matrix. For the 
density operator of the form 

 
11

12
Z X iY

X iY Z
+ −⎛ ⎞ρ = ⎜ ⎟+ −⎝ ⎠

, 

we solve the equation of motion 

 [ ]i H
t

∂ρ
= ρ

∂
 

to obtain the probability ( )[ ]1 / 2P Z t↑ = − . The effect of the relaxation processes on the system weakly coupled with 
the environment can be phenomenologically described by two parameters, namely, dephasing ( ϕΓ ) and relaxation rates 

( relaxΓ ) (for example, see [39]), thereby, one can derive the following system of equations for ( )X t , ( )Y t , and ( )Z t : 

 ( )2dX t Y X
dt ϕ= − ε −Γ , 

 ( )2 2dY Z t X Y
dt ϕ= − Δ + ε −Γ , 

 ( )( )relax2 0dZ Y Z Z
dt

= Δ −Γ − . 
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Fig. 3. Evolution of the clockwise current direction probability 3P↑  

calculated for 6.88θ = , 7Θ = , 48ξ = , and 0ϕ = . 
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To investigate energy level populations, we calculate the probability P+  to find the system in the excited state 
[39]. The effect of the relaxation processes on the behavior of the probabilities 1P↑  and 1P+ , exhibiting a monotonic 

time dependence for ( )tε  given by Eq. (2) for 1/ 3ξ = , is illustrated in Fig. 4. We do not show plots of 2P↑  and 2P +  
for ( )tε  given by Eq. (5) here, because they are analogous to the plots shown in Fig. 4. The dependence of the 

probabilities ( )3P t↑  and 3P +  for ( )tε  given by Eq. (5) at 1/ 3ξ = , 15 / 2β = , and 0ϕ =  is illustrated in Fig. 5. The 
solid curves are drawn for relax 0ϕΓ = Γ = , that is, without relaxation processes in the system. The thin and dashed 

curves are drawn for relax 0.01ϕΓ = Γ =  and relax 0.1ϕΓ = Γ = , respectively. All values are in units of Δ . From the 

figures it can be seen that the inverse population is possible even in the system with dissipation, through for a short time 
interval τ . 

The time-averaged probabilities 1P↑  and 2P↑  as functions of the dimensionless parameter ξ  are shown in 
Fig. 2. Here the solid curves are drawn without relaxation in the system, and the thin and dashed curves are drawn for 

relaxϕΓ = Γ , as in Figs. 4 and 5. The dashed curves are drawn for relax/ / 0.001ϕΓ Δ = Γ Δ = . According to these 

figures, the inverse population is possible only for small enough dissipation (see the dash-dotted curves) and for the 
parameter ξ  close to the critical value at which the time-averaged probabilities reach their maximal values. 

CONCLUSIONS 

The quantum dynamics of the two-state system subjected to biases of special shapes for which the Schrödinger 
equation can be solved exactly has been considered. By way of example, the time evolution of the superconducting flux 
qubit was investigated. The nontrivial behavior of the qubit with biases of special shapes was demonstrated. Varying the 
shape of the time-dependent bias, the dynamic behavior of the occupation probability can be changed qualitatively. In 
particular, the amplitude of oscillating probability describing the definite current direction in the loop can be tuned to 
zero, thereby tuning the probability to a monotonic function of time. The possibility of inverse population in the two-
level system with dissipation was demonstrated. Such behavior of the occupation probability is directly related to the 
experimentally measurable quantities, that makes experimental verification of our theoretical predictions possible. 
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Fig. 4. Influence of relaxation on the probabilities: (a) clockwise current direction probability 1P↑  

at 1/ 3ξ =  and (b) upper level occupation probability 1P+  at 1/ 3ξ = . 
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