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We analyze the influence of noise on magnetic properties of a superconducting loop which con-
tains three Josephson junctions. This circuit is a classical analog of a persistent current �flux�
qubit. A loop supercurrent induced by external magnetic field in the presence of thermal fluctua-
tions is calculated. To connect with experiment, we calculate the impedance of a low-frequency
tank circuit which is inductively coupled with the loop of interest. We compare the results with
the results obtained in the quantum mode — when the three junction loop exhibits quantum tun-
neling of the magnetic flux. We demonstrate that the tank–loop impedance in the classical and
quantum modes have different temperature dependence and can be easily distinguished
experimentally. © 2008 American Institute of Physics. �DOI: 10.1063/1.2920076�

I. INTRODUCTION

Magnetic flux quantization in superconductors is used, in
particular, for realization of very sensitive magnetometers.
One of them is so-called radio-frequency �rf� SQUID.1 The
sensor of rf SQUIDs is a single junction interferometer — a
Josephson junction which is incorporated in a superconduct-
ing ring with a sufficiently small inductance L. When an
external flux �e is applied to an interferometer loop, the
circulating supercurrent I is induced and a flux �i is admitted
into the ring:

�i = �e − IL . �1�

The phase difference � across a Josephson junction equals
the normalized magnetic flux in the interferometer loop:

� = 2�
�i

�0
+ 2�n , �2�

where �0 is the flux quantum, and n is an integer. Since the
Josephson current is related to the phase difference �:

I = Ic sin � , �3�

where Ic is the critical current, Eq. �1� can be rewritten:

� = �e − � sin � �4�

where �e=2��e /�0 is the normalized external flux, and the
constant

� = 2�LIc/�0 �5�

is the normalized inductance of the interferometer.
From Eq. �4� it is clearly seen that the magnetic proper-

ties of a single junction interferometer are defined by the
parameter �. If ��1 the �e��� dependence is unique �see
Fig. 1�, and the corresponding mode of SQUID operation is
called nonhysteretic. If ��1 the �e��� dependence is mul-
tivalued �see Fig. 1�, and corresponding mode of SQUID
operation is hysteretic.

An rf SQUID basically consists of a sensor �usually a
single junction interferometer� inductively coupled to a
radio-frequency-biased tank circuit. The flux �e applied to
the sensor changes the effective inductance �or/and the effec-
tive resistance� of the tank–sensor arrangement. Thus, a flux
change can be detected as changes in phase �or/and ampli-
tude� of the voltage across the tank circuit.

The classical mode for the single junction interferometer
as well as for corresponding rf SQUID in the presence of
fluctuations have been investigated in detail theoretically as
well as experimentally.2–7 On the other hand the quantum
mode for this device is difficult to realize. Since the interfer-
ometer should be hysteretic, it requires a finite LIc product
and therefore a finite coupling with the environment. In order
to avoid this problem, substitution of the geometrical induc-
tance by a Josephson one has been proposed. Indeed, if the
number of Josephson junctions in the loop m�2 and for
suitable junctions parameters, a doubly degenerate state ex-
ists at any geometrical inductance L. One of the simplest
realizations here is a three-junction interferometer, which is
called also a persistent current �or flux� qubit.8 Such a qubit

FIG. 1. ���e� for rf SQUID in nonhysteretic and hysteretic modes.
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has been fabricated by several teams, and the quantum re-
gime was convincingly demonstrated.

If external magnetic flux is

� = � + 2�n �6�

the hysteretic interferometer exhibits doubly degenerate en-
ergy states; see Fig. 2. These states correspond to the differ-
ent directions of the interferometer current. If temperature is
low enough and for suitable parameters of Josephson junc-
tions the magnetic flux can tunnel between the two potential
minima. Below we will call the systems under consideration
quantum if in their dynamics there is quantum tunneling. If,
for some reasons, the quantum tunneling is suppressed, we
will call these systems classical ones.

It is clear that the presence of quantum tunneling ensures
the absence of hysteresis in the ���e� dependence. On the
other hand, jumps between two energy minima can be origi-
nated by fluctuations, and the hysteresis will be washed out.
Therefore, for both cases considered above, the mode of the
rf SQUID operation will be nonhysteretic. A natural question
arises: By analyzing a SQUID output signal is it possible to
distinguish between quantum mode �interferometer with
“quantum leak”� and classical mode �interferometer in the
presence of fluctuations�? We address this paper to that ques-
tion.

II. CLASSICAL MODE OF A FLUX QUBIT IN THE PRESENCE
OF FLUCTUATIONS

The system studied presents a superconducting circuit
�ring� with three Josephson junctions; see Fig. 3. We con-
sider the case of small self-inductance of the ring L→0, and
therefore �e=�i. The phases across each junction in the qu-
bit loop �i satisfy

�1 + �2 + �3 = �e.

In the framework of the RSJ model for Josephson junc-
tions the current through each junction is:

I =
�Ci

2e

d2

dt2�i +
�

2eRi

d

dt
�i + Ici sin �i + �Ii�t�, i = 1,2,3

�7�

where � is Planck’s constant, e is the electron charge, Ci and
Ri are the junctions’ capacitances and resistances, respec-
tively. We restrict ourselves to a practical case, when two
junctions in the loop are identical: C1=C2=C, Ic1= Ic2= Ic,
R1=R2=R and the third junction has slightly smaller critical
current �with the same critical current density� Ic3=	Ic, 0.5
�	�1 and therefore C3=	C, R3=R /	. The presence of the
“white noise” is given by the fluctuation currents �Ii�t� with
correlator ��Ii�t��Ii�t���=2kT /Ri��t− t�� and mean value
��Ii�t��=0.

In dimensionless units:


R = 2eRIc/�, 
Rt = � �8�

and for negligible capacitance, Eq. �7� can be rewritten:

I/Ic = d�1,2/d� + sin �1,2 + ��1,2 = 	d�3/d� + 	 sin �3

+ ��3��� . �9�

The correlators of ��i are:

���i�����i����� = 2D�i�� − ��� , �10�

where D=kT /EJ, EJ=�Ic /2e.
By introducing the phases � and 

2� = �1 + �2,2 = �1 − �2,

and taking into account that �3=�e−2�, Eq. �7� can be pre-
sented in the form:

d/d� = − cos � sin  + 1/2���2 − ��1� ,

�1 + 2	�d�/d� = − sin � cos  + 	 sin��e − 2�� + ��3���

− 1/2���2 + ��1� .

These equations can be reduced to:

d

d�
= −

�U

�
+ ���� , �11�

d�

d�
= −

1

�1 + 2	�
�U

��
+ ���t� . �12�

where
FIG. 2. Contour plot of the potential U�� ,� �13�, 	=0.8 �a�. Bistable
potential profile along line 1–2 in Fig. 2a at �e=�, 	=0.8 �b�.

FIG. 3. Scheme of the persistent current �flux� qubit.
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U��,� = − cos � cos  −
1

2
	 cos��e − 2�� �13�

is the effective potential and the random forces are:

����������� = D��� − ��� ,

������������� =
3

�1 + 2	�2D��� − ��� .

The Langevin equations �11� and �12� describe the ran-
dom motion of the “particle” with coordinates �� ,� in the
periodic potential �13�, which is a set of bistable cells �eight-
shaped contours in Fig. 2a�. We have numerically integrated
these stochastic equations by Ito’s method �see, e.g., Ref. 9�
for different values of parameter 	 and the strength of the
fluctuations D. Typical traces of ���� and ��� are shown in
Fig. 4. They correspond to random motion in a bistable po-
tential; Fig. 2. The arrows indicate the switching from one
unit cell in Fig. 2a to another. With knowledge of ���� and
��� the average circulating current in the ring is obtained as:

I��e� = Ic��sin� + ���� . �14�

The averaging ��. . .�� includes, for each value of flux �e,
an average over time of the traces ����� ,���� and an average
over a set of 50 traces.

The the current–flux curves calculated in such a way for
different values of D and different values of the parameter 	
are presented in Figs. 5 and 6.

From Eqs. �11�–�13� one can reconstruct the Fokker–
Planck equation for the distribution function P� ,��:

�P

��
=

�

�
� �U

�
P� +

D

2

�2

�2 P +
1

1 + 2	

�

��
� �U

��
P�

+
1

2

3D

�1 + 2	�2

�2

��2 P . �15�

The Fokker–Planck equation �15� admits a stationary po-
tential solution �see Ref. 9� in the special case 	=1, i.e.,
when all three junctions are identical. For 	=1 the analytical
solution reads:

P =

exp�−
2

D
U�,���

N
, �16�

N =		 dd� exp�−
2

D
U�,��� . �17�

Since the potential U is a 2�-periodic function of the
variables  and �, the average current in the ring is:

I

Ic
=

	
0

2� 	
0

2�

dd� sin� + ��exp�−
2

D
U�,���

	
0

2� 	
0

2�

dd� exp�−
2

D
U�,��� . �18�

In Fig. 7 we compare the numerical results �circles� and
the I��e� obtained from the analitical formula �18� �solid
line� for the case 	=1 and D=0.2. This comparison was
used as an additional calibration of our numerical procedure,
which works for arbitrary values of 	.

FIG. 4. The random motion of phases � and  in a bistable potential for
�e=�, 	=0.8, and D=0.1.

FIG. 5. The dependences I��e� for 	=0.8 and D=0.5 �1�, D=0.25 �2�, D
=0.1 �3�.

FIG. 6. The dependences I��e� for D=0.1 and 	=0.5 �1�, 	=0.8 �2�, 	
=1 �3�.
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III. THE PROBING OF QUBIT’S STATE IN CLASSICAL AND
QUANTUM MODES

As we wrote in the Introduction, we probe a qubit with
the use of a tank circuit by the impedance measurement
technique.10 It has been convincingly shown10,11 that the ob-
servable phase difference ���e� between the tank current Irf

and tank voltage Vrf in both the classical and quantum modes
reads:

tan ���e� 
 �
dI

d�e
, �19�

where � is a constant which characterizes the inductive cou-
pling of the qubit with the tank circuit. Using the results of
Sec. II, we calculated output signal ���e� for the classical
noise-affected mode. For different levels of noise D �all of
those correspond to the nonhysteretic regime� the ���e�
curves are shown in Fig. 8.

In the quantum noise free mode �see Appendix A� the
nonhysteretic behavior is achieved by the tunneling between
two wells. The phase shift ���e� in this case is described by
Eqs. �19�, �A1�. It is presented in Fig. 8 for the same values

as in the classical case for the qubit–tank coupling constant
� and experimentally realized qubit parameters Ip�0

=200 GHz, �=1.5 GHz.
Comparing the classical and quantum modes �Figs. 8

and 9�, we have found that in quantum mode the dip on the
���e� curve remains constant over a wide temperature range
kT��. This reflects the fact that tunneling splitting � does
not depend on the temperature. The depth of the dip is
changed with temperature — excitations to the upper level
depress the value of the average qubit current. For the clas-
sical mode the situation is rather different. First of all, for a
reasonable set of qubit parameters it is impossible to get such
a narrow and profound dip as that obtained in the quantum
mode. Moreover, the temperature dependence of ���e� dip
demonstrates that its width depends strongly on T. Therefore
by analyzing the temperature dependence of ���e� one can
easily distinguish between the quantum and classical modes.

In conclusion, we have analyzed the temperature depen-
dence of the imaginary part of the impedance for three-
junction loop–tank-circuit arrangement in the quantum and
classical modes. We argued that the temperature dependence
of the impedance for these modes is quite different, and they
can therefore easily be distinguished experimentally.

APPENDIX A: QUANTUM MODE OF A FLUX QUBIT
Since the tunnel splitting in flux qubit is much smaller

than the difference between upper energy levels, qubits are
effectively two-level quantum systems. In the two level ap-
proximation a flux qubit can be described by the pseudo-spin
Hamiltonian

H�t� = − ��x − ��z, �A1�

where �x and �z are the Pauli matrices; � is the tunneling
amplitude. The qubit bias is given by �= Ip�0fe, where Ip is
the magnitude of the qubit persistent current, and fe

=�e /�0−1 /2. The stationary energy levels can be easily
found from the Hamiltonian �A1�:

E���� = � ��2 + �2, �A2�

and the average value of the qubit current at temperature T
is:

FIG. 7. Comparision of numerical �circles� and analytical �solid line� cal-
culations. D=0.2, 	=1.

FIG. 8. The phase shift ���e� in the classical mode. 	=0.8 and D=0.3 �1�,
D=0.2 �2�, D=0.1 �3�.

FIG. 9. The phase shift ���e� in the quantum mode. T /�=0.1 �1�, T /�=1
�2�.
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I��� =
�Ip

��2 + �2
tanh

��2 + �2

kT
. �A3�

Note that the dependence �A2� is valid within a narrow
interval of �e near �e=�0 /2 where the potential U �13� is
bistable.
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