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The Ginsburg–Landau approach is used to construct a theory of the Little–Parks effect for two-
band superconductors. A general relation reflecting the dependence of the relative shift �tc of the
superconducting transition temperature on the external magnetic flux � is obtained. In a particu-
lar case, the relation describes the classical Little–Parks effect for single-band superconductors.
In spite of the assertion made in the literature, the flux dependence �tc=�tc��� for two-band
superconductors is strictly periodic, just as in the classical effect. The main difference from the
classical effect, which can be checked experimentally, is a nonparabolic character of the relation
�tc=�tc���. In the case where the physical parameters are the same for both bands, additional
observable features appear in the plot �tc=�tc���. The investigation of the external properties of
the free-energy functional established an important limitiation, previously unmentioned in the
literature, on one of the phenomenological parameters. © 2008 American Institute of Physics.
�DOI: 10.1063/1.3009582�

I. INTRODUCTION

The present article is devoted to constructing a theory of
the Little–Parks effect for two-band superconductors �such
as, for example, the recently discovered1 superconductor
MgB2�. It is pertinent to recall that the classical Little–Parks
effect for single-band superconductors is well-known in the
literature as one of the most striking demonstrations of mac-
roscopic phase coherence of the superconducting order
parameter.2–4 It is observed in open thin-wall superconduct-
ing cylinders in the presence of a constant external magnetic
field oriented along the axis of the cylinder. Under conditions
where the field is essentially unscreened the superconducting
transition temperature Tc� �� is the magnetic flux through
the cylinder� undergoes strictly periodic oscillations �Little–
Parks oscillations�

Tc − Tc�

Tc
� min

n
� �

�0
− n�2

�n = 0, � 1, � 2, . . . � , �1�

where Tc��Tc���=0 and �=��c /e is the quantum of mag-
netic flux.

The Little–Parks effect for single-band superconductors
has been discussed repeatedly in the last 10 years in an un-
conventional formulation. For example, oscillations of the
critical temperature in a nonuniform superconducting
cylinder5 and superconducting cylinders with magnetic
inclusions6,7 have been investigated, and the possibility of
the effect for a superconducting film in the form of a Möbius
strip has been analyzed in Ref. 8.

Unfortunately, thus far the Little–Parks effect in two-
band superconducting structures has not been studied either
experimentally or theoretically. Moreover, the brief remarks
made concerning this subject in the theoretical literature
raise serious questions. For example, it is asserted in a re-
cently published review,9 which is entirely devoted to the
application of the Ginsburg–Landau theory to two-band su-

perconductivity, that “Little–Parks oscillations of Tc in two-
band superconductors are not periodic.” In the light of this,
one of our objectives in the present work is to elucidate the
situation within the framework of the simple �and, at the
same time, quite general� approach of the Ginsburg–Landau
theory.

The Gibbs free-energy functional in the Ginsburg–
Landau approximation is the starting point of Sec. II. An
important limitation on one of the phenomenological param-
eters of the functional, making possible the existence of an
absolute minimum, is established. The complete system of
equations for the mean field is obtained by minimizing the
functional. In Sec. III the stability of the trivial solution of
the mean-field equations, which corresponds to the normal
state, is analyzed and a general relation for the superconduct-
ing transition temperature Tc�, which exhibits strictly peri-
odic Little–Parks oscillations, is obtained. Important particu-
lar cases are investigated and a graphical illustration is given.
Finally, in Sec. IV the main results are discussed and some
conclusions are proposed.

II. BASIC EQUATIONS

Let us consider a superconducting film in the form of a
hollow circular cylinder �2� with inner and outer radii R1 and
R2, respectively �see Fig. 1�. An external constant magnetic
field H is applied along the symmetry axis of the cylinder:
H= �0,0 ,H�, where the sign of H is arbitrary. The length L of
the generatrix of the cylinder satisfies the condition

L � R2. �2�

The limitations on the inner radius of the cylinder R1 and the
thickness of the film R2−R1 are discussed below �the condi-
tions �5� and �6�, respectively�.

We proceed from the Gibbs free-energy functional in the
Ginsburg–Landau approximation:
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�3�

Here dv��d�d	dz is an element of volume in a cylindrical
coordinate system, 
1,2= �
1,2�exp�i�1,2� are complex-valued
components of the superconducting order parameter in the
bands 1 and 2, and A is the vector potential of the local
magnetic field h=h�r� :h=curlA. The three-dimensional in-
tegration in the first three terms in the expression �3� extends
over the film region ��s�, and the integration in the
magnetic-energy term extends over the region of the film
together with the opening ��s+�a�. The coefficients 
1,2 and
� are temperature independent, and 
1,2�0. The temperature
dependence of the coefficients �1,2=�1,2�T� is given by the
relations

�1�T� = − a1�1 −
T

Tc1

�, �2�T� = a20 − a2�1 −
T

Tc1

�
�a1,2 � 0, a20 � 0� , �4�

where the parameter Tc1
is the superconducting transition

temperature for the band 1 in the absence of interband inter-
action ��=�=0� and H=0. �We note in passing that the band
2 also becomes superconducting in the absence of interband
interaction, if a20 /a2�1, at the temperature Tc2=Tc1�1
−a20 /a2� for H=0�. To remain within the bounds of the
Ginsburg-Landau approximation we required the inner radius
of the cylinder to satisfy the condition

R1 � max	�1�0�,�2�0�
 , �5�

and we assume the thickness of the superconducting film to
be small in the sense that

d � R2 − R1 � min	�1,2�T�,�min�T�,R1
 , �6�

where �1,2�T��� /�2m1,2��1,2�T�� are the Ginsburg–Landau
coherence lengths for the bands 1 and 2, respectively, and

�min�T� �
c

�4�e

1

��
̄1�T��2

m1
+

�
̄2�T��2

m2
+ 4����
̄1�T���
̄2�T��

is the lower limit of the penetration depth of the magnetic

field9 ��
̄1,2� denote the coordinate- and sample-size-

independent equilibrium values of the variables �
̄1,2� for H
=0�.

The use of functionals of the type �3� to describe two-
band superconductivity has been discussed, for example, in
Refs. 9–16. A microscopic approach was used in Refs. 14
and 15. Specifically, it has been shown14 that the coefficient
� �generally speaking, different from zero irrespective of the
presence of interband scattering� can have an arbitrary sign.
The coefficient � is nonzero only in the presence of inter-
band scattering.15 For greater generality we shall assume that
the sign of this coefficient can be arbitrary. However, as will
be shown below, in order for an absolute minimum of �3� to
exist it is necessary that

��� �
1

2�m1m2

. �7�

The conditions for F to be stationary

�F
�A

= 0,
�F

�
1,2
= 0, �8�

and the subsequent choice of gauge, in principle, give a com-
plete system of equations for the mean field to determine the
equilibrium values of A and 
1,2. However, it is more con-
venient to simplify Eq. �3� first, using the symmetry of the
problem and the conditions �2� and �6�.

On the strength of the condition �2� h=H, practically
everywhere in the region �a �opening�. We choose the edge
of the vector potential so that inside the region �a

FIG. 1. Geometry of the problem �schematically�. The following conditions
hold: L�R2, R1�max	�1�0� ,�2�0�
 and R2−R1�min	�1,2 ,�min,R1
 �see dis-
cussion in the text�.
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A = �0,A	���,0�, A	��� =
H�

2
. �9�

In view of the condition �6�, the screening h=h��� and the
variations A	=A	��� in �c can be neglected. Thus, the ex-
pression �9� is actually valid in the entire region �s+�a, and
the contribution of the magnetic energy in Eq. �3� is negligi-
bly small. We shall also take account of the fact that as a
result of the symmetry of the problem and the condition �6�
�
1,2� are coordinate independent, and coordinate dependence
of the phases of the components of the order parameter re-
duces to, on account of Eq. �9�, a dependence on the angle 	
��1,2=�1,2�	�� with the continuity conditions

�1,2�2�� − �1,2�0� = 2�n1,2,
d�1,2

d	
�2�� =

d�1,2

d	
�0� ,

n1,2 = 0, � 1, � 2, . . . . �10�

We note also that it is convenient to introduce new functional
variables 	 and � instead of the phases �1,2:16

	 = �1 − �2,

� = c1��
1�, �
2�,�1 − �2��1 + c2��
1�, �
2�,�1 − �2��2,

�11�

where

c1��
1�, �
2�,�1 − �2�

�

�
1�2

m1
+ 2��
1��
2�cos��1 − �2�

�
1�2

m1
+

�
2�2

m2
+ 4��
1��
2�cos��1 − �2�

,

c2��
1�, �
2�,�1 − �2�

�

�
2�2

m2
+ 2��
1��
2�cos��1 − �2�

�
1�2

m1
+

�
2�2

m2
+ 4��
1��
2�cos��1 − �2�

. �12�

Since D�� ,�� /D��1 ,�2��0 for all �1 and �2, the new
functional variables are independent and can be regarded as
arbitrary smooth functions of 	 �i.e. �=��	� and �=��	��
satisfying the boundary conditions

��2�� − ��0� = 2��n1 − n2�,
d�

d	
�2�� =

d�

d	
�0� �13�

and

��2�� − ��0� = 2��c1��
1�, �
2�,��0��n1

+ c2��
1�, �
2�,��0��n2� ,

d�

d	
�2�� =

d�

d	
�0�, n1,2 = 0, � 1, � 2, . . . �14�

respectively �see Eq. �11��.
As a result we arrive at the desired simplified relation

�3�:

F��
1�, �
2�,�,�;��
Vs

= �1�
1�2 +
1

2

1�
1�4 + �2�
2�2

+
1

2

2�
2�4 − 2� cos ��
1��
2�

+
�2Q��;��

2
� �
1�2

m1
+

�
2�2

m2

+ 4� cos��
1��
2��
+

1

�R2�
0

2�

C��
1�, �
2�,��

��d�

d	
�2

d	 , �15�

where

Q��;�� =
1

2�R2�
0

2� � d�

d	
−

�

�0
�2

d	 .

C��
1�, �
2�,�� � � c2
2

m1
�
1�2 +

c1
2

m2
�
2�2 − 4c1c2� cos ��
1�

��
2���2

2
,

c1,2 = c1,2��
1�, �
2�,�� ,

R= �R1+R2� /2, Vs=2�RLd is the volume of the supercon-
ducting cylinder, �0=��c /e is the quantum of magnetic
flux, and �=�HR2 is the magnetic flux through the opening
of the cylinder.

We shall now prove that the condition �7� ensures the
existence of an absolute minimum of the functional �15� �and
therefore a minimum of the initial functional �3��. Indeed, on
the basis of this condition C��
1� , �
2� ,���0 �if �
1�+ �
2�
�0�, and in addition the quadratic form of the variables �
1�
and �
2�, which, being a factor multiplying the function
Q�� ;��, is positive definite. Consequently, the right-hand
side of Eq. �15� is bounded from below by the density of the
equilibrium free energy of the cylinder in the absence of an
external field, F0 /Vs:
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�16�

where �
̄1� and �
̄2� comprise the solution of the system of
equations

�1�
1� + 
1�
1�3 − ����
2� = 0,

�2�
2� + 
2�
2�3 − ����
1� = 0,

that minimizes the next to last row in Eq. �16�. We under-
score that if the condition �7� is not satisfied, i.e. if

��� �
1

2�m1m2

.

the functional �3� and its simplified forms �for example, �15��
cannot be minimized �they have no lower limit� and for this
reason cannot be used in physical applications.

Calculation of the functional derivatives in the condi-
tions of stationarity

�F
��

= 0,
�F
��

= 0 �17�

taking account of Eqs. �13� and �14� gives

� �
1�2

2m1
+

�
2�2

2m2
+ 2��
1��
2�cos �� d2�

d	2

− 2��
1��
2�
d�

d	
� d�

d	
−

�

�0
�sin � = 0, �18�

�

�	
�C�

1, ��
2�,��

d�

d	
� + ��
1��
2�sin �� d�

d	
−

�

�0
�2

−
1

2

�C��
1�, �
2�,��
��

�d�

d	
�2

− ��
1��
2�sin � = 0.

�19�

Since we are interested in the absolute minimum of the ex-
pression �15�, Eqs. �18� the condition for continuity of the
superconducting current circulating over the surface of the
cylinder16,19� can be substantially simplified. Specifically, it
is obvious from the chain of inequalities �16� that the abso-
lute minimum of the expression �15� will obtain at the point
where d� /d	=0��=const�. Hence, we obtain instead of
Eqs. �18� and �19� the elementary system

sin � = 0, �20�

d2�

d	2 = 0 �21�

with the boundary conditions �see Eqs. �13� and �14��

��2�� − ��0� = 2�n,
d�

d	
�2�� =

d�

d	
�0� , �22�

n = 0, � 1, � 2, . . .

The choice of physically nonequivalent solutions �20�
��=0 mod 2� or �=� mod 2�� is also determined by the
requirement that the expression �15� have a minimum �see
the equalities �16�� and reduces to the condition16

cos � = sgn�� − ��2 min
�

Q��;��� . �23�

Evidently, the quantity � can influence the choice of the
values of � only in the cases ��0 and ���0. However, if
���0 ���0�, the correct solution will be �=� mod 2� for
��0 and �=0 mod 2� for ��0, irrespective of the values
of �. The solution of Eq. �21� under the conditions �22� is
obvious:

��	� = n	 + ��0�, n = 0, � 1, � 2, . . . , 	 � �0,2�� .

Substituting into the right-hand side of Eq. �15� the minimiz-
ing values of the variables � and � we find

�24�
where the function

Q��� �
1

R2 min
n
�n −

�

�0
�2

is bounded and periodic:

0 � Q��� �
1

4R2 , Q�� + �0� = Q��� .

The conditions of stationarity
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�F
ĉ�
1�

= 0,
�F

��
2�
= 0

give a system of equations for determining the equilibrium
values of �
1� and �
2�:

��1 +
�2Q���

2m1
��
1� + 
1�
1�3 − �� − ��2Q�����
2� = 0,

�25�

��2 +
�2Q���

2m2
��
2� + 
2�
2�3 − �� − ��2Q�����
1� = 0.

�26�

III. OSCILLATIONS OF THE SUPERCONDUCTING
TRANSITION TEMPERATURE

The superconducting transition temperature for a pre-
scribed value of the magnetic flux, Tc�, is defined as the
temperature at which the trivial solution �
1�= �
2�=0 of Eqs.
�25� and �26� which corresponds to the normal phase be-
comes unstable. To determine the limits of stability of the
trivial solution we shall examine the second differential of
the functional �24� at the point �
1�= �
2�=0:

�27�

where ��
1,2� are arbitrary nonnegative infinitesimals. Obvi-
ously, the condition � 2F�0 �positive definiteness of � 2F�
must hold at temperatures T�Tc�. At the point T=Tc� the
quadratic form �27� loses the property of positive-
definiteness:

� 2F � 0. �28�

The condition �28� means that the smallest of the eigenvalues
�1, �2 ��1��2� of the matrix of the quadratic form

M̂ =� �1 +
�2Q

2m1
− �� − ��2Q�

− �� − ��2Q� �2 +
�2Q

2m2

� �29�

vanishes �see, for example, Ref. 17�. Since

�30�

where the � and � signs refer to �1 and �2, respectively, we find from the condition �1�Tc��=0

�31�

where we have taken into account the definition �4� as well
as the expression from Ref. 16 for the critical temperature of
a two-band superconductor for �=0��Tc���=0�Tc�:

Tc = Tc1�1 +�� a20

2a2
�2

+
�2

a1a2
−

a20

2a2
� . �32�

The relative shift of the critical temperature �tc��Tc

−Tc�� /Tc is of interest. For convenience in analyzing the
function �tc=�tc��� we introduce the dimensionless param-
eters

p �
a20

a2
, l �

a1

a2
, �̄ �

�

a1
, k �

m1

m2
,

�̄ �
�

R�2m1a1

� 1, �̄ � 2�m1���̄� � �k� �33�

and the dimensionless function
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Q̄��� � min
n
�n −

�

�0
�2

��0 � Q̄��� �
1

4
,Q̄�� + �0� = Q̄���� . �34�

In terms of the parameters �33� and the function �34� the
desired flux dependence has the form

�tc =
1

2 + �p2 + 4l�2 − p
	�p2 + 4l�̄2 + �̄ 2�kl + 1�Q̄���

− ��p + �̄ 2�kl − 1�Q̄����2 + 4l��̄ − �̄�̄ 2Q̄����2
 .

�35�

The relations �31� and �35� give a complete mathemati-
cal description of the Little–Parks effect in two-band super-
conductors. As a particular case, they contain the classical
Little–Parks effect for a single-band superconductor.2–4 For
definiteness, we shall examine the relation �35�. Let �̄= �̄
=0 �no interband interaction� and p�1 �the band 2 is super-
conducting at all temperatures�. As expected �see Refs. 2–4
and Introduction�, we obtain:

�tc = �̄2Q̄��� , �36�

Contrary to the assertions made in Ref. 9, a strict peri-
odic �with the period �0� flux dependence �tc=�tc��� for
two-band superconductors follows immediately from the
general relation �35�, in complete analogy to the classical
case �36�. Just as in the classical case, the shift of the super-
conducting transition temperature vanishes at the points
� /�0=n �n=0, �1, �2, . . . � and it reaches its maximum
value at the points � /�0=n�1 /2 �n=0, �1, �2, . . . �,
where the optimal values of the discrete time n change by 1.
�At these latter points the function �tc=�tc��� has singulari-
ties �non-differentiability�.

The main qualitative difference from the classical case
�36� is the nonparabolic character of the flux dependence
�tc=�tc��� in regions with the fixed optimal value of n,
where �� /�0−n��1 /2 �see Fig. 2�. This characteristic effect
of two-band superconductivity can be checked experimen-
tally.

In Sec. II we indicated the possibility that the states �
=0 mod 2� and �=� mod 2� alternate when ����0 �see
the discussion of the condition �23��. Such alternation occurs

if 0� ��̄�� ��̄��̄ 2 /4. In particular, if 0� ��̄�� ��̄��̄ 2 /4, the su-
perconducting cylinder is in the state �=0 mod 2� in the

regions �� /�0−n����̄ / ���̄��̄ 2� and �=� mod 2� in the re-

gions ��̄ / ���̄��̄ 2�� �� /�0−n��1 /2. However, if �̄�̄ 2 /4
��̄�0, the states �=0 mod 2� and �=� mod 2� alternate
in the opposite order. Even though in the general case, the
transitions between the states �=0 mod 2� and �
=� mod 2� are not accompanied by any new observable sin-
gularities of the function �tc=�tc���, we shall give one spe-
cial case where such singularities nonetheless arise.

Let the bands 1 and 2 have identical physical param-
eters:

�1 = �2 � � = − a�1 −
T

Tc1

��a20 = 0�, m1 = m2,


1 = 
2 � 
; p = 0,l = k = 1. �37�

Substituting the expressions �37� into the general relation
�35� gives

�tc =
1

1 + ��̄�
���̄� + �̄ 2Q̄��� − ��̄ − �̄�̄ 2Q̄����� . �38�

If

�� � 0, 0 � ��̄� �
��̄��̄ 2

4
, �39�

the nondifferentiability of the right-hand side of Eq. �38� at
the points

�

�0
= n �� �̄

��̄��̄ 2
, n = 0, � 1, � 2, . . . �40�

�the transition points between the states �=0 mod 2� and
�=� mod 2�� engenders new observable singularities of the
function �tc=�tc��� which are completely absent in the
classical case2–4 �see Fig. 3�.

FIG. 2. �tc=�tc��� for single-band �solid line� and two-band superconduct-
ors �p=1.1765, l=0.8333, �̄=0.7059� with �̄=0 �dashed line� and �̄ 0.9

�dotted line�. The remaining parameters are: �̄=0.5, k=1.

FIG. 3. �tc=�tc��� for the case where the bands 1 and 2 have the identical
parameters: p=0; l=k=1 and the values of �̄ are indicated on the curves.

The remaining parameters are: �̄=0.01 and �̄=0.5.
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IV. DISCUSSION AND CONCLUSIONS

The Ginzburg–Landau approach has been used to con-
struct a theory of the Little–Parks effect for two-band super-
conductors. A quite simple relation �35� describing the de-
pendence of the relative shift �tc of the superconducting
transition temperature on the external magnetic flux � was
obtained. The relation �35� contains as a particular case the
well-known Little-Parks effect for single-band superconduct-
ors �36�.2–4

The main difference from the classical effect �36�, as can
be checked experimentally, is the nonparabolic dependence
�tc=�tc��� in regions where �� /�0−n��1 /2 �n
=0, �1, �2, . . . �. The assertion made in Ref. 9 that the
Little–Parks oscillations are not periodic because the physi-
cal parameters of the band 1 are different from those of the
band 2 is not confirmed: strict periodicity �with the period
�0� of the flux dependence �tc=�tc���, just as in the clas-
sical case �36�, follows uniquely from the general relation
�35�. Conversely, the new observed features �nondifferentia-
bility� of the function �tc=�tc���, which are completely ab-
sent in the classical case, appear precisely when the bands 1
and 2 have the same parameters: see Eq. �38� with the con-
ditions �39� and Fig. 3.

The investigation of the extremal properties of the initial
free-energy functional �3� led to the conclusion that the phe-
nomenological parameter � is subject to an important limi-
tation �7�. If the condition �7� does not hold, the functional
�3� has no lower bound and no minimum and cannot be used
in physical applications. As far as we know, the condition �7�
has not been noted previously in the literature.

In addition, it has been shown that the absolute mini-
mum of the free-energy functional �3� corresponds to states
with constant difference of the phases 	 of the complex-
valued components of the order parameter 
1 and 
2 �	
=0 mod 2� or 	=� mod 2��. For this reason the soliton
states associated with the gradients of � and discussed in the

literature18,19 do not contribute to the Little–Parks oscilla-
tions.

Summarizing, it is our hope that the results obtained in
the present work will stimulate experimental studies of the
Little–Parks effect in two-band superconductors and will
lead to further elaboration of the theory, both in the
Ginzburg–Landau approach as well as on a consistently mi-
croscopic basis.
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