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A quantum detector whose working principle is based on magnetic-field modulation of a circulat-
ing supercurrent in the quantum ground state of a macroscopic superconducting loop with a Jo-
sephson junction. Under the influence of an external magnetic flux equal to �0 /2 �or �0�, two
�or three� classical states are coupled to each other by quantum tunneling through a potential
barrier, and therefore the detector is a two-level �or three-level� system. In the low-temperature
region and under the condition of very weak damping, the mean value of the circulating super-
current reflects the character of the variation of the quantum superposition of macroscopic states,
which is sensitive to the symmetry of the potential. The variations of the current are amplified
and detected in a measurement scheme similar to the signal registration in a nonhysteretic rf
SQUID. It is shown by a numerical analysis that in comparison with a qubit detector based on
an SIS junction, a detector with an ScS junction is faster and has much larger amplitudes of en-
ergy splitting at the same parameters. The results presented for double- and triple-well potentials
clearly indicate that a qubit with an ScS junction can act as a detector with a sensitivity deter-
mined by the quantum noise of the amplifier. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2409630�

INTRODUCTION

Experimental and theoretical research on magnetometers
based on rf and dc SQUIDS has led to a substantial improve-
ment of the sensitivity in many magnetic measurements.
Such sensors have naturally become used for registration of
the state of quantum bits �qubits�, including for solution of
the fundamental problem — that of decreasing the back-
action of a classical measuring system on the evolution of a
two-level quantum system.1–3 Although both types of sensors
can be used to make devices with quantum limitations on the
sensitivity, i.e., their energy resolution �� over a measure-
ment time �t approaches the limit set by the uncertainty re-
lation ���t� � /2,4–7 the behavior of the phase difference �
across the Josephson junctions remains classical. In other
words, the structure of the formulas describing the nonlinear
properties of dc and rf SQUIDs are classical, and all the
variables in the equations can be measured simultaneously.
Contrary to this, “topologically similar” superconducting cir-
cuits — qubits created on the basis of mesoscopic Josephson
junctions with negligibly low quasiparticle current — dem-
onstrate remarkable quantum properties at the macroscopic
level: quantization of energy levels, resonant tunneling,8 and
coherent superposition of macroscopic states.9–13

The description of a phase qubit and a sensor based on it
requires consideration of the quantum dynamics of a collec-
tive variable — the phase difference �. The variation of this
quantity is accompanied by a change of a large number of

electronic states. A detailed analysis of the exact Hamiltonian
of the system is complicated if one includes fluctuations and
the significant nonlinearity typical for qubits based on Jo-
sephson junctions. However, the use of various approxima-
tions and phenomenological models in many cases permits
comparison of the experimental data with the theory.14–16

Let us consider a phase qubit consisting of a supercon-
ducting loop with self-inductance L, closed by a Josephson
tunnel junction with critical current Ic and capacitance C. On
the one hand, for obtaining two different macroscopic states
�i.e., a double-well potential� and creating a coherent super-
position between them it is necessary that the characteristic
parameter �L=2�LIc /�0 be greater than unity, where �0

=h /2e�2.07	10−15 Wb is the magnetic flux quantum. On
the other hand, the parameter �L should not strongly exceed
the value �L�1, since at high critical currents of the junc-
tion the tunneling probability becomes exponentially small
because of an increase of the barrier separating these states.
For example, in Ref. 9 for observation of a superposition of
macroscopic states a value �L�2.3 was chosen. At a capaci-
tance of the SIS junction C�40 pF only the energy levels
close to the top of the barrier form a coherent superposition
of qubit states characterized by different macroscopic mag-
netic moments ±1010
B �
B is the Bohr magneton� or cur-
rents flowing in opposite directions. For the lower energy
levels the value of the matrix element of the tunneling tran-
sition is negligibly small, and the amplitude of the splitting
of degenerate levels of uncoupled wells is much less than
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kBT. This necessitated making “spectroscopic” studies in
which the tunneling exponent was effectively decreased by
increasing the occupation probability of the upper �close to
the barrier top� level was increased through the excitation of
a resonant electromagnetic field.

The tunneling interaction between different macroscopic
states in phase qubits is largely determined by the potential
barrier which, in turn, depends on the Josephson coupling
energy EJ= Ic�0 /2� and the current–phase relation I���
= Icf��� for the given type of junction. If the interaction be-
tween neighboring states, which is described with the aid of
an effective action functional,17 is sufficiently strong, the
quantum nonlinearity arising in the qubit owing to superpo-
sition of states can be used to create a new sensor, which we
shall refer to loosely as a qubit-SQUID or “q-SQUID.”

In the present paper a comparative analysis of two
q-SQUIDs, each consisting of a superconducting loop closed
by an SIS or ScS contact, is carried out on the basis of a
numerical solution of the Schrödinger equation. The charac-
teristics of the qubits are analyzed over a wide range of pa-
rameters �L and C, with particular attention to a quantum
detector based on an ScS junction and to the case of the
symmetric triple-well potential investigated in Refs. 1 and
18.

THEORETICAL MODEL

The microscopic theory of microbridges19 predicts a sub-
stantial difference between the properties of ScS and SIS
junctions in the low-temperature region. For the analysis be-
low it is important to note that the current–phase relation
I��� / Ic= f��� and the critical current amplitude Ic of the mi-
crobridge is different from the resistive model often used to
describe tunnel junctions. In the clean limit, when the char-
acteristic neck size of the microbridge becomes much less
than the electron mean free path and the coherence length in
the superconductor, the current of an ScS contact with a nor-
mal resistance RN and a temperature-dependent supercon-
ducting gap �0�T� can be written in the form19

I��� =
��0�T�

eRN
sin��/2�tanh

�0�T�cos��/2�
2kBT

. �1�

It follows from this relation that, first, at low tempera-
tures �formally at T=0� the supercurrent as a function of
phase undergoes jumps at the points �=2��n+1/2�, where n
is an integer. As the temperature is raised, the I��� curve
gradually approaches the sinusoidal dependence typical of
SIS junctions. Second, in a clean ScS junction the critical
current amplitude and the Josephson coupling energy are
twice as high as in a tunnel junction with the same normal
resistance. At a fixed value of the critical current the change
of the shape of the tunnel barrier separating the two states in
the qubit based on the clean ScS junction �1� will lead to a
sharp increase of the tunneling probability17,18 and, as a con-
sequence, to a significant increase of the level splitting upon
the formation of a coherent superposition of states.

Using relation �1� in the limit T=0 and the fluxoid quan-
tization condition for a superconducting loop closed by an
ScS junction, one can obtain a stationary equation describing

the classical relation between the external magnetic flux �e

and the magnetic flux in the loop, �, in the interval �
� �−� ,��:

� + �L sgn�cos��/2��sin��/2� = �e. �2�

Here �=2�� /�0 and �e=2��e /�0 are dimensionless in-
ternal � and external �e magnetic fluxes. The condition of
stationarity means that all the time derivatives are negligible
and the current through the contact is determined by the
superconducting component �1�. The total potential energy of
the qubit with the ScS �or SIS� junction is made up of the
energy of the Josephson junction and the magnetic energy
stored in the loop. In the limit T=0 these energies depend on
the type of junction and are substantially different:1,17–19

UScS��,�e� =
�� − �e�2

2L
−

Ic�0��0

2�
�cos

��

�0
� , �3�

USIS��,�e� =
�� − �e�2

2L
−

Ic
t �0��0

2�
cos

��

�0
. �4�

Here Ic�0�=��0 /eRN is the critical current of the ScS junc-
tion, and Ic

t �0�=��0 /2eRN is the critical current of an SIS
junction at low temperatures �T�Tc�. Analysis of the clas-
sical dynamics of a superconducting loop closed by a Jo-
sephson junction reduces to the study of the motion of a
particle having a mass proportional to the junction capaci-
tance, in a one-dimensional potential �3� or �4�. It follows
from expressions �2� and �3� that a q-SQUID based on a pure
ScS junction has two local minima even in the region �L

�1, since the condition for the onset of the hysteretic regime
has the form �L

* =�L��f��� /����=��1. As a consequence of
this difference from model �4�, in constructing qubits based
on potential �3� one can substantially reduce the geometric
size �inductance� of the quantum system. We note that an
analogous assumption, though based on a different physical
phenomenon, was discussed recently in Ref. 15. Currently,
for decreasing the inductance of the phase qubit, one con-
nects three tunnel junctions in the loop;20 although this
causes twice as much capacitance �mass� to be involved in
the tunneling, it preserves the shape of the barrier in the
tunnel direction.

In the classical limit the decay of metastable current
states depends exponentially on the height of the barrier
separating the two states. Since the shape of the potential
barrier �3� in a qubit with an ScS junction leads to a substan-
tial decrease of the tunneling exponent at the same barrier
height, a potential of the type �3� is preferable from the
standpoint of constructing quantum chains. We note that in
the present paper we consider a rather general case, since it is
easy to show that such a potential can be constructed
�quantum-state engineering� as well in the case of a series
connection of two tunnel Josephson junctions in the loop.

The quantum behavior of a macroscopic variable qubit
� can be studied in an approximation using the Hamiltonian
of an isolated system. Such an approximation describes the
case when the qubit does not interact with a large number of
degrees of freedom of the detector �an LC circuit�. However,
to obtain any, even a very small amount of information about
the state of a qubit in the method of weak continuous mea-
surements leads to an increase in the rate of its decoherence.
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Therefore, the results of the numerical analysis, presented
below, describe only the general regularities, while for nu-
merical comparison with the characteristics obtained experi-
mentally it is necessary to take into account the influence
�even though weak� of the measurements on the state of the
qubit.2 Nevertheless, it is shown in the present paper that
when a superposition of three states appears, fundamentally
new effects arise which are described well by the model of
an isolated system and can explain the experimental results
obtained in Ref. 1.

It follows from the theory of clean ScS junctions that in
the limit T=0 and under adiabatic conditions the Ohmic dis-
sipation vanishes, and to first approximation the superposi-
tion of macroscopic states of the qubit can be analyzed with-
out taking it into account.17 Adiabatic conditions for a
tunneling process are satisfied under the conditions
��LC�−1/2�E10��0 for the characteristic energy of the
resonance �tank� circuit and the minimum value of the level
splitting E10. Furthermore, it was shown in Ref. 17 that at a
current close to the critical value, I� Ic�0�=��0 /eRN, the
junction capacitance is renormalized as follows: C�C*

+�� / �4RN�0�, where C* is the geometric capacitance of the
junction. For ScS junctions with resistance RN�RQ= � /e2

�4.1 k the electrodynamic correction to the geometric ca-
pacitance is rather small ��0.1 pF�. However, taking into
account the geometric capacitance of the toroidal structure
used in Ref. 1, one obtains an estimate C�4.0–8.0 pF. For
an ScS junction based onniobium with a normal resistance
RN�4.0 k the critical current is equal to Ic�0��1.0 
A,19

which, for a loop with inductance L=3	10−10 H, gives a
value �L�1.

In the adiabatic limit and without dissipation, the Hamil-
tonians of q-SQUIDs with potentials �3�, �4� can be repre-
sented in the simple form

H��,�e� =
Q2

2C* + U��,�e� . �5�

Here Q=−i�� /�� is the charge operator, and U�� ,�e� is
the nonlinear term of Eq. �3� or �4�, depending on the type of
junction. The eigenenergy levels and the squares of the wave
functions of the states are calculated by numerical solution of
the stationary Schrödinger equations with potential energies
�3�, �4�. In the dimensionless variables these equations have
the form

1

2m

�2

��2� = 	 �� − �e�2

2
− 2�l
cos��/2�
��; �6�

1

2m

�2

��2� = 	 �� − �e�2

2
− �l cos ��� . �7�

For finding the solutions of the stationary equations �6�,
�7� a version of the finite-element method is used, with the
characteristic shape of the potential energy approximated by
a piecewise-constant function. The analytical solutions ob-
tained for each finite element are joined. Boundary condi-
tions of the zero type are specified at the boundaries of the
region. The number of elements was varied in the range
102–103, depending on the required accuracy of the calcula-
tion. For convenience of comparison of the results of the
calculation, the inductances of the qubits with ScS and SIS

junctions and the dimensionless masses m= �� / ��0�2 were
set equal ��= ��0 /2��2 /L�kB ·24.5 K is the characteristic
energy of the loop,1 and �0= �LC�−1/2 is its eigenfrequency�.

As an example, we consider a superposition of states in
qubits �6�, �7� with parameters L=3	10−10 H, C*�C
=2.7 pF in the case of symmetric double-well potentials, i.e.,
at a fixed external flux �e= �n+1/2�2�. The values of the
critical currents will be chosen such that the corresponding
potential barrier heights EU are equal in magnitude and much
greater than the energy of thermal fluctuations. This require-
ment is equivalent to the condition that the decay rates of the
metastable states due to thermal fluctuations be approxi-
mately equal to each other and much less than the quantum
ones. Figure 1 shows the amplitudes of the tunneling split-
tings E10=E1−E0 and the squares of the wave functions of
the ground state E0 and excited state E1 for two types of
qubits at the point �e=�0 /2. For the chosen values of the
capacitance, at equal barrier heights the amplitude of the
splitting in the qubit with the ScS junction is 6.75 times
larger than in the case of a tunnel junction. It is clear that
with increasing capacitance the eigenvalues of the levels in
potentials �3�, �4� are lowered. This leads to a decrease of the
critical value of the parameter �L, at which both split levels
in the qubit with the ScS junction are still below the barrier.
As we have said, because of the specific shape of the
current–phase relation �1�, in q-SQUIDs with an ScS junc-
tion a double-well potential exists even in the region �L�1.
Therefore, by decreasing �L, one can obtain a progressively
greater difference in the level splitting. For example, at a

FIG. 1. Superposition of two macroscopic states in q-SQUIDs with junc-
tions of the ScS type �a� and of the SIS type �b� with the following values of
the parameters: geometric inductance of the loop L=3	10−10 H, the total
capacitance C�2.7	10−15 F �m=8�, external magnetic flux �e=�0 /2, po-
tential barrier height EU=0.32�, �L=0.8 �a�, �L=1.54 �b�. All of the ener-
gies are given in units of �=�0

2 /4�2L �� /kB�24.5 K�.
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dimensionless mass m=20 and potential barrier heights EU

=0.20�, the ratio of the splitting amplitudes E10 is approxi-
mately equal to 13. Moreover, a numerical analysis shows
that for the case of very large masses �m=80� and barrier
heights �0.12� the ratio of the splitting amplitudes increases
to 22. This simple analysis shows that a superposition of two
states in qubits with a specific shape of the potential barrier
�3� leads to a sharp increase of the splitting amplitude E10,
and therefore such qubits have a clear advantage both as a
basis for constructing quantum detectors and for use as quan-
tum logic elements.

The dependence of the first two energy levels E0 and E1

on the external flux in the interval �e=�0 /2±0.05�0 is
shown in Fig. 2. The working principle of the sensor, which
was implemented in Ref. 1, is based on the fact that in the
ground state, i.e., in the motion along the level E0, the Jo-
sephson quantum inductance is a periodic function of the
external magnetic flux with period �0:

LJ
−1��,�e� = �2�/�0���2E0��,�e�/��2� . �8�

Therefore for excitation and registration of the state of a
q-sensor it can be inductively coupled to a low-frequency
tank circuit having a natural frequency fT=1/2��LTCT�1/2

that is much less than the characteristic frequency of the
two-level system, E10/h �the adiabatic excitation regime�. In
such a coupled system as a result of the mutual inductance M
the oscillations in the circuit at frequency fT create an exter-
nal magnetic flux �e�t�=MITsin 2�fTt applied to the qubit.
If the amplitude of this flux is much less than �0, then the
Josephson quantum inductance �8� introduced in the circuit
will be determined by the local curvature of the ground state
E0�� ,�e�, having maxima at �e= �1+1/2��0. In this case
the external magnetic flux �e, by altering the value of the
local curvature and the inductance �8�, will lead to a shift of
the resonance frequency of the circuit, i.e., to a signal. In
such a measurement scheme the transfer coefficient is pro-
portional to the square of the coupling coefficient k2

=M /LLT, which with the use of the nonlinearity arising be-
cause of the coherent superposition of states should be small,
since the back-action of the circuit on the qubit is also pro-
portional to k2 �Refs. 2 and 3�. Therefore, in contrast to the
well-known condition for the coupling coefficient in rf
SQUIDs �k2Q�1�, in making weak continuous measure-

ments of a quantum system one should choose values k2Q
�1. Otherwise, the dissipation introduced in the qubit by the
classical tank circuit, �k2QLfT, will lead to an increase in
the rate of decoherence and rapid collapse of the wave func-
tion of the superposition state.

As was shown above, in a qubit with an ScS junction
�Fig. 2a� the level E1 can be found rather far from the
ground-level energy E0, and to first approximation one can
assume that it does not have a substantial influence on the
behavior of the system in the case of a weak low-frequency
excitation of the circuit. In fact, this approximation means
that the value of the minimum splitting E10 is much greater
than kBT /��0.015 and the characteristic energy hfT of the
circuit.1 Therefore, at low amplitudes of excitation,
�e�t���0, the insertion inductance in the circuit is linked
only with the mean value of the square of the ground-state
wave function. Figure 3 shows the dependence of the mean
value of the magnetic flux �� on the external flux �e, ob-
tained by averaging the squares of the wave functions for the
ground state E0 and excited state E1. We note that in the
adiabatic motion in the ground state the curves are of oppo-
site character, like ���e� for the nonhysteretic regime of an rf
SQUID, although, of course, the analogy is incomplete. The
opposite nature of ����e� causes the signal characteristics of
the q-SQUID with a double-well potential to be qualitatively
similar to the characteristics of a classical rf SQUID with
parameter �L�1. These features of the signal and
amplitude–frequency characteristics have been mentioned in
experimental studies of systems with ScS junctions.1,21

Following the results of Ref. 1, let us analyze the
q-SQUIDs based on ScS junctions with parameters 2��L

�4, i.e., in the existence region of triple-well potentials. It is
seen from Eqs. �3� and �4� that for a qubit inductance L=3
	10−10 H a triple-well symmetric potential can be obtained
at points �e=n�0, having increased the critical current of
the contact to Ic=2–4 
A. In such a potential the energy
levels in the “left” and “right” well are degenerate at any �L,
as in the previous case. In the middle �deep� well the distri-
bution of levels depends on the critical current of the Joseph-
son junction and the capacitance, and therefore total degen-
eracy �the condition of resonance of three levels for the
specified mass� occurs only at certain values of �L. Under

FIG. 2. Dependence of the energies of the ground state E0 and excited state E1 on the external magnetic flux in the presence of a superposition of double-well
potentials in the region �e=�0�1±0.05� for a q-SQUID with an ScS junction, �L=0.8 �a� and for a q-SQUID with an SIS junction �L=1.54 �b�. All the other
parameters correspond to those given in Fig. 1.
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conditions close to degeneracy, a system of split levels is
formed which, by analogy with the case of double-well po-
tentials, we denote as follows: E0 is the lowest, E1 the
middle, and E2 the highest level. The minimum value of the
splitting between them at the point �e=�0 will be equal to
E1−E0=E10 and E2−E1=E21, respectively.

Figure 4a a shows the dependence of the splitting on the

dimensionless parameter �L for the first two energy levels,
obtained by solution of the time-independent Schrödinger
equation for four values of the capacitance of the q-SQUID.
For values m=10 upon a resonance superposition of three
states the magnitude of the splitting reaches values E10/kB

=E21/kB�3.5 K, where E21 is equal to the minimum �i.e., at
the point �e=�0� value of the splitting between the corre-
sponding levels. We note that at such points of resonance
superposition the splitting amplitude can reach values greater
than 1 K, even for a very large mass m=40, which corre-
sponds to a total capacitance of the q-SQUID C�1.33
	10−14 F.

As to the choice of the values of �L, we note that in Ref.
1, starting from a resistive model of the junction �4�, this
parameter was estimated to be around 5.8, but going to a
model of a clean ScS junction decreases this value by � /2.
In the present paper we therefore have carried out our nu-
merical analysis for values in the range 2��L�4.

Figure 4b shows the form of the potential energy and the
value of the splitting for the case of a resonance superposi-
tion of three macroscopic states in a q-SQUID with an ScS
junction. The parameters chosen for the calculation, m=26,
�L=3.83 are rather close to the values obtained in Ref. 1:
m=20±10, �L�4.2. In the figure we give the squares of the
wave functions for the levels E0, E1, and E2. We note that,
unlike the case of the double-well potential, in the triple-well
potential there always exist levels lying below E0. The num-
ber of these levels in the central well is large and corre-
sponds to the number of zeros of the square of the wave
function. This fundamental difference means that over the
energy relaxation time �� an irreversible collapse of the
states can occur due to energy relaxation, and the system can
end up in the main energy minimum. In other words, the
state of superposition in the triple-well potential is always
metastable in the sense of energy relaxation. Therefore, to
make a sensor based on a q-SQUID with such a potential, it
is necessary that the energy relaxation time �� of the sensor
be much greater than the characteristic time of the measure-
ments. Interestingly, energy relaxation was not observed in
Ref. 1, where the signal characteristics were recorded with
rather long measurement times �5 min�. This means that the
system being measured was very well isolated from the en-
vironment �e.g., because of the toroidal “self-shielding” con-

FIG. 3. Dependence of the mean values of the magnetic flux �� on the external flux �e in the presence of superposition in double-well potentials for the
ground state E0 and excited state E1, obtained by averaging the square of the wave functions in q-SQUIDs based on ScS �a� and SIS �b� Josephson junctions
with parameters corresponding to Figs. 1 and 2.

FIG. 4. Superposition of macroscopic states in a triple-well symmetric po-
tential in the presence of an external magnetic flux �e=�0. The family of
curves of the level splitting E10=E1−E0 versus the values of the dimension-
less parameter �L for a q-SQUID with an ScS junction. The parameter of the
family is the dimensionless mass m= �� / ��0�2. The extrema on the E10��L�
curve appear at exact degeneracy of the three energy levels in the triple-well
potential �a�. The shape of the potential energy and square of the wave
functions for split levels in a q-SQUID with an ScS junction at m=26, �L

=3.83 at a point of degeneracy of three levels, �e=�0. The position of the
two lower levels in the central well is shown with a break of the energy
scale �b�.
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struction of the resonator� and that the tank circuit had a
rather weak influence on the state of the qubit.2,3,22 The long
energy relaxation times obtained experimentally allow us to
keep the term “ground state” for the E0 level in the sense that
the main nonlinearity of the q-SQUID is due to the motion
along this level only.

The dependence of the level energies E0, E1, and E2 on
the external magnetic flux �e in the interval �e

= �1±0.05��0 and the corresponding dependence of the
mean values of the magnetic flux �� are presented in Fig. 5.
The amplitude of the variation of �� around �e=�0 �Fig.
5b� demonstrates that, first, the coherent superposition of
macroscopic states in the triple-well potential arises between
states separated by an interval �2�0, which differs sharply
from the classical dependence typical of an rf SQUID in the
nonhysteretic regime. Furthermore, in this case the nonlin-
earity is maximum at a value �e=�0, whereas for double-
well potentials and for classical rf SQUIDs the maximum is
reached at the point �e=�0 /2. The character of the nonlin-
ear dependence of �� on the flux �e that arises for motion
along the ground state is shown in Fig. 5b by the solid curve.
Since precisely these features of the signal and current–
voltage characteristics were noted as “anomalous” in Ref. 1,
this can be considered to be the first implementation of a
q-SQUID with a niobium ScS junction. It is seen in Fig. 5a
that for the parameter �L=3.83, even for large masses m
=26 �C�8	10−15 F� the resonance superposition of three
states leads to a value of the splitting between the first two

levels E10=0.06�, which corresponds to 1.5 K.
Turning to a discussion of the sensitivity of q-SQUIDs,

we note that a linear superposition of two �three� macro-
scopic states leads to nonlinear dependence of �� on �e

�see Fig. 3b and 5b�. If the rate of diffusion of the wave
packet is much higher than the rate of change of the potential
energy, then these relations are single-valued. This fact be-
comes very important when one considers that in such a
regime the SQUID can be treated as an ideal parametric fre-
quency up-converter, and therefore its contribution to the to-
tal noise of an amplifying device can be made negligibly
small.23,24 At low temperatures �T�0.1 K� — and it is at
such temperatures that measurements of the states of super-
conducting qubits are proposed — the total sensitivity of a
q-SQUID as a narrow-band amplifier, �N, will be bounded
from below by the Heisenberg uncertainty principle:

��N�min = �N�TT,TA���S/�T� � � �S/2. �9�

Here TT and TA denote the noise temperatures of the tank
circuit and amplifier, and �S is the signal frequency. The
sensitivity of an rf SQUID at 4.2 K in the nonhysteretic re-
gime, with the fluctuation back-effect taken into account, is
more than an order of magnitude greater than the limit �9�
and is usually determined by the noise temperature TT of the
tank circuit and the transistor noise. However, an analysis of
results obtained on cooled amplifiers25 in recent years shows
that in the temperature region T�0.1 K both of these factors
can be substantially reduced, making it possible to approach
values close to Planck’s constant h /2�.

CONCLUSION

A numerical analysis of the solutions of the stationary
Schrödinger equation shows that a coherent superposition of
two macroscopic states in a superconducting loop closed by
a clean ScS junction leads to a sharp �order-of-magnitude�
increase of the energy level splitting in comparison with a
qubit based on an SIS junction at the same parameters. The
substantial improvement of the quality of qubits is due to a
change of the effective action16 describing the quantum be-
havior of the phase difference � and depending on the type
of weak link or the shape of the potential barrier. Moreover,
since in q-SQUIDs with a ScS junction a double-well poten-
tial exists even in the region �L�1, nonlinearity due to su-
perposition of macroscopic states can be obtained for lower
values of L.

Superposition of three macroscopic states leads to two
new effects in the ground state: the maximum nonlinearity of
the function ����e� is observed in the neighborhood of
�e=�0, and the characteristic amplitude of this nonlinearity
increases by almost a factor of two in comparison with su-
perposition in a double-well potential. In the adiabatic ap-
proximation, i.e., under the condition of a slow variation of
the potential energy, superposition of two and three states in
q-SQUIDs with an ScS junction leads to reversible �nonhys-
teretic� dependence ����e�, so that a q-SQUID can be
treated as an ideal parametric frequency up-converter. The
rate of diffusion of the wave packet in a time-dependent
potential and the restriction on the maximum frequency of
parametric conversion as a result of this process requires
further examination. However, since for a stationary poten-

FIG. 5. Superposition of three macroscopic states in a q-SQUID with an
ScS junction at m=26, �L=3.83. The dependence of the three split energy
levels on the external magnetic flux in the interval �e= �1±0.05��0 �a�. The
mean values of the magnetic flux �� in a q-SQUID, obtained by averaging
the square of the wave functions for the three split energy levels E0, E1, and
E2, versus the magnetic flux in the same interval �b�.

20 Low Temp. Phys. 33 �1�, January 2007 V. I. Shnyrkov and S. I. Melnik

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

152.3.102.242 On: Tue, 11 Aug 2015 00:17:23



tial the diffusion time tD��� /E10, one can assume that the
maximum frequency of parametric conversion will be higher
for larger values of E10.

As is shown in Ref. 26, the use of a phase-slip center as
a weak link theoretically permits one to obtain still larger
values of the level splitting. However, the creation of a qubit
on such a system is problematic because of the large values
of the quasiparticle component of the current. Since the tech-
nology of tunnel junctions is now well developed, to im-
prove the characteristics of phase qubits through the shape of
the potential barrier �3� one can insert two niobium-based
tunnel junctions with equal critical currents into the loop. If
the dimensions of the junctions are made small enough, e.g.,
100	100 nm, the self-capacitance of two junctions can be
of the order of 10−15 F. It is interesting that the proposed
topological phase qubit with two niobium-based tunnel junc-
tions is similar in construction to the charge qubit imple-
mented in Ref. 27.

The theory of signal characteristics of rf SQUIDs in the
nonhysteretic regime23,24 with superposition of three states in
the q-SQUID taken into account, that the results presented in
Figs. 4 and 5 describe well the new effects observed in Ref.
1 with the use of the method of weak continuous
measurements.2,22 These new effects include: a �0-periodic
variation of the resonance frequency of the circuit in the
“formally hysteretic” regime; doubling of the amplitude of
the signal characteristics of the region of small amplitudes of
excitation of IT, and unusual shape of the current–voltage
characteristic VT�IT� at �e=�0.

We emphasize that in the experiments discussed in Ref.
1 and in the present paper, adiabatic conditions for a coherent
superposition of macroscopic states, hfT�E10��0, were
fulfilled, as is necessary for constructing a sensor with a
minimum back-action on the measured quantum object. The
question of the dynamics of the wave packet in a time-
dependent potential requires further analysis. Furthermore, it
must be supposed that the q-SQUID was very well isolated
from the external environment, since in a triple-well poten-
tial, energy relaxation did not occur in the motion along the
metastable state E0.

It follows from the above analysis of a q-SQUID with a
double-well potential that the results of Ref. 21 can be ex-
plained by a special shape of the potential energy for the ScS
junction �Figs. 1–3� without invoking unrealistically low val-
ues of the capacitance of the rf SQUID.

Interestingly, the three-level structure of the qubit pro-
posed in Ref. 28, based on a � SQUID, is automatically
realized for q-SQUID with a triple-well potential.

The authors express their deep gratitude to S. V. Kupl-
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fruitful discussions and constructive comments and to E.
Il’ichev and Ya. S. Greenberg for providing a copy of their
manuscript. This study was done with the financial support
as part of the grant “Nanosystems, nanomaterials, and nano-
technology” of the National Academy of Sciences of
Ukraine.

Note Added in Proof

An interesting paper devoted to an analysis of a quantum
detector based on a qubit with three Josephson junctions in a

superconducting loop20 was recently published by E.
El’ichev and Ya. S. Greenberg �cond-mat/0608416�. In com-
paring this detector with the q-SQUID based on an ScS
junction,1 it should be noted that keeping the cosinusoidal
barrier shape and increasing the mass �m→2m� in a three-
junction q-SQUID will lead to a substantial decrease in the
rate of quantum diffusion of the wave packet because of a
decrease of E10 at identical values of the barrier height. The
increase of the local curvature of the ground state at low
values of E10 �see Fig. 2 above� in a detector based on a
three-junction qubit cannot be regarded as an automatic im-
provement in sensitivity, since in a time-dependent potential
the adiabatic conditions for tunneling will hold at much
lower excitation frequencies �fT�E10/h�. This will lead to a
limitation of the sensitivity by noise in the tank circuit and
amplifier, with a simultaneous decrease of the speed of the
q-SQUID. In our view, the most remarkable thing about a
three-junction q-SQUID is that it can be used to construct a
micro-q-SQUID �with dimensions of the quantization con-
tour of 1	1 
m, for example� to improve the spatial reso-
lution.
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