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Homogeneous current states in thin films and Josephson current in superconducting microbridges
are studied within the framework of a two-band Ginzburg–Landau theory. By solving the
coupled system of equations for two order parameters the depairing current curves and Josephson
current–phase relation are calculated for different values of phenomenological parameters � and
�. Coefficients � and � describe the coupling of order parameters �proximity effect� and their
gradients �drag effect�, respectively. For definite parameter values the dependence of the current j
on the superfluid momentum q contains local minima and corresponding bistable states. It is
shown that a Josephson microbridge made from two-band superconductors can demonstrate
�-junction behavior. © 2007 American Institute of Physics. �DOI: 10.1063/1.2737547�

I. INTRODUCTION

To the present day the overwhelming majority of works
on the theory of superconductivity have been devoted to
single-gap superconductors. More than 40 years ago the pos-
sibility of superconductors with two superconducting order
parameters was considered by Moskalenko1 and by Suhl,
Matthias, and Walker2 in the model of a superconductor with
overlapping energy bands on the Fermi surface. Moskalenko
has investigated theoretically the thermodynamic and elec-
tromagnetic properties of two-band superconductors. The
real boom in investigation of multi-gap superconductivity
started after the discovery3 of two gaps in MgB2 by the
methods of scanning tunneling4,5 and point-contact
spectroscopy.6–8 The compound MgB2 has the highest criti-
cal temperature, Tc=39 K, among superconductors with a
phonon mechanism of pairing, and two energy gaps �1

�7 meV and �2�2.5 meV at T=0. At this time two-band
superconductivity is also studied in other systems, e.g., in
heavy-fermion compounds,9,10 borocarbides,11 and liquid
metallic hydrogen.12–14 Various thermodynamic and transport
properties of MgB2 have been studied in the framework of
the two-band BCS model.15–22The Ginzburg–Landau �GL�
functional for two-gap superconductors has been derived
within the weak-coupling BCS theory in dirty23 and clean24

superconductors. The magnetic properties25–27 and peculiar
vortices28–30 have been studied within the Ginzburg–Landau
scheme.

The aim of this article is to present a Ginzburg–Landau
theory of the current-carrying states in superconductors with
two order parameters. In the case of several order parameters
the qualitatively new features in the superconducting current
state are related to mutual influence of the moduli of com-
plex order parameters as well of the gradients of their phases.
We study the manifestations of these effects in the current–
momentum dependence and in the Josephson current–phase
relation. In Sec. II a general phenomenological description of
two-band superconductors is given within the Ginzburg–

Landau theory. The Ginzburg–Landau equations for two
coupled superconducting order parameters include the prox-
imity and drag effects. In Sec. III the peculiarities of homo-
geneous current states in multi-gap superconductors are stud-
ied. The dependence of current on superfluid momentum is
calculated for different values of the parameters. We demon-
strate that for definite values of parameters it contains local
minima and corresponding bistable states in the GL free en-
ergy. In Sec. IV the Josephson effect is considered in a
simple model of a superconducting weak link �a generaliza-
tion of the Aslamazov–Larkin theory31 to a two-band super-
conductor�, and the possibility of �-junction behavior is
demonstrated.

II. GINZBURG—LANDAU EQUATIONS FOR TWO-BAND
SUPERCONDUCTIVITY

The phenomenological Ginzburg–Landau free energy
density functional for two coupled superconducting order pa-
rameters �1 and �2 can be written as

FGL = F1 + F2 + F12 +
�curl A�2

8�
,

where

F1 = �1��1�2 +
1

2
�1��1�4 +

1

2m1
��− i� � −

2e

c
A	�1�2

,

�1�

F2 = �2��2�2 +
1

2
�2��2�4 +

1

2m2
��− i� � −

2e

c
A	�2�2

,

�2�

and
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F12 = − ���1
*�2 + �1�2

*� + �
�− i� � −
2e

c
A	�1

	 �i� � −
2e

c
A	 + �i� � −

2e

c
A	�1

*�− i� �

−
2e

c
A	�2� . �3�

The terms F1 and F2 are conventional contributions from �1

and �2, and the term F12 describes, without loss of general-
ity, the interband coupling of the order parameters. The co-
efficients � and � describe the coupling of two order param-
eters �proximity effect� and their gradients �drag effect�,25–27

respectively.

By minimization of the free energy F=��F1+F2+F12

+ H2

8�
�d3r with respect to �1, �2, and A we obtain the differ-

ential GL equations for a two-band superconductor:

�4�

and an expression for the supercurrent:

j = −
ie�

m1
��1

* � �1 − �1 � �1
*� −

ie�

m2
��2

* � �2 − �2 � �2
*�

− 2ie����1
* � �2 − �2 � �1

* − �1 � �2
* + �2

* � �1�

− � 4e2

m1c
��1�2 +

4e2

m2c
��2�2 +

8�e2

c
��1

*�2 + �2
*�1�	A .

�5�

In the absence of currents and gradients of the order
parameter moduli, the equilibrium values of order param-
eters �1,2=�1,2

�0�ei
1,2 are determined by the set of coupled
equations

�1�1
�0� + �1�1

�0�3 − ��2
�0�ei�
2−
1� = 0,

�2�2
�0� + �2�2

�0�3 − ��1
�0�ei�
1−
2� = 0. �6�

For the case of two order parameters the question arises
as to the phase difference �=
1−
2 between �1 and �2. In a
homogeneous no-current state, by analyzing the free energy
term F12 �3� one can show that in the case ��0 the phase
shift �=0, while for �0 one has �=�. The statement that
� can have only values 0 or � also applies in the current-
carrying state, but for a coefficient ��0 the criterion for
whether � equals 0 or � now depends on the value of the
current �see below�.

If the interband interaction is ignored, Eqs. �4� are de-
coupled into two ordinary GL equations with two different
critical temperatures, Tc1 and Tc2. In general, independently
of the sign of �, the superconducting phase transition occurs
at a well-defined temperature exceeding both Tc1 and Tc2,
which is determined from the equation

�1�Tc��2�Tc� = �2. �7�

Let the first order parameter be stronger than the second,
i.e., Tc1�Tc2. Following Ref. 24 we represent the
temperature-dependent coefficients as

�1�T� = − a1�1 − T/Tc1� ,

�2�T� = a20 − a2�1 − T/Tc1� . �8�

The phenomenological constants a1,2, a20, and �1,2 can be
related to the microscopic parameters in the two-band BCS
model. From �7� and �8� we obtain for the critical tempera-
ture Tc:

Tc = Tc1�1 +� a20

2a2
	2

+
�2

a1a2
−

a20

2a2
	 . �9�

For arbitrary values of the interband coupling, Eq. �6� can be
solved numerically. For �=0, Tc=Tc1, and for temperature
close to Tc �hence for Tc2T�Tc�, the equilibrium values of
the order parameters are �2

�0��T�=0 and �1
�0��T�

=a1�1−T /Tc� /�1. Henceforth assuming weak interband
coupling, we have from Eqs. �6�–�9� corrections ��2 to
these values:

�1
�0��T�2 =

a1

�1
�1 −

T

Tc
	 +

�2

�1� 1

a20 − a2�1 −
T

Tc
	

−
T

Tc

1

a20� ,

�2
�0��T�2 =

a1

�1
�1 −

T

Tc
	 �2

�a20 − a2�1 −
T

Tc
		2 . �10�

Expanding Eq. �9� over �1− T
Tc

��1, we have conventional
temperature dependence of the equilibrium order parameters
in the weak interband coupling limit:
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�1
�0��T� �a1

�1
�1 +

1

2

a20 + a2

a20
2 a1

�2	1 −
T

Tc
,

�2
�0��T� �a1

�1

�

a20
1 −

T

Tc
. �11�

The case considered above �Eqs. �9�–�11�� corresponds to
different critical temperatures Tc1�Tc2 in the absence of in-
terband coupling �. The order parameter in the second band
�2

�0� arises from the “proximity effect” of stronger �1
�0� and is

proportional to the value of � �Eq. �11��. Now consider an-
other situation. Suppose for simplicity that the two conden-
sates are identical in the zero-current state. In this case for
arbitrary values of � we have

�1�T� = �2�T� � ��T� = − a�1 −
T

Tc
	,�1 = �2 � � , �12�

�1
�0� = �2

�0� =��� − �

�
. �13�

III. HOMOGENEOUS CURRENT STATES AND
GINZBURG–LANDAU DEPAIRING CURRENT

In this Section we will consider the homogeneous cur-
rent states in thin wires or films with transverse dimension
d��1,2�T� ,�1,2�T� �see Fig. 1�, where �1,2�T� and �1,2�T� are
coherence lengths and London penetration depths for each
order parameter, respectively, without interband interaction.
This condition leads to a one-dimensional problem and per-
mits us to neglect the self-magnetic field of the system.

The current density j and the moduli of the order param-
eters do not depend on the longitudinal coordinate x. Writing
�1,2�x� as �1,2= ��1,2 �exp�i
1,2�x�� and introducing the differ-
ence and weighted sum phases:

�� = 
1 − 
2,

� = c1
1 + c2
2,

we obtain for the free energy density �1�–�3�

�14�

where

c1 =

��1�2

m1
+ 2���1���2�cos �

��1�2

m1
+

��2�2

m2
+ 4���1���2�cos �

,

c2 =

��2�2

m2
+ 2���1���2�cos �

��1�2

m1
+

��2�2

m2
+ 4���1���2�cos �

. �15�

The current density j in terms of phases � and � has the
form

j = 2e�� ��1�2

m1
+

��2�2

m2
+ 4���1���2�cos �	d�

dx
�16�

and includes the partial inputs j1,2 and the drag current j12

proportional to �.

In contrast to the case of a single order parameter,32 the
condition div j=0 does not fix the constancy of the super-
fluid velocity. In the Appendix we present the Euler–
Lagrange equations for ��x� and ��x�. They are complicated
coupled nonlinear equations, which generally permit soliton-
like solutions �in the case �=0 they were considered in Ref.
33�. The possibility of states with inhomogeneous phase ��x�
requires separate investigation.

Here we restrict consideration to a homogeneous phase
difference between the order parameters, �=const. For �
=const it follows from Eqs. �A4� �see Appendix � that ��x�
=qx �q is the total superfluid momentum� and sin �=0, i.e.,
� equals 0 or �. Minimization of the free energy gives the
following equation for �:

cos � = sign�� − ��2q2� . �17�

Note that now the value of �, in principle, depends on q and
thus on the current density j.

Finally, Eqs. �14� and �16� take the form:

FIG. 1. Geometry of the system.
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�18�

j = 2e�� ��1�2

m1
+

��2�2

m2
+ 4���1���2�sign�� − ��2q2�	q .

�19�

We will parameterize the current states by the value of the
superfluid momentum q, which, for a given value of j, is
determined by Eq. �19�. The dependence of the order param-
eter moduli on q is determined by the GL equations:

�1��1� + �1��1�3 +
�2

2m1
��1�q2 − ��2��� − ��2q2�

	sign�� − ��2q2� = 0, �20�

�2��2� + �2��2�3 +
�2

2m2
��2�q2 − ��1��� − ��2q2�

	sign�� − ��2q2� = 0. �21�

At first we consider the case of small values of the in-
terband coupling � and dragging coefficient �. In the same
manner as for q=0 �Sec. II� we obtain for ��1 � �q� and
��2 � �q�, instead of expression �11�,

�1
2�q� =

a1�1 −
T

Tc
	

�1
−

�2

2m1�1
q2 −

�2

a20�1

T

Tc

+
�� − ��2q2�2

�1�a20 − a2�1 −
T

Tc
	 +

�2

2m2
q2	 , �22�

�1
2�q� = �a1�1 −

T

Tc
	

�1
−

�2

2m1�1
q2�

	
�� − ��2q2�2

�1�a20 − a2�1 −
T

Tc
	 +

�2

2m2
q2	 . �23�

The system of Eqs. �19�, �22�, and �23� describes the
depairing curve j�q ,T� and the dependences ��1� and ��2� on
the current j and temperature T. It can be solved numerically
for a given superconductor with concrete values of the phe-
nomenological parameters.

In order to study the specific effects produced by inter-
band coupling and dragging, let us now consider the model
case when the order parameters coincide at j=0 �Eqs. �12�
and �13�� but the gradient terms in Eq. �4� are different. In
this case Eqs. �19�–�21� take the form

f1�1 − �1 + �̃�f1
2� − f1q2 + f2��̃ − �̃q2�sign��̃ − �̃q2� = 0,

�24�

f2�1 − �1 + �̃�f2
2� − kf2q2 + f1��̃ − �̃q2�sign��̃ − �̃q2� = 0,

�25�

j = f 1
2q + kf 2

2q + 2�̃f1f2q sign��̃ − �̃q2� . �26�

Here we normalize �1,2 to the value of the order parameters
at j=0 �13�, j is measured in units of 22e ���+���

�
���

m1
, q is

measured in units of  �2

2m1��� , �̃= �
��� , �̃=2�m1, k=

m1

m2
. If k

=1 the order parameters also coincide in the current-carrying
state, f1= f2= f , and from Eqs. �24�–�26� we have the expres-
sions

f2�q� =
1 − q2 − ��̃ − �̃q2�

1 + ��̃�
, �27�

j�q� = 2f2�1 − �̃ sign��̃ − �̃q2��q , �28�

which for �̃= �̃=0 are the conventional dependences for a
one-band superconductor32 �see Fig. 2�.

For k�1 the depairing curve j�q� can contain two stable,
increasing with q, branches, which corresponds to the possi-

FIG. 2. Depairing current curve �a� and the graph of the order parameter
moduli versus current �b� for coincident order parameters.

404 Low Temp. Phys. 33 �5�, May 2007 Y. S. Yerin and A. N. Omelyanchouk

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.255.6.125 On: Fri, 14 Nov 2014 12:27:59



bility of a bistable state. In Fig. 3 the j�q� and f1�j� and f2�j�
curves calculated numerically from Eqs. �24�–�26� are shown
for k=5 and �̃= �̃=0.

The interband scattering ��̃=0� smears the second peak
in j�q�; see Fig. 4.

If the dragging effect ��̃=0� is taken into account the
depairing curve j�q� can have a jump at a definite value of q
�for k=1 see Eq. �28��; see Fig. 5. This jump corresponds to
a switching of the relative phase difference from 0 to �.

IV. JOSEPHSON EFFECT IN A TWO-BAND
SUPERCONDUCTING MICROCONSTRICTION

In the previous Section the GL theory of two-band su-
perconductors was applied to the case of filament length L
→�. The opposite case of a strongly inhomogeneous current
state is the Josephson microbridge geometry, which we
model as a narrow channel connecting two massive super-
conductors �banks�. The length L and diameter d of the chan-
nel �see Fig. 6� are assumed to be small as compared to the
order-parameter coherence lengths �1 and �2.

For d�L we can solve the one-dimensional GL equa-
tions �4� inside the channel with rigid boundary conditions
for the order parameters at the ends of the channel.34

In the case L��1 ,�2 we can neglect in Eqs. �4� all ex-
cept the gradient terms and solve the equations

�
d2�1

dx2 = 0,

d2�2

dx2 = 0,

�29�

with the boundary conditions:

�1�0� = �01 exp�i
1�, �2�0� = �02 exp�i
3�,

�1�L� = �01 exp�i
2�, �2�L� = �02 exp�i
4� . �30�

Calculating the current density j in the channel, we obtain:

j = j1 + j2 + j12, �31�

j1 =
2e�

Lm1
�01

2 sin�
2 − 
1� , �32�

FIG. 3. Dependence of the current j on superfluid momentum q. For the
value of the current j= j0, stable states ��� and unstable states ��� are
shown �a�. Dependences of the order parameters on current j for k=5 and
�̃= �̃=0 �b�.

FIG. 4. Depairing current curves for different values of the interband inter-
action: �̃=0 �solid line�, �̃=0.1 �dotted line� and �̃=1 �dashed line�. The
ratio of effective masses k=5, and �̃=0.

FIG. 5. Depairing current curves for different values of the effective mass
ratio k=1 �solid line�, k=1.5 �dotted line�, and k=2 �dashed line�. The in-
terband interaction coefficient �̃=0.1 and drag effect coefficient �̃=0.5.

FIG. 6. Geometry of an S–C–S contact as a narrow superconducting channel
in contact with bulk two-band superconductors. The values of the order
parameters at the banks are indicated.
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j2 =
2e�

Lm2
�02

2 sin�
4 − 
3� , �33�

j12 =
4e�

L
��01�02�sin�
2 − 
3� + sin�
4 − 
1�� . �34�

Let 
2−
1=
. The difference between two order-parameter
phases in the banks equals 0 or �, depending on the sign of
the interband interaction constant �. Therefore, if ��0 then

3=
1 and 
4=
2, and if �0 then 
3−
1=�, 
4−
2=�.
Thus the current–phase relation j�
� in the general case of
arbitrary values of the phenomenological constants � and �
for two-band superconducting microbridge has the form

j � j0 sin 
 =
2e�

L
��01

2

m1
+

�02
2

m2
+ 4��01�02 sign���	sin 
 .

�35�

The value of j0 in �35� can take both positive and negative
values:

j0 � 0 if � sign��� � − � 1

4m1

�01

�02
+

1

4m2

�02

�01
	 , �36�

j0  0 if � sign���  − � 1

4m1

�01

�02
+

1

4m2

�02

�01
	 . �37�

When condition �37� is satisfied for the set of parameters of
a two-band superconductor, the microbridge behaves as a
so-called � junction �see Ref. 35�.

V. CONCLUSIONS

We have investigated the current-carrying states in two-
band superconductors within the phenomenological
Ginzburg–Landau theory. Two limiting situations were con-
sidered: the homogeneous current state in a long film or
channel, and the Josephson effect in a short superconducting
microconstriction. We used the GL functional for two order
parameters, which includes the interband coupling �proxim-
ity effect� and the effect of dragging in the current state of
the two-band system. For the case of two order parameters
the question arises as to the phase difference �=
1−
2 be-
tween �1= ��1 �ei
1 and �2= ��2 �ei
2. In the homogeneous no-
current state the value of � equals 0 or �, depending on the
sign of the interband coupling constant �.36 The statement
that � can only have values 0 or � also holds in the current-
carrying state, but for nonzero drag coefficient � the criterion
for whether � equals 0 or � now depends on the value of the
superfluid momentum q, namely cos �=sign��−��2q2�. The

system of coupled GL equations is analyzed for different
values of the phenomenological parameters. The depairing
current expression contains the term cos �, and, in general,
depending on the parameters � and �, with increasing mo-
mentum q the value of � can switch from 0 to �. In the
current-driven regime it leads to the existence of two ascend-
ing branches of j�q�, which are both stable. This bistability is
an intrinsic property of a two-band superconductor. It is in-
teresting to study the effects of relative phase switching in a
magnetic-flux-driven regime in a multivalued geometry. The
Josephson current–phase relation for two band superconduct-
ing weak links j�
� also contains the phase difference of the
order parameters in the banks, j= j0���sin 
. Here j0 can take
both positive and negative values. In the latter case we have
what is called the � junction, again due to intrinsic properties
of two-band superconductivity. In Sec. II we restricted con-
sideration to a homogeneous phase difference � between the
two order parameters. The general equations �A4� admit the
possibility of inhomogeneous, solitonlike distributions ��x�,
which will be the subject of a separate publication.

The authors would like to acknowledge S.V. Kupleva-
khsky for helpful discussions.

APPENDIX: FREE ENERGY TRANSFORMATION
Instead of the phases 
1 and 
2, we introduce the new

variables � and �:

�
1 − 
2 = � ,

c1
1 + c2
2 = � ,
�A1�

where the coefficients c1 and c2 are chosen as

c1 =

��1�2

m1
+ 2���1���2�cos �

��1�2

m1
+

��2�2

m2
+ 4���1���2�cos �

,

c2 =

��2�2

m2
+ 2���1���2�cos �

��1�2

m1
+

��2�2

m2
+ 4���1���2�cos �

. �A2�

The expression for the free energy density in the new
variables takes a quadratic form in the derivatives of � and
�:

F = A + B�d�

dx
	2

+ C�d�

dx
	2

− D cos � . �A3�

Here A, B, C, and D are

Doing a variation of �4�� and �, we obtain equations for the spatial dependence of the phases � and �:
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�A4�

In the particular case �5��=0 �no drag effect� Eq. �A4� coincides with the equation obtained in Ref. 33.
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